Late Backup

An equation for station location

Fire station locations
don't have to be selected on the basis of guesswork or political pressure. This method quantifies all the factors that go into siting decisions, proving where stations are needed most.

By Pieter Sybesma
Fire Contracts Administrator Ctity of Austin, Texas

As a fire executive. have you Aaced a situation in which you know from your professional experience that it's time to build a ncw fire station to serve a growing arca, but had difficulty explaining to your board, commission or councll the need and the timing for station construction? Such was the challenge the Auslin (Texas) Fire Department. lared after a booming economy and rapld growth in the 1980s.
The first step toward delcmining when to bulld a fire station is identfying future sites by constructing service area grids. In Texas, hlatorcally the service arca boundaries of a fire station have been measured "as the crow flles" from a fire station gitc.
The Texas State Board of Insurance. the agency formerly charged with evaluating the effectiveness of Teras firc departments, used this approach os rocenly as 1991 when it established that the criteria for service area of a fire station were 1 . Distance: Every structure should have a station within $1 / 2$ miles as the crow files: 2. Response Time: a. Maximum three minutes to commercial, industrial and heavy residential (apartment complexes) areas: b. Maxdmum flve minutes to single family residential areas."
The resulting service area of a fire station, using this method, is a cirdic with a response area of about seven square miles within a 1.5 -mile radlus of the fire siation.

Diamonds, not circles

The problem with this approach is that fire engines and trucks must usc the existing roadway network and can't reach an emergency scene "as the crow flies." Then Allstm Fire Chief Bill Roberts decided that mapping the $1.5-m i l e$ distance on the roadway grid would be a more accurate method of calculating the response areas to determine the future location of fire stations. The resulting service area, using Chief Roberts approach, is a diamond rather than a circle. ISce Figure I. page 56.)

To help planners decide where new
To help planners decide where new of Austin is divided into seven zones. based on natural and artificial features.

The approach developed by Chier Roberts was affirmed by the work of Richard C. Larson and Keith A. Stevenson of the Massachusetts Institute of Technology in their study of lire response areas. The MrT study was supported in part by the National Science Foundation at the mir Operations Rescarch Center and by the U.S. Department of Housing and Urtan Development at the New York City Rand Institute.

The approach describerl by harson and Stevenson provides a mintmum average response diuc by mobile emergency undes resproudinis from fixed locations where support. is provided by meighboring units when the primary unit is monatia dule For ctispiatel.
This approachy works best in areas that are relatively tlat, with perpendiconar streets and lew. if any, artifielal or natural batriers. The distance from the conter of the diamoud in lhe outer corners is the response disiance arki corrolates to the responis: Hine selexted by the contmustiy. Thte urit respontone frons the station is the ceuter of the diatmond shomid bu adse 10 reach any location in che diamond wirling that response these.

Under elty ordinathes. the Austin Fire Depsart ment hos an manuml aver. age response tint Loal of 3.5 minutues from recejpt of the call to the thme the fisy fire appraztus antues at the scene of the emerfency. Thirty seeonels "ramimbe fame" is itlented to allow jetrmancel in react to slue call. don the approprate gear. and start the aplariatis.

The eravel speod is assitmed to averatge 30 mply thecause of the need to drive pmidently and to show or shop at controbleal fintersectlons. Therefore the ldeal service area for an Auslin fire stittion th the delinued geographic are: that the fire apparalons located at that station cat crover in throte minules, alxunl 1.5 mikes.

Eath sikle of the diamoukd-shatped joleal response arta neastres 2. 1218 miles, resulting tat :11 arct of 4.5 spuare mikes. (Otwiously, if your communty bias diflerent response Hathe criteriat. Whe sizat of Ifre diamond will vary.] The e.E-square-mile response arte of the dimmond shape Is loses iland two-dhards ile size of the 7.065 -square-mite circular "as the crow llies" response are:a that uses al 1.5 mille ractits.

Develoysing a grid lemplate of fire station flamwitd sempre irtas. sealed In at map of the entire service area. atlows the plander is idendify fistare station lewations. Althonegh fiasre arc: soreral lles: slationt lexation conyphter progrims on llac market. uslug a grdi template on at map can be almost as accurate. fitr less expensive and (4nphemally thuminaling.

Natural boundaries

When locatines a fire station site., It's sitrlom possible to have the tdeal situations. Natural and autilledil bamiets often challenge: the planner selevting the flre station slle: Reasomutile stimes adjustments must be mikde so thet no areat is too far outside the appropryitte travel response tisiance of the fire slation. J.lkewist. the plammer must rake dare 10 minimize or avoid
genlogradly edassified as pribiries genlogreally ehassincel as phatires
and ureas west of the fathe ats plateatus. ' Wre pratio areas are flat abal have ereeks atod stre:ams rumnites (fmought thems. bif the platerat artos are hilly and rocky.

These matirail lamrricrs make it neressary to establish mifuce krixd alignments witling distinel :urses. for revewitg the depogiaply of Austin's extritlerritoriat jurisidilion, allowing for bobl maturat and artilirial barriers. six distinet firt zomses were crealrel. A thrie; minnte risponse diamomel drid tomplate was prepareal on clear acchate: suprefinpused on : Itiop of razely of the six areabs and anchared to al least onde existingi lire station's serviere area. An exinuple of the resulbing
 is depincert on patise tho.
(Dico Iloc grid pittern is esitalsisluyl for rimh area. the temier of cutal wrid is lalueled as ato itheat lexa(ion for a lire stailion. Wharrave 35\% or thare of a servere anyat is da :and ev mandic.[patitys edy llmits or aximiteritorial jurts. dictions bo llre station is flimiterl fire that dimmumb.
 area of In diantonal will lat provided by aljatecot lirestiations.
All mesiternas what live wifth Austinis dety timits are laved intal revedve
 district tas the rnur fites, at circle: with fice station as mare cronter and Whe desirod mesponse disucance ris Fur rodits, Jice Ausion Fifu:
Deforertmont inses at diomonit. shreferd grid basced on existing moflevelys and an ideat response: distancer of 1.5 miles. T7ris materes
 more redisfic. Emergemety responid. ers con refleh comp pert of the dianond in is. \quad mintie's or kess.
 exut life station's servico aneat. Andi in certabll arean, llue platomer umst thetelc a pestemial slai ion site lematse:
 desploped, or adfust the grhal sysien to fit the fermin?
For instance. Austan is blessed wilh a varibty of maturat features.
 lenges in the prowlston ol emersemey services. 'lhe western part of the ctly is divided by the thakones Fitult with areas to the easi of the fault

कompleta: لire ancl poliet
services. Retsidents of Austing extraterrlmorial jurisdietholl ancol.

 rlejartineats ars somisimess contrateded by the cily to provitis dirsi-
 finmererl. thatil the rily butals its own stations.
 if 1550% or suope as the service are:a is it Ansillis extraterritorial formatio. fiom, then al dire station is inppotori-
 is in Ansidins exlmalaralarial juris. dichon. butding a statjon woukd nen In - Nasally jusiblim!.
Sone: of the "irla:al lneations-

 as the arcas develop and forizatracfirte is providerl. Iha sitationt lax: lions cinl Ite: acljetstexl in place the si:blons on sirests wfteh will :hllow
 resent the tiathond shiape after shevelopencost hass axationd.
Ifowiver, the: stationts shomblat int
be sited more than a quartor mile iront their orisimal locathons. or the clamond shape will bextis 10 shati.

For cxamble, in areats to the west of Anstit, blue plammet lite station lacations are firtlor ajarl lhan llaree roadway miles. because of windinge slrexts in the hilly terrain.

Maditiomblty. in the western arrat binabulatly and enviranmentally sensidive stles sensifive silles
will be or are will be ar are so that no dexce! optrent will occur. As thess siters are alssembled intes larger
 btorks of land. it Will be lucerssary ho adjus the focations o sothe of the prow josed fire staflom sites atal to
climinate others entirely:

Only a liew suetu slies in the west and morth. west mith north. west fire zoncs
have been atluasterd. since the that conligbration of the btolosical ind envitonmental habtar lamed holdings has not yet hepr completed. One hundred iwern-ty-five finture fire station siles were identified fur die fiverntle extraterritorial furiscliction of Austin ats of Jam. 1. 199.4.

Some factors to consider

With the competilina for public dalbas becomines more intense and citizens expecting heith levels of servere throutstiont the eommontly, the rinallenge to the fire chatef or fire plammer is khowirne whets ath areaz
 has the hght combination of remel-
opment factors to recpare furding of a new fire station. Texas law requalres that the fore protecton service provided to mewly anmexed areas mutst not be toss ctum the wea recesived prion to anmexat lon and must be compratille to simikarly situated parcels in oifher perts of the city (emphatsis added).
Traditionally, the factor compared for a pre-antiexation servere level and a post-amucxation senter level is response time. While tle number
of mamed persommet. the diversify and momber of extapimenal. and the
 cricle are fust as imporiant. respousis
 look at far complasaliae panjowis.

Fire promedion is prowisled iss al basie service an the City of dusian to ars:is inste ibe comporate lituits. As arcas are ambexivl, nfion the quas
shuction costs from $\$ 700.000$ to $\$ 900.000$. fire engine costs af E275.000, abd admmad operialiomal cossts of $\$ 500.000$ a antw lire stalimin is expurnsite atal a shatiliternt lomglerm sember eomminnemt
The liming for the const rustion and opertion of a bew tire station is bascal onl al demmad theselund Ihat is influctused by blany finctors. ma-ludinde:

- dbsime from cisiting slatItmes:
- persemb af the arean leveloped: - fire forpuciny in the armat: - caytians joun ulatlon fenmmerreinl :und indusirial arcans:
- lligliflime jxymulation (resi. (k'tutial arcons): a sturare: liootage of industrial and commarcial structures: - Vature al fins. prowemends: a condazsatom potential:
- fitue sitse the aro'a was all-
nexert:
a cxposiures a cxposinges
fatmin ats hiot ardous materi als. elucmical manmlatelurimg alld
bustibles):
- fire flow de:mand:
- ellizen de. mand:
 establisherd byf fire tipuathath planuers to alerajde ulare new statifons shonld ba bocaled, watity Otw dinmonel shaucel yriot stisicen. The thellow areas are the ciltits fortsclethon: the bhat and purple: arcos are the ciffes extructritorinal juriseliations. Orange arcers are mher cities'.jtintisdictions. Red dols nefresent existing stations and athile rlats are piannerd sfations. HFibe: a metc' sieation shom dal idecally be locrated in the? center of its
 acotkhitity sonterimes make is nocessamy to put a station somerotere clse.
fion of constmacting at fire station to serve rlae arwly ammexed area is rased by the reqielents. With land cosls for a bire station slte ranging from $\$ 300.000$ in $\$ 1.5$ mallan. coms-

Hand:
ather polinic.

- topagi"ן
- alarms responded io by ilue near-
al fire stalfon:
 is ont of service beceatase of at rint otutsiche its terriloyy or service area:
a volume and type of trafie: ont the roads:
a and the whelland/ailoun interfine

In another conmuntity. the factors aftecthes the level of clemand mitght be dillierent athed should he deter. mituct loy Hic firc eates.
Chbel koberts tanked alar follow. ines factors in order of impordance:

1) Distance from exishing stations: 16%
2) Peresmbige of the area that is developed: [0\%
3) Fire frextainey bu ancovered area: 15\%

amalysis value fing the servier areas; of exisilug fire stathons. but lice persentage value for the combined seven lactors no tonger equats 100\%. Aecordingly. The pereshate villues were aldinisitad to actamm lior the semowill of the three non-pertineme firtors.
The following values result from this adjustment: permentage of the are: that is developed: 25% dinytime
 (rial arcas): 12.5\%\% nightilme popilation (restle wiat arens): 15.63% : stuare footase of indusirial and combereial structures: 15.63% : value of improvemente: $15.6 \mathrm{fi} \%$: condagration potential: 7.81% and whllarm-urban interface: $7.8 \mathrm{I} \%$.
After identifying the issues involved in elecetfing when to butkl: fire station. data gallering vall begin. To make adecplate comparfanons. data from each fartor is convened to a atilily funclion mumbric seate of 0.0-1.0. A brief disentssion of eath diata factor follows.

Percentage of area developed
nertal photographs were ioken in March 1942. the serviece area of bach siation was onttined on the photogriphes, athe an estimater of the amoum of filly developed liatel imea was made. This diala changes with
few construction ami kinmaliton, so development within eich lize stalion
 lime an amalysis is condumbla. The Hility whe for cath fire station servece areal wass eomerted from the percembige of the area developert. i.e.. 45\% developement egtateci in a 45 utility vahue.

Daytime population

Ohvinusly. fires usually oxcore where people are, and during the diay, mosid aftults work anvay from their homes. Tlas Anstin Chamber ol Commerees Directory of Austin Area Majur Emphoyres (July 1993) was used to olbtain a rough estimate
 lhedr localtons, thongh ithere are limits th this infurmilion, beenase nud all employers report their employment datia to the chamber. The data from this publication, phas the enrollment from pubtic schoets athd the University of Texas. were combined to develbp a diytime perpuhation figure
The daythe population atslity value for bach fire station servire area was determined by findmes the ration of achat daytime pripulation in the service area to a diythue popittation of 55,000) a vather above the: highest poputation kevel found. For

For more lacto curtin $\div 58$
example, if the claytime poputation in the service area of Station is 27.618. that ligure divided by $55,000 \mathrm{erq}$ aids 0.5

Nighttime population

1990 iznsis dala was uscd to determint itte nightime population. I identiliex the remstis blooks Inc:luded whthin each fire stitton's service area, and the city planner used a census eoniputer program lo provide the poputation tolads. breakelown by age and breakclown by househoids.

The wightlime population ulitity value for cacin fire station service arca was decermined by finding the ratio of actual niphttime population in line service aren to a nithtilme popiatation of 25.000 , a value above the bighest population level found. For exattuple, if Station 1 has n nightume population of 2.452 . Ithat number clivided by 25,000 is 0.098 .

Square footage of industrial and commercial structures
Commercial and industrial construction leccimiques such as large open areas or metal truss-supportcal rools can expose flreflghters to a variely of salety hazards when fighting fires. In adelition. fire load, processes, cquipment and material stored in a commercial building elif-
ier shanificantly from those in a resi dential building. A qutek response 0 a commencial or indusirial stanclure fre will make is sigrafficant dif ference his how the fire will be fought and what can be stived of the strue. ure and its coments.
Consequently, the square lontage of ludustial and commercial build-

> When locating a fire station site, it's seldom possible to have the ideal situation. Natural and artificial barriers often challenge the planner selecting the site.

irngs withint the service areid of a proposed fire station is a fuctor in determining when toconstruct a new fire station. Determining the amount of square foolage under roof was diflicull. because these cumm-lative-type records are not available from the city.

Information wis Ifien sought from
the Travis County Central Appraisal District. Tax mipes for cach service area were identificel and data-pro-' cessing persointel prochucel repirts fivfing the square fonstage of all structures for each map. I then; cxtracted dath on all commercial and inclustrial buitdings from each mane repurt for eath service area and tolaled the square footiuge. Similar informatlon was obtabled from the Willianson Commty Central; Appraisal District. This data changes annaally and requates updathog for each future analysis. Dala was alsa oblatned from publec tax-cxempt lacilitios. such as puldin' schools. state litnol. Indversities. fecleral land and so 0 on.
The uidity valut: for coch fire staton sorvier arca was determbod by fhoding the ratio of actand square: footage of industrial sund commercial st ructutres in the service area to a value above ille hishest square ! frounge of indusirial atid wommercial sintefines level frombd. For example, if there are 22,218.547 squore feet in the selvice area of Station I, that number tivicled by 40 million square feet equals 0.56 .

Value of improvements

I jdemifliced tise tan paried maps associaled will catlo fire sialion ser-

For more lacts circle 459

FIRE HOSE TESTER

factory DIRECT WHOLESALE PRICING OFFERED
top quality TOP QUALITY
HOSE TESTERS HOSE TESTERS
$\$ 987.00$
$\$$
Potents
Pending
Pending
Test
3.600 Feet

Al One Time
for adational intormation, contac
Delta Industries, Mig.

15101787-3479 Fax (510) 787-214)

For more lacis ciecio 460

62 FIRE CHIEF / October 1985
viec area at the travis and Widtamson sounty econtal appraisal districts. and oblained compuiter tahalations of all property valaces assochated will each service areit. Stuee lame does not burn. onsly the improvenimerat valac:s (structiates) wre ronsidemed. 'IThis datal clanges ammatly and rexpires updaling for cuth fufure anadysis
The ability value lor each fire station selvise area was delirntinged by Fiokling lise ratio of actual huprese ment values la lhe service area to atl improvement value of $\$ 700 \mathrm{mil}$ lion. a value alonve the hightorst improventent value level fotthed. For example, if the Slation 1 service area has an hapmowement. value of ה5l4 million, that number clivided by $\$ 700$ millitul acpuals 0.74 .

Conflagration potential

The NFis Fire Prolection Jandbook. 12th bibilion, siys: Thaere is no universally ameeplexi exate deftinition of a combliagration. Some lisi as conllagrations all lires cousinus more than a specified ammint of loss, irmespeclive of the extent of spread in the number of indidhats involved. The; best practice is to apply line term ondy to lines extemilang over a connsidarable area ant desiloying nambers of buitdings."

In Austin. Chitef Roberers identified butildings that are three stories or more in lielsht. constracted of whot athel lin elose: proximity to cheh olher as potential conllatrations. Apartmatht buitdinge ofter fall under this delinilion. Ondy if a conflagration (murlition does nint exist it al dire sla clon service area must a review be

> While this method of calculating fire station utility factors is comprehensive, it is not always applicable.

undertaken for any new eonstric tion which would change the conditime for a future analysis.
If the fire stalion service area has a conllagration potential. Its wilfity value is 1.0 . If the fire station service areal docs not have a conflatralion polential, its thllity value is 0.0.

Wildland/urban interface

Travis Counly and the central Texas area have many undevelofed areas
whth hots of finel for fire, such as brush. tall grasses and Irees. This is a sisnifeam lirelightimg problem for urbanf fire departments. beeatuse these departments are geared loward fightimes striblure fires and generally are equiped will tire apparates that must stay on a
 its weight. cant drive and seguift water al the sallie llate, and depends on a reatily avalatble. arge-vehube watur somite
To fight a witaland fire, fire depariments use smaller brusih trutks eapable of moving and iquirting a nixhure of water and foam and water tankers wilh portable water tanks. Javing a developech arrea with hentes adjarent fo an undevelopxel wilditunt area is a signiliant problem whenever a widrland lire develops.
Areas of western Travis County bave been compater to the Matilsi. Calif. atea which suffered massive kosses in 1993 ass a result of theomtrollable whdiamd batish and grass fres burning in canyons and across milines libles where mutherons bomes lad lxeen bailt on ridat lines. The polential ior a similitu bre in western Trats Comen is acknowlestsed by he Federat jimerstury Manage. mind Abenry.

Sums of factors ard their utility functions									
Station	Taxable improvement values*	Square tootage commercial*	Singlefamily dweilings (sq. feet)	Ulility function of improvement valuos	Ultity function of commercial (sq. Icet)	Daytime population	Nighttime population	Utility function of daytimo population	Utlity function of nighttime population
1	\$514.711	522218	1.362	0.735	0.555	27.618	2,452	0.50\%	0.008
2	S205.894	S15.703	3.691	0.294	0392	52,669	12.992	0.967	0.519
3	\$291.7.47	58.402	7.496	0.416	0.210	39,149	-13.637	0.717	0.545
4	\$135.610	\$2.932	3.173	0.193	0.073	4. 519	5.82 .6	0.082	0.23 .3
5	\$64.796	S. 813	3.295	0.092	0.020	9.450	9,506	0.171	0.390
6	\$335.632	\$5.714	9.181	0.479	0.142	9.729	16.165	0.176	$06.46 \quad 1$
7	S85. 32.5	\$2.856	4.397	0.122	0.071	6.378	16,261	0.116	0.746
8	S472.64,	\$11.403	9.764	0.675	0.285	6.335	18,665	0.115	0.650
9	S148.93?	\$1.411	4.551	0.212	0.035	7.250	10,447	0.131	0.417
10	\$305.670	\$2.304	8.199	0.436	0.057	1.339	11.4.11	$0.02 \cdot 1$	0.157

- In mittions

Above: Fire stations tocated in differint arevis cat be compared in sun erguet mannar through the nse of ulilthif furctions colculated for a muriber of relctuth fartors. T7re witte!! functions for cach station Hicn are tallicef and the stention ghen con ocerall utitity ranking. The char shous fighres for fire stations strough 10.

Right: Fignte: 2 shous home ctll evissing or plarmed shasint fire surutions comperc to each offer and how maty mect the threshotet tuftity wahte of 0.3. While 30 futmer fire
 ishoutilerl, the lews 10 stations are the ort!g one's that meec the witit!! volue requirements at this dime:. Alfhough stations 26,3 , 3 and 37 cto not medet the requixments. Whey ane being turide to exemed the eftel screve earen in grourth elirections and/or to
safisfiy bondi issur conumimu'nts.
Tatl artiselands interspersorl widt brush in the pratirie areas pose anollaw signilisatat danger in the borthern, eastern and southern areas of Trivis Conoty: A quick and massive response to witdland firms is recuited for a reasonable comirol lime. In some flat areas. the witdland/urban intervace may cimotish over timat and be ellminated. If the lire station scrice area is in a wildtand/urban Intoriace area. its utillty value is 1.0 . If the lire stalion servise area is not in a wildband/urdan interfice artal. Its witilty value is 0.0 .

How it all adds up

The threce minute/ 1.5 -mite response areas for the 32 existing stations and four other stations in varbous degrees of constraction [stantions 34. 35. 36 and 373 were determined by Lising the grid template pattern on a map and LandTrakis: cits software to

Figure 2-Ranking of expected utility for existing and planned fire stations

nore aceurately measure the 1.5 mile roadway response distance Data was collected from the previously refereneed smitress lor each of the seven factors. as rorrelated io the existine and funded lire station areas.
Information about the clayrime and nishtime populations. square fontage of tudusitial and commeretal structures. and the value of improvements was reported usinc Exce ${ }^{2 x=1}$. The data totals derived from Exech were entered tnto Logien Deelsions ${ }^{7 M}$ software to calleulate the utility lactor values for carch stalimn as reported in riditre 2 nes the facing pange
The same data collection and analysis was tone for 30 future fire slation service areas. Of lie 30 future stations in areas that could be anmexed tri the next severl yours. only 10 of the station service areas hate a utility value that exceeds 0.3 . the threshold number for fire siation utillty. These 10 fire statton serate areas. all of which moet the requirements of Texats amexation laus for funding innd constriction. are compared with existing stalfons in Figure 2
This analysts can be used to determine and demonstrate the neessity of consinteting a new fire tation by comparing ble athly ficeor vablues of a new fire station sertwee area to the uthlity factor values for existing fire statlon service areas. Whenever 65\% of a lithre fire station's service area is inslde the sorporate limbles and the utility factor for than tire staton service area celuals or exceeds 0.3 . con slaction of the mew fire station is jusilfect.
While this method of calculating fire station ulility factors is comprehemsive and atlows for future planning. it is not always appileable to very siluation. Three exisithe fire statons. Stations 26, 34 and 37 ratiked below the 0.3 ntility factor talue.
However, stations 26 and 34 have been located th a leapfros fashion to extend fire protection services firther awiy from the conservices further away from the con-
tinuous servies arcas of the ctity. Inlill of tire stations whll be required to provicle the three-minute/1.5mile response services to the areats atwent these two nuter lire sta tions and the existang contfyimus fire service area of the bulk of the clly.
ine third fire station. Station 37. was included th the 1992 bond Election because of requests from restdents in the area io be served by this staliton, and becanse of comultments made duringe the 1987
annexation process.
Using these methods, the Austin Fire Department was able to chart. the course of its growth for the nest. decade. The approach used in fist1. fy new stations citn also $1 x$ modificer io assist in identlfying a fire statfon relocation possitility or fire station consolidation options.
For other fire departmemts in Austinis sflualime this type of analysts ann prowde the necessare jusibicatton for turluding new lise stanfors in bond cleetions. cxplain the cest to dotcrnmental leaders. and provide most-cricente fire protection to titizens when they need il.

Refarancan:

 מй

 Fomben, Mlast. |y. 1-EM.

 404. bull frow the finworty of Texat batistis.

Δ

Save the lives of your employees with

TAIOFAN

Emergency call! You speed out to save the lives of people in dargerbut what about your own safoty?

With TRIOPAN you benefit from the Following features:
a quick spring-loaded setup (umbrella system)
I space-saving foldability

I slable ir windy conditions, despite its lightweight construction
a allows for imprint of any sign or lext icarries up to three different messaģes, e.g. FIRE, HAZARD WARNING, DANGER, POLICE elc,
I normal and fully reflective configurations
saves the lives of your men!
Find out why the firemen in Europe use TRIOPAN to save their lives.
Market-USA, Inc.
523 BenfieldRoad
Severna Park, MD 21146
Phone (4)0) 647.2782
TFIDPAN Fax (410)647.5327
F.S mine dews crie dõ?

