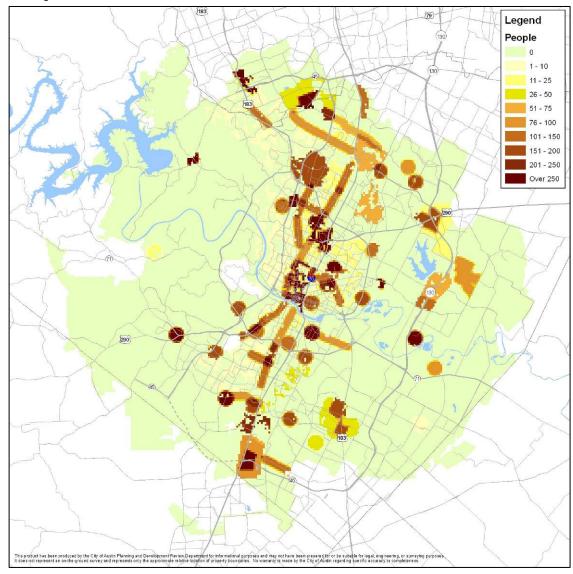
IMAGINEAUSTIN comprehensive plan

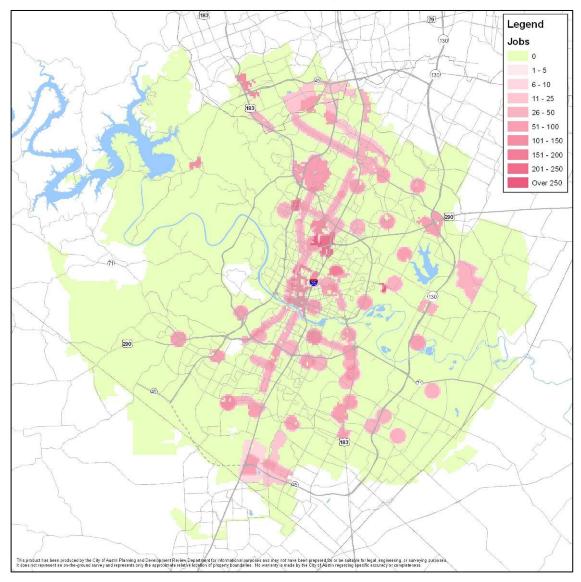
Comprehensive Plan Citizens Advisory Task Force

Supplemental Analysis of Preferred Scenario and Growth Concept

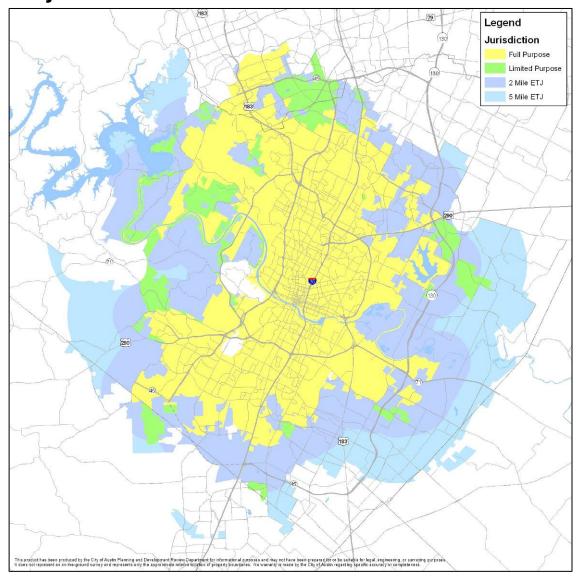

IMAGINEAUSTIN comprehensive plan

Notes and Restrictions on Population and Jobs Projections:

- 1. Overall forecast of 750,000 People/300,000 Jobs
- 2. Unrefined and meant for regional, not neighborhood-level analyses
- 3. Plan does not call for specific placement of population and jobs
- 4. The Preferred Scenario and Growth Concept are conceptual representations, based on extensive public input. Furthermore, some of the Centers and Corridors are simply general circles that will be further delineated as they are developed or changed through additional planning. Therefore, the following maps and tables are conceptual representations.
- 5. Staff used the Preferred Scenario when population and jobs was needed for analysis, and used the Growth Concept for when it was not needed.



Population Added with Preferred Scenario



Jobs Added with Preferred Scenario

City Jurisdictions

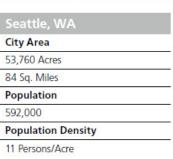
Population Added With Preferred Scenario by City Jurisdictions

Population	Existing		Total Added 2009-2039		Total by 2039		
Jurisdiction	People	Acres	Density: Persons/Ac.	People	%	People	Density: Persons/Ac.
Extra-territorial Juris. (ETJ)	208,225	198,906	1.0	139,880	19%	348,105	1.8
Full and Limited Purpose	812,025	196,998	4.1	610,120	81%	1,422,145	7.2
Grand Total	1,020,250	395,904	2.6	750,000	100.0%	1,770,250	4.5

Comparison of Density in Other Cities

City	People	Acres	Density: Persons/ Ac.
Houston	2,099,451	384,832	5.5
Dallas	1,197,816	246,912	4.9
New York City	8,175,133	300,096	27.2
Portland, OR	583,776	93,056	6.3
Columbus	787,033	136,064	5.8
Fort Worth	741,206	217,472	3.4

Additional Cities Densities (taken from Portland, OR plan)



Denver, CO
City Area
98,560 Acres
154 Sq. Miles
Population
598,000
Population Density

6 Persons/Acre

Austin, TX
City Area
189,440 Acres
296 Sq. Miles
Population
743,000
Population Density
4 Persons/Acre

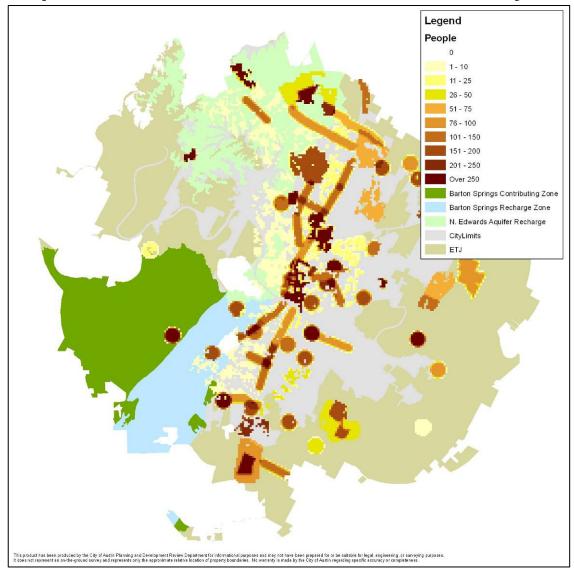
Sacramento, CA	
City Area	
63,360 Acres	
99 Sq. Miles	
Population	
475,000	
Population Density	
7 Persons/Acre	

Los Angeles, CA	
City Area	
318,720 Acres	
798 Sq. Miles	
Population	
3,800,000	
Population Density	
12 Persons/Acre	

Vancouver, BC
City Area
28,160 Acres
44 Sq. Miles
Population
575,000
Population Density
20 Persons/Acre

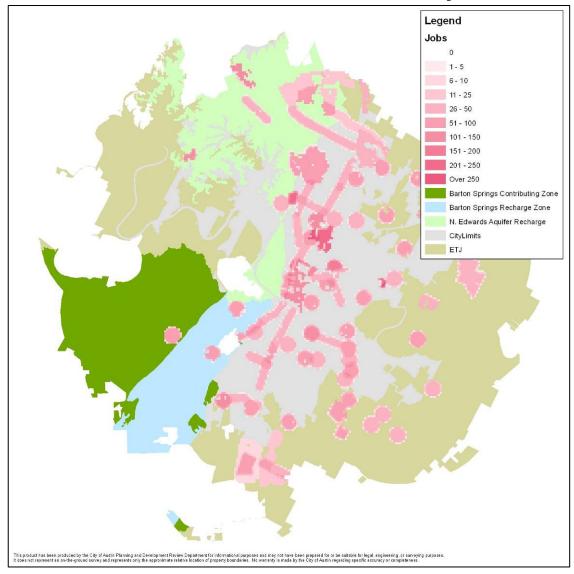
Paris, France	
City Area	
23,680 Acres	
37 Sq. Miles	
Population	
2,200,000	
Population Density	
93 Persons/Acre	

Mexico City, Mexico	
City Area	
366,720 Acres	
573 Sq. Miles	
Population	
8,800,000	
Population Density	
24 Persons/Acre	



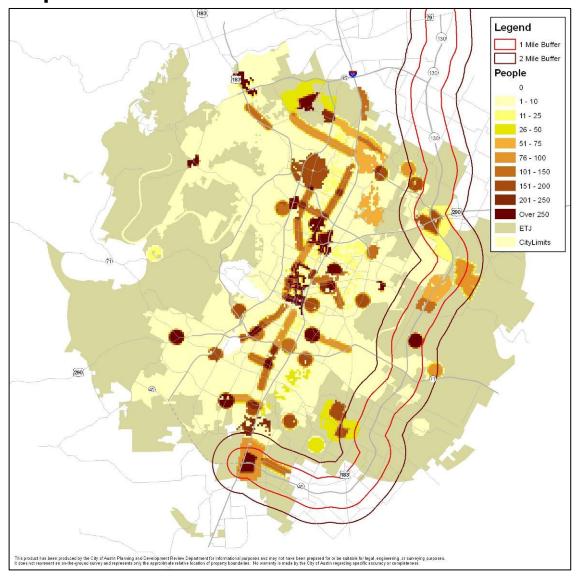
Jobs Added With Preferred Scenario by City Jurisdictions

	Total Added 2009-2039		
Jurisdiction	% Distrik tion		
Extra-territorial Jurisdiction (ETJ)	53,990	18%	
Full and Limited Purpose	246,199	82%	
Crond Total	200 100	100.09/	
Grand Total	300,189	100.0%	



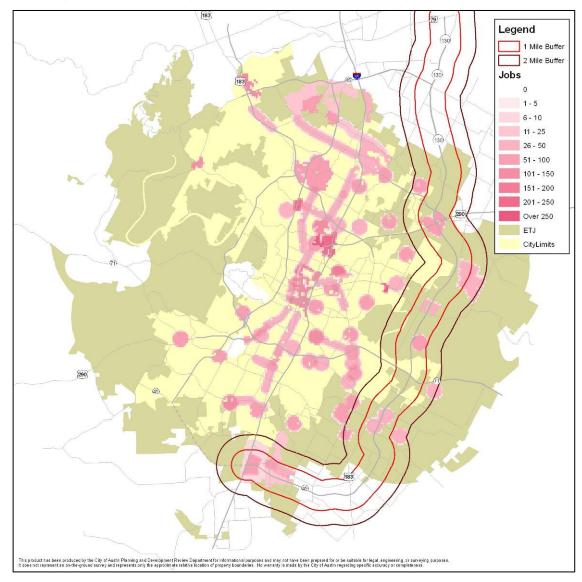
Population Added with Preferred Scenario by Edwards Aquifer Recharge Zone

Jobs Added with Preferred Scenario by Edwards Aquifer Recharge Zone



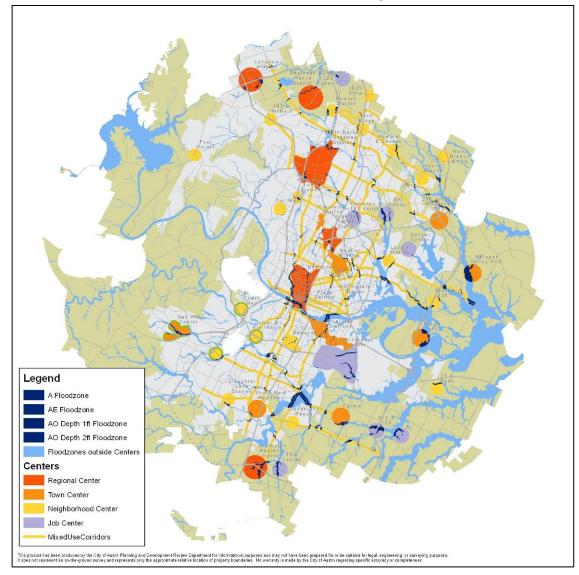
Population and Jobs Added with Preferred Scenario By Edwards Aquifer Zones

Recharge Zone	Total Added By 2039		Percentage of Grand Total	
_	Population	Jobs	Pop.	Jobs
Barton Springs Contributing Zone	15,981	5,263	2.1%	1.8%
Barton Springs Recharge Zone	20,533	6,632	2.7%	2.2%
Total in Barton Edwards Aquifer Zone	36,514	11,895	4.9%	4.0%
N. Edwards Recharge Zone	107,851	41,219	14.4%	13.7%
Total in Edwards Aquifer Zones	144,365	53,114	19.2%	17.7%
Rest of ETJ/City Limits	605,635	246,885	80.8%	82.3%
Grand Total	750,000	300,000	100.0%	100.0%



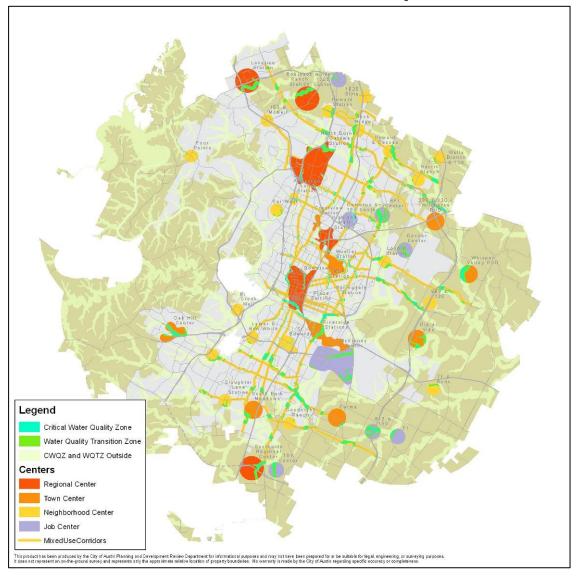
Population Added with Preferred Scenario in SH130/45 Areas

Jobs Added with Preferred Scenario in SH130/45 Areas

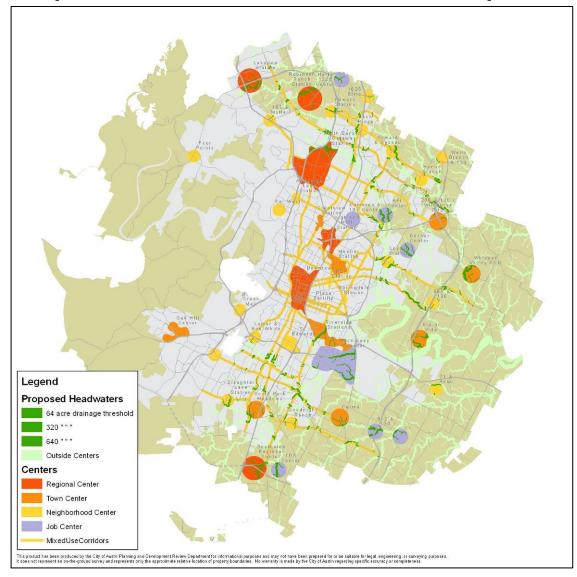


Population and Jobs Added with Preferred Scenario in SH 130/45 Areas

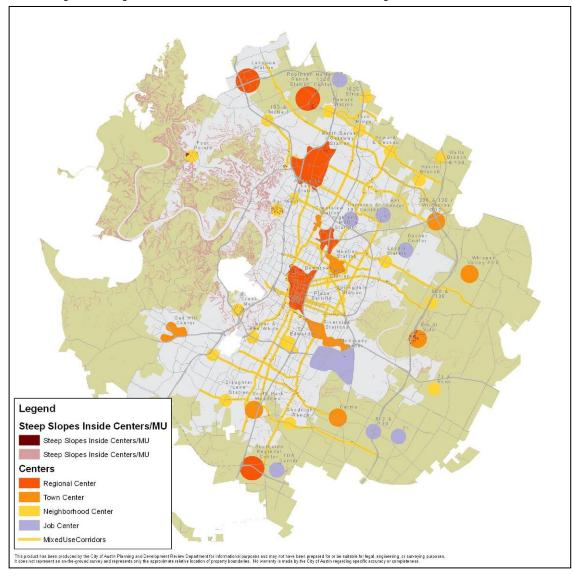
	Total /	Added By 2039	Percentage of	of Grand Total
Area	Population	Jobs	Population	Jobs
Within 1 mile	95,481	34,165	12.7%	4.6%
Within 2 miles	33,935	12,858	4.5%	1.7%
Total Within 2 Miles	129,416	47,023	17.3%	15.7%
Rest of ETJ/City Limits	620,584	252,977	82.7%	84.3%
Grand Total	750,000	300,000	100.0%	100.0%



Flood Plains and Growth Concept



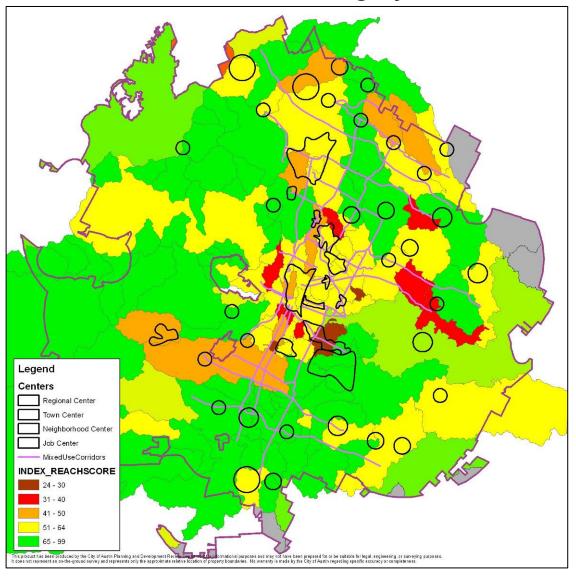
Stream Buffers and Growth Concept



Proposed Headwaters and Growth Concept

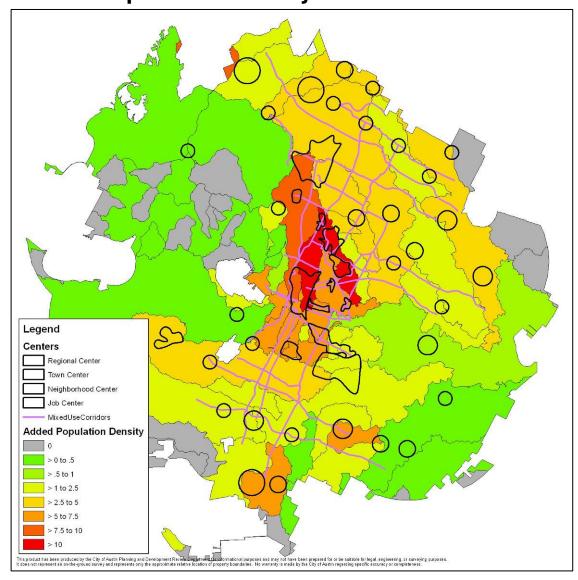
Steep Slopes and Growth Concept

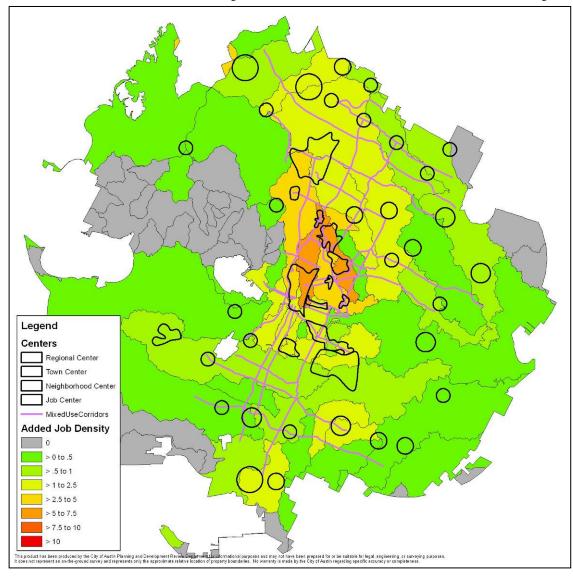
Environmentally Sensitive Areas¹ in Centers and Corridors

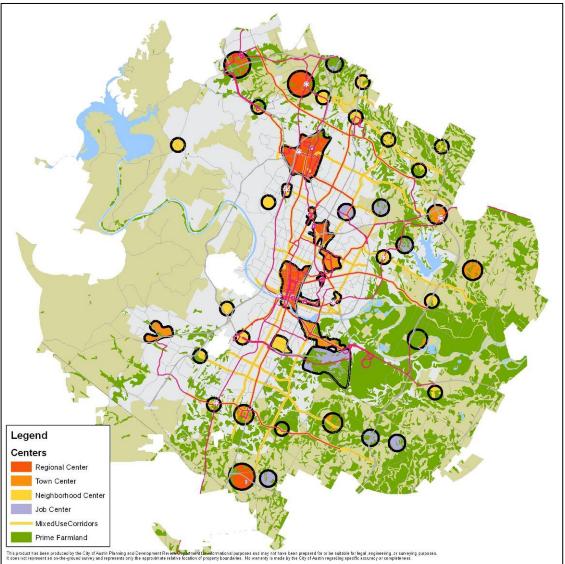

Туре	Environmentally Sensitive Acres			
	Outside	Inside	Total Acreage	
Centers	25,076.6	5,139.0	30,215.6	
Percentage	83%	17%	100%	
Corridors	25,292.7	4,999.5	30,292.1	
Percentage	83%	17%	100%	

Notes:

- In this analysis, this refers to areas within the 100-year flood plain, steep slopes greater than 15%, critical and water quality transition zones, and the proposed headwaters in the eastern portion of the ETJ.
- Some of the Centers and Corridors are simply general circles on the Growth Concept map, and will be further delineated as they are developed or changed through additional planning.


Watershed Environmental Integrity Index Scores And Growth Concept


This is the best descriptor of overall environmental condition for the sampling reach. Index scores are an integer between 0 and 100 with the scores classified as such: Excellent 88-100, Very Good 76-87, Good 63-75, Fair 51-62, Marginal 38-50 Poor 26-37, Bad 13-25, Very Bad 0-12. Problem Scores are an integer between 1 and 100 with 1 being "No Problem" and 100 being a highest priority. Resources: EII Methodology, Problem Score Methodolgy, Lake Index Methodology is in draft and is forthcoming.

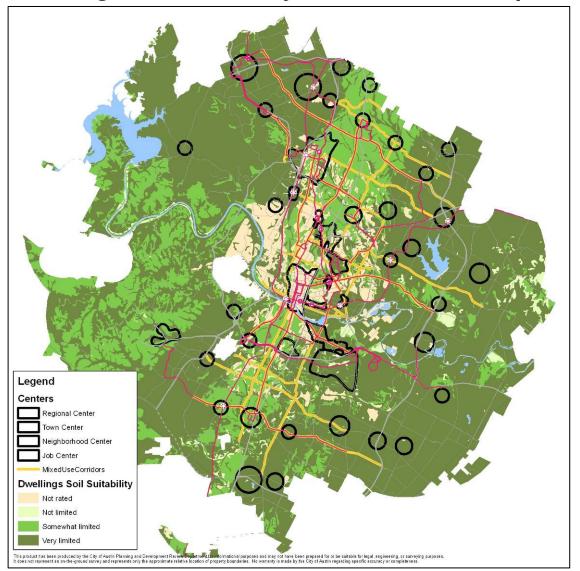

Added Population Density with Preferred Scenario by Watershed Zones

Added Jobs Density with Preferred Scenario by Watershed Zones

Prime Farmland and Growth Concept

	Acres	
	Centers	Corridors
All areas prime farmland	7,807	22,409
Not in prime farmland	5,241	25,051
Grand Total	30,216	30,292

Sources: USDA, City of Austin


This data consists of general soil association units. It was develped by the National Cooperative Soil Survey and supersedes the State Soil Geographic (STATSGO) data set published in 1994. It consists of a broad based inventory of soils and nonsoil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. The data set was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled, together with Land Remote Sensing Satellite (LANDSAT) images. Soils of like areas were studied, and the probable classification and extent of the soils were determined.

This data is not designed for use as a primary regulatory tool in permitting or citing decisions, but may be used as a reference source. When data from the Digital General Soil Map of U.S. are overlayed with other data layers, caution must be used in generating statistics on the co-occurence of the land use data with the soil data. The composition of the soil map unit can be characterized independently for the land use and for the soil component, but there are no data on their joint occurrence at a more detailed level. Analysis of the overlayed data should be on a map polygon basis.

Dwellings Soil Suitability and Growth Concept

	Acres	
	Centers	Corridors
Not limited	288	303
Not rated	4,328	5,413
Somewhat limited	5,367	9,419
Very limited	20,233	15,157
Grand Total	30,216	30,292

Sources: USDA, City of Austin

This data consists of general soil association units. It was develped by the National Cooperative Soil Survey and supersedes the State Soil Geographic (STATSGO) data set published in 1994. It consists of a broad based inventory of soils and nonsoil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. The data set was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled, together with Land Remote Sensing Satellite (LANDSAT) images. Soils of like areas were studied, and the probable classification and extent of the soils were determined.

This data is not designed for use as a primary regulatory tool in permitting or citing decisions, but may be used as a reference source. When data from the Digital General Soil Map of U.S. are overlayed with other data layers, caution must be used in generating statistics on the co-occurence of the land use data with the soil data. The composition of the soil map unit can be characterized independently for the land use and for the soil component, but there are no data on their joint occurrence at a more detailed level. Analysis of the overlayed data should be on a map polygon basis.

Growth Concept

