

Projections from Regional Model Simulations

Cross-checked with IPCC projections on coarser resolution and validated against observation of current climate

Outer domain with 90-km resolution (~10,000 grid points)

Inner domain with 30-km resolution (~7,500 gridpoints)

Climate models are governed by the laws of physics:

- F = ma
- 1st law of thermo
- conservation of mass for air
- conservation of mass for water vapor
- heat balance calculation at the surface

Two 20-year simulations

- 1981 2000 late 20th century Observed lateral and surface boundary conditions; observed greenhouse gas concentrations (340 ppm to 371 ppm)
- 2041 2060 mid 21st century
 Observed lateral and surface boundary conditions + anomalies;
 CO₂ increased (533 ppm to 578 ppm according to an IPCC business-as-usual emissions scenario)

References:

Patricola, C. M., and K. H. Cook, 2013a: Mid-twenty first century climate change in the central United States. Part I: Regional and global model predictions. *Climate Dynamics*, **40**, 551-568.

Patricola, C. M., and K. H. Cook, 2013b: Mid-twenty first century climate change in the central United States. Part II: Climate change processes. *Climate Dynamics*, **40**, 569-583.

Projections for 2050: Surface Temperature Difference (°F) Business-as-Usual Emissions Winter

Source: Professor Kerry H. Cook, Dept. Geological Sciences, The University of Texas at Austin

Changes in the number of 100°F days for the Austin area

Source: Professor Kerry H. Cook, Dept. Geological Sciences, The University of Texas at Austin

Heat Stress Categories: Apparent Temperature (A)

90 < A < 105 "extreme caution" fatigue, heat cramps

105 < A < 120 "danger" heat exhaustion likely

120 > A "extreme danger" heat stoke imminent

Projected monthly changes in the number of Extreme Caution and Danger heat stress days for the Greater Austin averaging region (30°N-30.5°N; 97°W-98.5°W)

Annual Precipitation Differences (%)

7.5% reduction in annual rainfall (blue triangle = Austin)

Source: Professor Kerry H. Cook, Dept. Geological Sciences, The University of Texas at Austin

Seasonal Precipitation Differences (%)

Winter: 5% reduction

Summer: 15% reduction

Source: Professor Kerry H. Cook, Dept. Geological Sciences, The University of Texas at Austin

Future Emissions Rates are Crucial for Determining How Much Climate Will Change

Two sources of uncertainty:

- 1. Variations in the temperature prediction from one model to another
- 2. Future emissions

Source: Intergovernmental Panel on Climate Change (IPCC)

