Austin Water Utility and Climate Change

David Greene, P.E. AWU Energy & Resources Engineer

November 16, 2010 Resource Management Commission

AWU Climate Change Program

- Identify and quantify impacts:
 - Greenhouse Gas Emissions Inventory
- Reduce (mitigate) impacts through:
 - Water Conservation
 - Energy efficiency
 - Process fugitives reduction
 - Renewable energy generation
- Measure progress and revise strategies (DCPP)
- Anticipate and adapt to changes

GHG Emission Inventory

Units of metric tons CO2-equivalent (MTCO2e) - use GWPs (Global Warming Potentials) to find equivalent

Important CO₂-eq rates:

AE: ~0.5 kg/kWh; US avg.: ~0.7 kg/kWh

Unleaded: 8.8 kg/gal; Diesel 10 kg/gal

The Path of Austin's Water

Direct Emissions: Methane and Nitrous Oxide

Wastewater Treament Process

Indirect Emissions: Electricity

80% of AWU energy used for:

Pumping clean water Treating wastewater ("blowers") Buildings (lighting, HVAC)

AWU 2008 Greenhouse Gas Emissions Inventory

- Electricity 121,000 MTCO2e (89%)
- Fleet & other fuels 5,000 MTCO2e (4%)
- Fugitives 9,000 MTCO2e (7%)
- TOTAL: 135,000 MTCO2e

Put another way...

- Process (Excluding lighting & HVAC):
 - 2.5 kWh & 1.3 kg CO₂e per kgal drinking water
 - 2.4 kWh & 2.0 kg CO₂e per kgal wastewater
 - 4 kWh & 2.5 kg CO₂e per kgal avg
 - Assumes 60% of drinking water becomes wastewater
- About 1kg GHG per household per day or 3%
 - Compare to:
 - kWh: 17 kg per day @ 1000kWh/month
 - Car: 17kg for 40 mile/day @20mpg

End Use Energy

- AWU: 4 kWh and 2.5 kg GHGs per 1000 gallons (assumes 60% to WW)
- End use energy may be twice AWU's
- Total impact ~68kg GHG/yr/household

Mitigation: Marginal Abatement Cost Curve

About 40 percent of possible cuts could come from measures that save billions of dollars a year (below). Most of these savings are found in building improvements, such as more efficient lighting, and transportation improvements like better fuel efficiency.

Cost effectiveness:

- Efficiency (buildings, transportation, & process)
- 2. Agriculture & Land Management
- Power generation

AWU GHG Mitigation Sectors

- Water conservation
- Energy efficiency
- Reduced fugitives (direct GHG emissions)
- Onsite renewable energy generation

Potential GHG Emissions at AWU

Austin Climate Protection Plan

- Municipal Plan
- Utility Plan
- Homes and Buildings Plan
- Community Plan
- "Go Neutral" Plan

AWU's Climate Protection Plan

Mitigation

- AWU will reduce its carbon footprint using a variety of costeffective measures. Meeting the following specific goals may allow AWU to reduce GHG emissions by 33% from a projected business as usual scenario in 2020.
 - Energy
 - Water
 - Transportation
 - -Solid Waste
 - Education

Energy

Administrative – office buildings and similar facilities:

- Reduce energy use by at least 5% per year.
- Produce 2 million kilowatt-hours (kWh) of onsite renewable energy production per year.

Process – treatment plants, pump stations, lift stations:

 Reduce energy intensity (kWh per million gallons of treated water or wastewater) by 3% per year (averaged over 10 years).

Building Efficiency into Infrastructure

Building efficiency

Estimated to be 10-20% of AWU kWh

- HVAC upgrades throughout AWU
- IT: 'standby' mode and virtualized servers
- Lighting at service centers and Waller Creek Center
 - Expected to save about 250,000 kWh per year
 - Using AE's Municipal Energy program support

Onsite Renewable Energy Generation

- * Builds capacity and reduces greenhouse gas emissions of kWh used
 - * Hornsby Bend biogas cogeneration:
 - ★ Heat for digesters (existing)
 - ★ Electricity for plant (planning at least 875 kW by 2012, up to 2 MW potential)
 - ★ Can use food and waste grease
 - PV roofs at AWU facilities
 - **★** Glen Bell Service Center 135 kW array near completion
 - **★**51st St. Reclaimed tower

Performance Metrics

- Indirect: kWh/MG
- Direct GHGs/MG
- Total GHG/MG

Electricity Use KwH per Million Gallons

Net Direct Greenhouse Gas Emissions per MG

Annual

Net Direct and Indirect Greenhouse Gas Emissions per MG

Direct (fugitive) emissions

- Focus on CH₄ and N₂O, less on CO₂
- Tighter methane capture through Hornsby Bend improvements
- Biological C sequestration
 - Land management
 - Compost and sludge

AWU's Climate Protection Plan

Adaptation to Anticipated New Conditions in:

- Supply (climate, technology)
- Demand (population, technology, behavior)
- Water quality & chemistry
- Infrastructure

2050 Averages for Austin

Projected Changes from Historical

rrojecte	GFDL	GFDL	CCSM	CCSM
CO2	A2	B1	A2	B1
Temp.	+ 3.4° F	+ 2.5° F	+ 3.9° F	+ 3.5° F
Precip.	- 1.6 in.	0.0 in.	- 0.1 in.	+ 2.4 in.
Net Evap.	+ 6.6 in.	+ 1.7 in.	+ 3.8 in.	- 0.2 in.

• Historical = 1970 to 1999 average

Implications for Supply and Demand in Central Texas?

Collaborating with LCRA on understanding supply.

AWU staff research on climate impacts on demand found no significant impact on annual average, but 6-12% increase in peaking factor by 2100.

AWU staff continuing research on wastewater and on additional adaptation measures.

Thank You!

David Greene, P.E. david.greene@ci.austin.tx.us 512-972-0071

Austin Water Utility Energy & Resources Engineer

