

INVESTING IN A CLEAN FUTURE

Austin Energy's Resource, Generation and Climate Protection Plan to 2020 Update

May 7, 2014

Revised as requested

Added slide 13; revised slides 14 and 18

Distributed May 14, 2014

INVESTING IN A CLEAN FUTURE

Austin Energy Briefing to Austin Generation Resource Planning Task Force

Babu Chakka - Manager, Energy Market Analysis John Wester - Manager, Energy Supply & Risk Management

Added slide 13; revised slides 14 and 18

Distributed May 14, 2014

- Historical Average Fuel & Production Costs
- List of Scenarios
- Month Wholesale real time market purchases
 January 2011 through December 2013

Revised as requested Adder INVESTING IN A CLEAN FUTURE

Austin Energy historical average fuel and production cost is available @

- <u>http://austinenergy.com/wps/portal/ae/about/reports-and-data-library/data-library</u>
- Also available at 2012 Annual Performance Report
 Table 38: Fuel Costs (Page 32 of 53 of the report)
 Table 46: System Fuel Cost Average (Page 38 of 53 of the report)
 Table 47: System Production Cost (Page 38 of 53 of the report)
 Table 49: Plant Outages (Page 39 of 53 of the report)

• System fuel average cost is the cost of fuel purchased divided by the number of kilowatts generated.

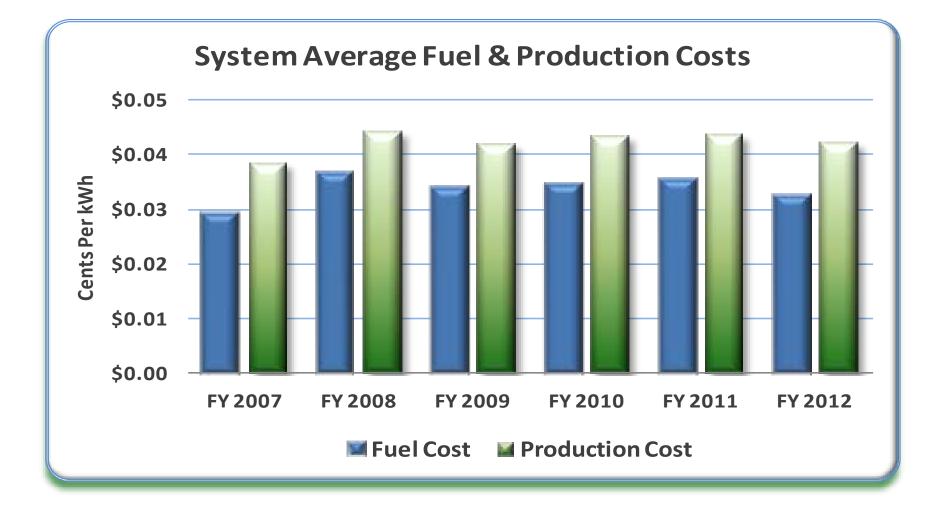
Table 46: System Fuel Cost Average

Measure	FY 2008	FY 2009	FY 2010	FY 2011	FY 2012
System annual average fuel cost	3.655 cents	3.371 cents	3.446 cents	3.523 cents	3.225 cents
(fuel/kWh)	per kWh				

 Austin Energy's system annual average production cost is total operations and maintenance costs divided by total generation in kilowatt hours.

Table 47: System Production Cost

Revised as requested


INVESTING IN A CLEAN FUTURE

Measure	FY 2008	FY 2009	FY 2010	FY 2011	FY 2012
System annual average production cost	4.403 cents	4.165 cents	4.331 cents	4.304 cents	4.197 cents
(includes fuel plus operating & maintenance)	per kwh				

Added slide 13; revised slides 14 and 18

Revised as requested

Costs allowed in the fuel tariff include commodity, purchase power, and ERCOT-related charges.

Table 38: Fuel Costs

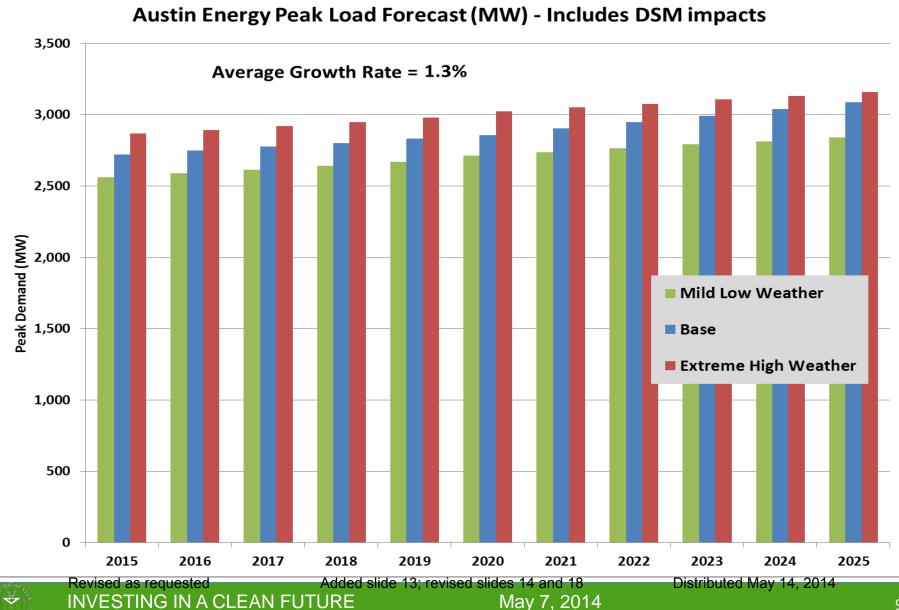
Fuel Cost	FY 2008	FY 2009	FY 2010	FY 2011	FY 2012
Gas	\$250,721,680	\$214,711,985	\$203,976,741	\$190,320,211	\$148,047,838
Coal	\$87,063,860	\$84,635,000	\$91,590,706	\$88,068,421	\$85,032,243
Nuclear	\$15,823,059	\$16,866,183	\$16,655,851	\$18,295,747	\$14,087,793
Fuel Oil	\$420,142	\$566,981	\$2,405,166	\$2,698,718	\$897,703
Purchase Power	\$90,621,318	\$54,863,996	\$53,409,677	\$57,820,582	\$10,831,546
ERCOT*	\$10,165,180	\$21,889,298	\$21,617,196	\$66,372,518	\$69,831,165
Renewable	\$26,183,662	\$49,567,759	\$48,631,116	\$48,212,653	\$97,167,511
Total	\$480,998,901	\$443,101,202	\$438,286,453	\$471,788,849	\$425,895,800

*Through FY12, the ERCOT line item includes fees and charges from ERCOT such as net power costs and administrative and nodal fees. Beginning in FY13, those administrative and nodal fees associated with power supply adjustment customers are recovered through the regulatory charge.

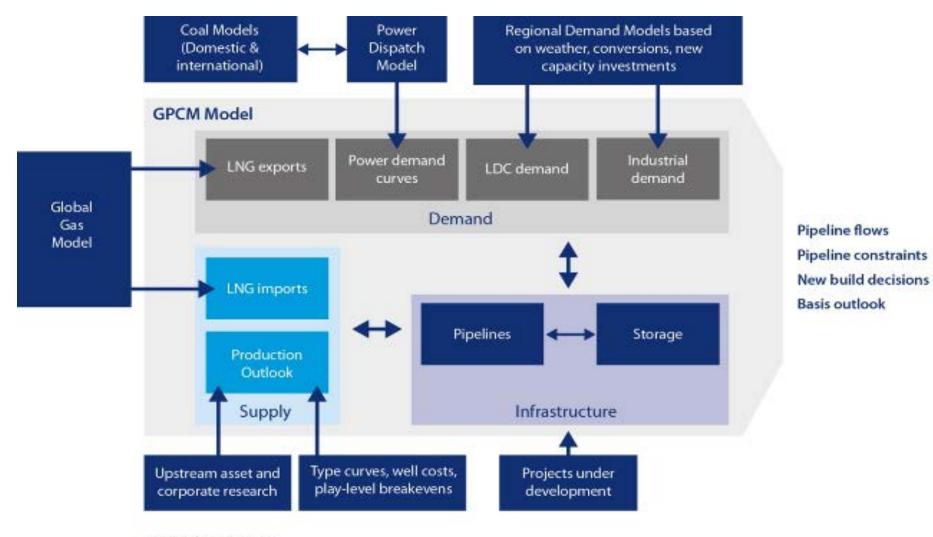
May 7, 2014

Distributed May 14, 2014

Regulations AE is Tracking


Rule	Potential Impacts
Lower ozone standard	Austin-area non-attainment and NOx control expense at local plants
CO ₂ limits on existing and new power plants	No new coal construction plus additional generation costs based on CO_2 emissions intensity
Cooling water intake design standards	Possible upgrades to water intakes at FPP and Decker
Mercury limits on coal plants	Project under way to upgrade pollution controls at FPP to reduce mercury emissions
Cap and Trade for NOx and SO ₂	Additional generation costs if allowance purchases needed

Revised as requested



AE Peak Load Forecast

Wood Mackenzie Natural Gas Forecast Model

Source: Wood Mackenzie

INVESTING IN A CLEAN FUTURE

Revised as requested

Added slide 13; revised slides 14 and 18

High/Low Forecast Assumptions

Scenario variables

Supply-side variables

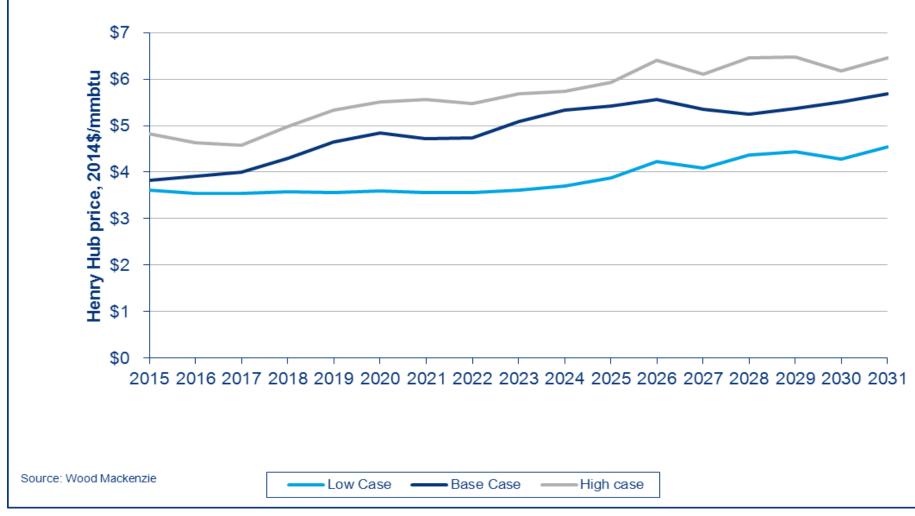
- Components of development cost
 - Rig efficiency and well productivity
 - Component cost inflation
 - » Labor
 - » Materials
 - Contracting
- Geological considerations
 - Core saturation rates
 - **Cover tier play productivity**
- Major policy variables
 - Hydraulic fracturing regulations and restrictions
 - Air quality regulations
 - Taxation regimes

3 Strategy with substance © Wood Mackenzie

Demand-side variables

- GDP growth rate
 - **Bilectric load growth**
 - Industrial production capacity
- Technology assumptions
 - Generation technology costs
 - Residential/commercial energy efficiency trends
- LNG exports
- Major policy variables
 - Renewable electricity generation support
 - » Nuclear energy support/opposition
 - » Carbon pricing

May 7, 2014

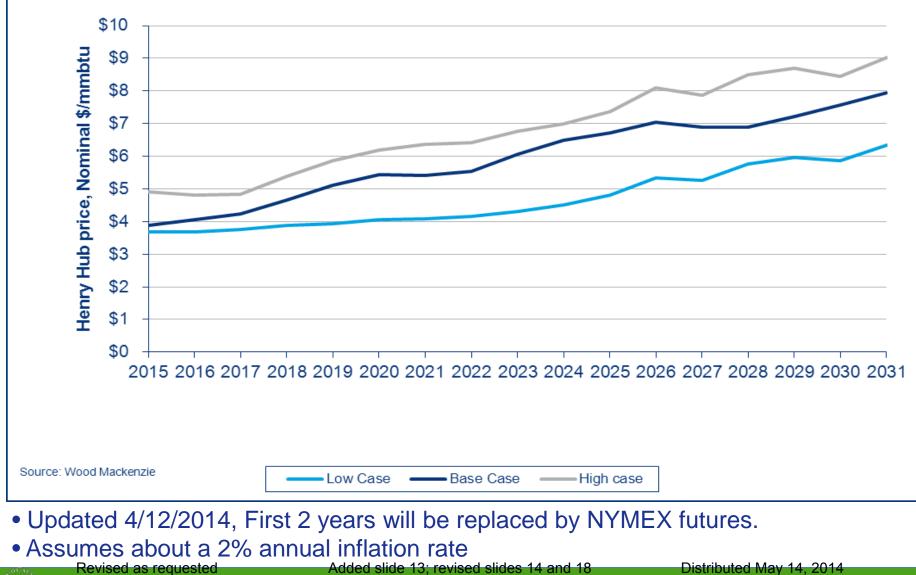


Added slide 13; revised slides 14 and 18

Added slide 13: revised slides 14 and 18

May 7, 2014

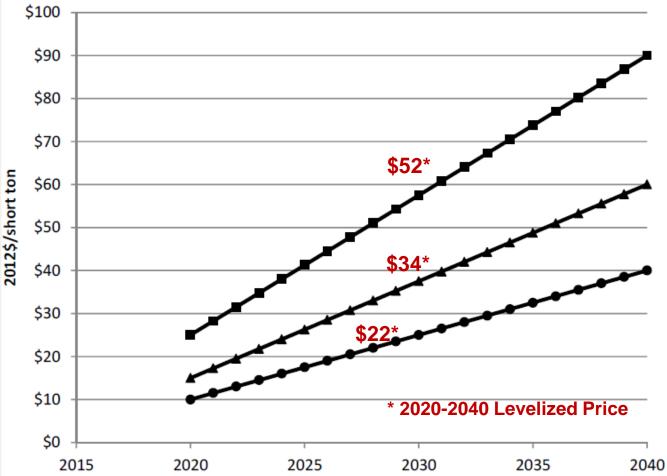
• Updated 4/12/2014, First 2 years will be replaced by NYMEX futures.


Revised as requested

INVESTING IN A CLEAN FUTURE

AUSTI

Fuel Price Forecasts (Nominal\$)


INVESTING IN A CLEAN FUTURE

Environmental Assumptions

1: Synapse 2013 CO₂ Price Trajectories

- ERCOT 2014 Long **Term System** Assessment (LTSA) Report
- Source: Synapse **Energy Economics**
 - **Eventual Federal** Cap and Trade due to regional and state inconsistency
 - Emission abatement cost per Energy **Modeling Forum** (EMF) research
 - **Forecast range** from 28 utility **IRPs**

Note: We found from our discussions with ERCOT that the LTSA assumptions for CO2 may have changed somewhat and we are attempting to verify what and how ERCOT is actually using. If we are not comfortable with their modeling assumptions, we will let the task force know what we intend to use and seek their input. Distributed May 14, 2014 revised slides 14 and 18 **INVESTING IN A CLEAN FUTURE** May 7, 2014

New Generation/DSM Technology Costs

Estimated 30 Year Levelized Cost of New Dispatchable Resources, 2015 (\$/MWh)										
	Average		Overnight			Ва	se			
Plant type	Capacity	Fuel	Capital Cost	Heat Rate	Levelized	Levelized	Levelized	Levelized	Low	High
Dispatachable Technologies	Factor (%)	Туре	2014\$ (\$/KW)	Btu/kWh	Capital Cost	0&M	Fuel	Total		
Advanced Coal	85%	Coal	3,059	8,800	55.23	10.83	27.39	102.79	92.83	114.00
Advanced Nuclear	85%	Uranium	5,765	10,000	104.09	18.35	7.47	129.91	116.92	155.89
Biomass	85%	Wood Waste	3,002	13,500	54.21	24.32	49.81	128.33	102.67	154.00
Geothermal	50%	Heat	3,183	N/A	97.70	28.56	0.00	126.26	101.01	151.51
Natural Gas-Fired										
Advanced Combined Cycle	55%	Natural Gas	1,066	6,430	29.76	8.08	32.15	69.99	61.53	91.38
Advanced Combustion Turbine	10%	Natural Gas	705	9,750	108.16	23.02	48.75	179.93	167.10	212.36
Combined Heat/Power (CHP)	85%	Natural Gas	2,133	6,430	44.64	12.12	32.15	88.91	74.39	97.44
Compressed Air Energy Storage (CAES)	40%	Gas/Air	1,000	4,300	38.37	32.72	21.50	92.59	76.27	111.11
Fuel Cell	85%	Natural Gas	7,410	9,500	133.79	53.78	47.50	235.08	207.07	268.09

Estimated 30 Year Levelized Cost of New Non-Dispatchable Resources, 2015 (\$/MWh)

							, ,,,	1		
	Average		Overnight			Base				
Plant type	Capacity	Fuel	Capital Cost	Heat Rate	Levelized	Levelized	Levelized	Levelized	Low	High
Non-Dispatachable Technologies	Factor (%)	Туре	2014\$ (\$/KW)	Btu/kWh	Capital Cost	0&M	Fuel	Total (Base)		
Onshore Wind (West Texas)	40%	Wind	See Note 1	N/A	27.94	7.06	0.00	36.75	26.25	61.55
Onshore Wind (South Texas)	30%	Sun	See Note 1	N/A	30.59	9.41	0.00	44.00	36.00	75.41
Photovoltaic (>50 MW West Texas)	30%	Sun	See Note 1	N/A	46.38	5.88	0.00	52.26	45.00	114.23
Photovoltaic (<20 MW Local)	20%	Sun	See Note 1	N/A	93.10	19.81	0.00	112.91	90.33	213.30
Solar Thermal	50%	Sun	3,697	N/A	141.87	24.01	0.00	165.88	132.70	199.06
Demand-Side	30%	N/A	See Note 1	N/A	70.00	0.00	0.00	70.00	56.00	84.00
Natas	-									

Notes:

(1) Source of Technology Cost per Energy Information Administration (EIA) April 2013 Update, except:

- Demand-Side Management per AE estimates

- Wind and Photovoltaic per AE estimates (Range includes & excludes Tax Credit)

- CAES per AE estimates within ERCOT

(2) Levelized capital cost estimates assumes 50% Debt / 50% Equity, 35% tax rate, Nominal After-Tax Weighted Cost of Capital (WACC) of 10.00%, 30-yr book life

(3) Low and High estimates includes emission cost of \$12 to \$25 per metric ton for annual CO2 emissions, if applicable to technology

(4) Natural Gas Price \$5.00 per Mbtu, low \$3.00 - high \$7.00 per Mbtu, Coal Price \$2.50 per Mbtu escalating 2.5% per year, Uranium price \$0.6 escalating 2.5% per year, Biomass \$40 per MWh escalating 2.5%, All others +/- 20% (5) Non-indicative bid Renewable Technologies (i.e. Solar Thermal, Biomass, Geothermal) assumes tax credit

Revised as requested Adde

Added slide 13; revised slides 14 and 18

May 7, 2014

Distributed May 14, 2014

May 7, 2014

Revised as requested Added slide 13: revised slides 14 and 18 INVESTING IN A CLEAN FUTURE

Distributed May 14, 2014

Summary of Proposed Scenarios Representing Most Feedback from the Stakeholders

			Potential Scenarios							
					Increase Goals		Replace FPP & Decker			
		Least Cost Plan Meeting Council Goals	No Additional Generation	1000 MW of DSM with 40% Renewables by 2020	1200 MW of DSM with 50% Renewables by 2025	100% Emission Free by 2025	With Renewables + Natural Gas Simple Cycle Peakers	Renewahles +	With Renewables + Compressed Air Energy Storage	
its)	High Gas									
ities Forecasts)	Low Gas									
	High Load									
ertain rrent	Low Load									
	High Carbon									
۲ <	Low Carbon									
Ke (Relative	Capacity Market									
(Re	PTC/ITC Extn									

• Scenarios cover a wide range of values for key uncertainties

Plan ID	Description	
	Scenario 1 - Plan Meeting Council Goals	
SC1-1	Reduce FPP, 800 MW DSM, 35% Renewable, 200 MW PV (100 MW Local) 2020	
SC1-2	SC1-1, Add GT & CCs]
	Scenario 2 - No Additional Generation	
SC2-1	Current System, No New Additions, PPAs Expire Per Term	Scona
	Scenario 3 -1000 MW of DSM and/or 40% Renewables by 2020	ocena
SC3-1	SC1-1, 40% Renewables by 2020, Optimized Wind & PV > 30+ Bas	se nlang
SC3-2	ISC3-1, Add GT & CCs	
SC3-3	SC1-1, 1000 MW DSM, 40% Renewables by 2020, Optimized Wind & PV > 210+ S	ensitivit
SC3-4	SC3-3, Add GT & CCs	
	Scenario 4 - 1200 MW of DSM and/or 50% Renewables by 2025	
SC4-1	SC1-1, 50% Renewables by 2020, Optimized Wind & PV	
SC4-2	SC4-1, Add GT & CCs]
SC4-3	SC1-1, 1200 MW DSM, 50% Renewables by 2020, Optimized Wind & PV]
SC4-4	SC4-3, Add GT & CCs	J
	Scenario 5 - 100% Emission Free by 2025	
SC5-1	SC1-1, Retire FPP and All Gas Units by 2025]
SC5-2	SC3-1, Retire FPP and All Gas Units by 2025]
SC5-3	SC4-1, Retire FPP and All Gas Units by 2025	
SC5-4	SC3-3, Retire FPP and All Gas Units by 2025	
SC5-5	SC4-3, Retire FPP and All Gas Units by 2025	ļ
SC5-6	SC5-1, Replace Retirements with Optimized Wind & PV	ļ
	Scenario 6 - Replace FPP & Decker with Renewables + Natural Gas Simple Cycle Peakers	
	Scenario 7 - Replace FPP & Decker with Renewables + Natural Gas Combined Cycle	
	Scenario 8 - Replace FPP & Decker with Renewables + Compressed Air Energy Storage	
SC6_8-1	SC1-1, Retire FPP 2025]
SC6_8-2	SC6_8-1, Replace with Optimized Wind & PV]
SC6_8-3	SC6_8-1, Replace with Optimized Wind & PV & GT/CC]
SC6_8-4	SC6_8-1, Replace with Optimized Wind & PV & CAES	
SC6_8-5	SC1-1, Retire Decker 2018	ļ
	SC6_8-5, Replace with Optimized Wind & PV	
_	SC6_8-5, Replace with Optimized Wind & PV & GT/CC	
_	SC6_8-5, Replace with Optimized Wind & PV & CAES	ł
_	SC1-1, Retire FPP 2025 and Decker 2018	ł
	SC6_8-9, Replace with Optimized Wind & PV	ł
	SC6_8-9, Replace with Optimized Wind & PV & GT/CC	ł
	SC6_8-9, Replace with Optimized Wind & PV & CAES	ł
3CD_8-13	SC6_8-9, Replace with Optimized Wind & PV & GT/CC & CAES	J

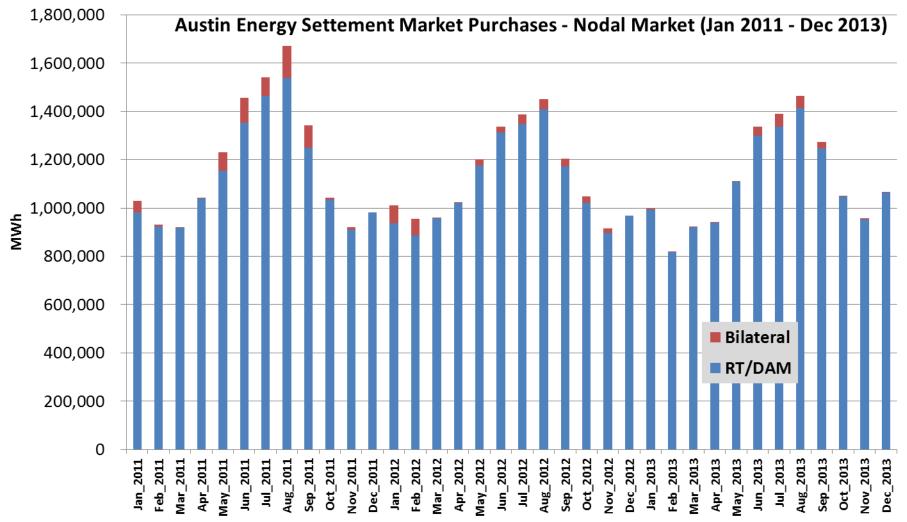
Added slide 13; revised slides 14 and 18 **INVESTING IN A CLEAN FUTURE**

Capital

Revised as requested

INVESTING IN A CLEAN FUTURE

- 30 year 80% debt financing
- 5% interest rate (near term: 5 years)
- 5.5% interest rate (beyond year 6)
- Applies to CIP for current plants
- Economic parameters
 - General inflation @ 2-3%
 - Discount Rate @ 5-12%



- Metrics
 - Net Present Value (NPV\$)
 - Rate of Return
 - Relative average rate Impact
 - Short term (3-5 years)
 - Long term (10 years)
 - Cost at risk (NPV\$ uncertainty range)
 - Environmental (includes Carbon, Water etc.)

Scenario	NPV\$	Rate of Return	Near term Avg. Rate	Long term Avg. Rate	Cost at Risk NPV\$	Environmental
Do Nothing						
Least Cost						
Incr. Ren. Goals						

Notes:

- Bilateral purchases are due to multiple factors including outages, risk management, and economics
- Specific purchases cannot be tied directly to a specific unit outage Revised as requested
 Added slide 13: revised slides 14 and 18

Distributed May 14, 2014

INVESTING IN A CLEAN FUTURE

Nodal Market Purchases

	RT/DAM	Bilateral	
Month	Purchases	Purchases	Total
Jan_2011	982,454	46,000	1,028,454
Feb_2011	923,551	6,400	929,951
Mar_2011	917,293	4,000	921,293
Apr_2011	1,039,270	1,600	1,040,870
May_2011	1,154,912	75,200	1,230,112
Jun_2011	1,353,181	103,200	1,456,381
Jul_2011	1,464,053	75,860	1,539,913
Aug_2011	1,538,980	132,200	1,671,180
Sep_2011	1,247,934	92,800	1,340,734
Oct_2011	1,035,352	6,400	1,041,752
Nov_2011	909,573	11,200	920,773
Dec_2011	981,366	0	981,366
Jan_2012	937,549	74,400	1,011,949
Feb_2012	886,590	69,600	956,190
Mar_2012	957,035	1,600	958,635
Apr_2012	1,021,513	3,200	1,024,713
May_2012	1,175,669	24,800	1,200,469
Jun_2012	1,313,214	24,000	1,337,214
Jul_2012	1,347,503	39,200	1,386,703
Aug_2012	1,407,894	41,600	1,449,494
Sep_2012	1,173,328	30,950	1,204,278
Oct_2012	1,020,652	26,456	1,047,108
Nov_2012	897,396	18,400	915,796
Dec_2012	966,926	0	966,926
Jan_2013	992,548	5,600	998,148
Feb_2013	818,125	1,200	819,325
Mar_2013	920,650	800	921,450
Apr_2013	939,671	800	940,471
May_2013	1,108,383	3,500	1,111,883
Jun_2013	1,300,091	36,000	1,336,091
Jul_2013	1,337,525	52,000	1,389,525
Aug_2013	1,413,634	49,600	1,463,234
Sep_2013	1,247,015	26,150	1,273,165
Oct_2013	1,048,425	1,375	1,049,800
Nov_2013	953,639	3,750	957,389
Dec_2013	1,062,856	800	1,063,656

Notes:

- Bilateral purchases are due to multiple factors including outages, risk management, and economics.
- Specific purchases are not tied directly to any specific unit outage Revised as requested
 Added slide 13, revised slides 14 and 18

Distributed May 14, 2014

INVESTING IN A CLEAN FUTURE