

Thermal Storage Cooling: An Overlooked Utility Resource

Mark Kapner, PE

mark@mvgreenpower.com

512 913-2049

Thermal Storage Cooling

Cold Air or Chiller Water

Shaving Peak by 200 MW

Hour Ending

MΜ

Cost Factors in Organized Markets

- Transmission Cost– based on Load at time of Coincident Peak \$/MW
- Ancillary Service Cost typically allocated like Transmission cost \$/MW
- Energy cost varies every 15 minutes \$/MWH

Avg August System & Cooling Load

Hour Ending

Value of Thermal Storage Austin Energy –Case Study

- Assume 100 MW of Load Reduction at Time of Coincident Peak
- Requires 300 MWH of Daily Energy Shift
- Transmission Cost Reduction = \$40,000 per MW
- Ancillary Service Cost Reduction = \$9,000 per MW
- Energy Cost Reduction Based on Shift of 300 MWH each Day for 100 Summer days

Avg prices - July 2010

time interval ending

Value of Thermal Storage

• Transmission cost reduction:\$4.0 million/yr

- Anc.Service Cost Reduction: \$0.9million/yr
- Energy Shifting Cost Red: \$1.8 milion/yr
- Value:

\$6.7 million/yr

Cost of Thermal Storage

- 1 MWH Requires 1200 TonHours
- 300 MWH = 360,000 TonHours
- @\$130 per TonHour
- Cost = \$47 million
- Value = \$6.7 million/yr
- Cost to Value Ratio = 7

Chilled Water Storage Tank

- 98 ft diameter
 x 40 ft high
- Stores 17,000 Ton Hours

Modular Ice BankTanks

Bank of America Tower, New York, NY: Registered LEED® Platinum

Each 7.5 ft diameter, 8.5 ft high tank stores 160 TonHours

Ice on Coils – Large Tank

- 3,000 TonHours
- 900 sq ft
- 10 Ft High
- Approx 1 sq ft per 300 sq ft of bldg floorspace

Rooftop Units

₹

Shaving Peak by 200 MW

Hour Ending

MΝ

Shaving 200 MW from Peak

Concluding Thoughts

- Centralized Dispatch by AE
- Increasing night time load facilitates wind integration
- How can AE encourage widespread adoption of storage cooling in planned buildings and cooling system retro-fits ?
- Possibly through bldg codes coupled with incentives

Thermal Storage Cooling Systems in Austin Energy 10 MW District Cooling #1 52,000 TonHours **5 MW District Cooling #2** 26,000 8,000 1.5 MW **Mueller Energy Center** 3,540 **3M** 755 kW 2,600 362 kW **Bowie High School Austin Convention Center** 6,000 500kW 15,000 1,064 kW Airport

Cooling Load

Hour Ending

age of Load for Hr. Color shows details about Month. The view is filtered on Month, which has multiple members selected.

Peak Day of 2010

Hrs of Storage vs Peak Reduction $y = 13.627 x^{1.8259} R^2 = 0.9991$ **Hours of Storage**

Peak Reduction in MW