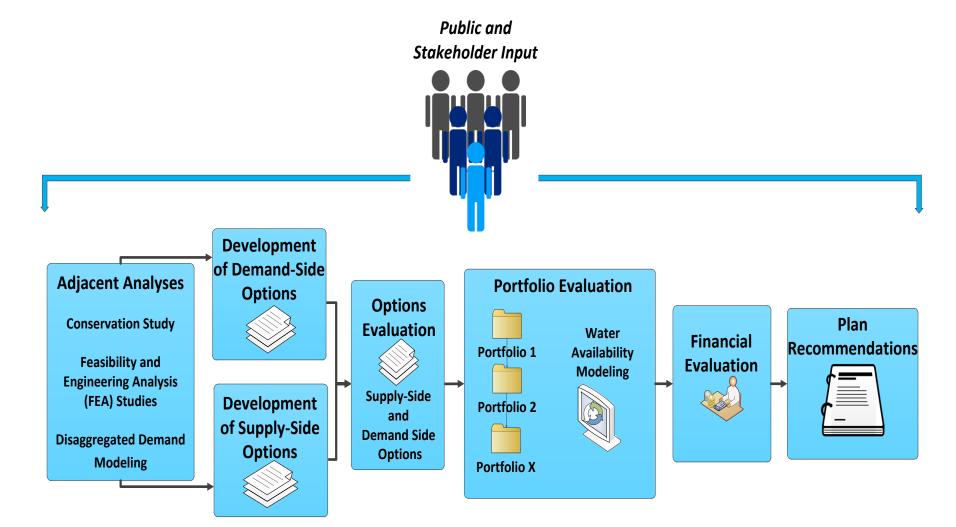
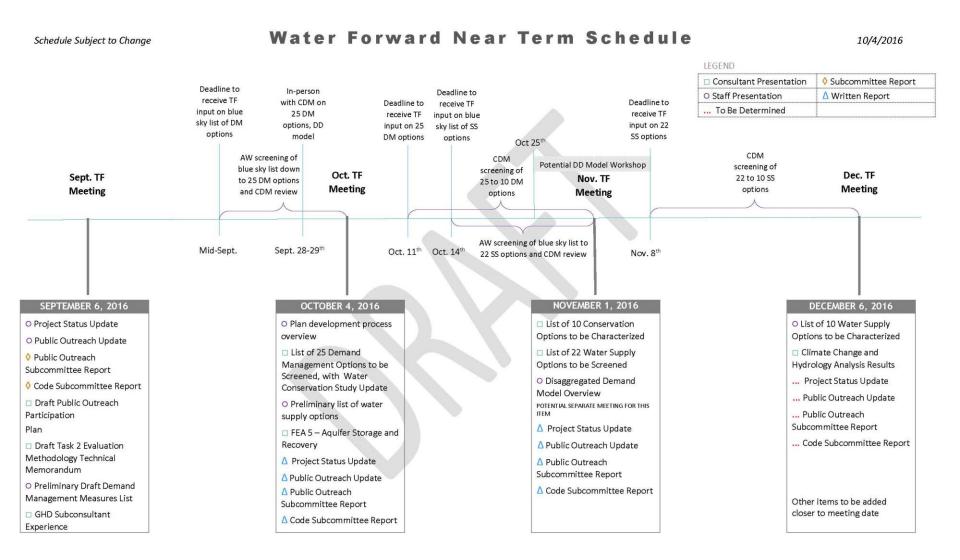


Water Forward Austin's Integrated Water Resources Plan Task Force Meeting

October 4, 2016



Plan Development Process Overview



IWRP Plan Development Process

Water Forward Near-Term Schedule

Questions and Discussion

Draft List of 25 Demand Management Options to be Screened and Water Conservation Study Update

Water Forward Austin's Integrated Water Resource Plan

Austin Water Demand Management Measures

Peter Mayer, Water DM

Presentation Plan

- Austin Water's current program and context
- Review process for screening the 25 measures to 10 measures
- Draft screening criteria
- 25 water demand management measures proposed for screening
- Looking forward

AW's Current Water Conservation Program

- Inclining block rate structure, monthly billing
- 1-day per week watering restrictions for automatic irrigation systems
- Water loss control
- Commercial and business rebates and audits (various)
- Customer information and education
- Various rebates (Pressure reducing valves (PRVs), rainwater, rainscape, hose timer)
- Pool cover rebates
- Mandatory irrigation audits for commercial properties and free residential audits
- WaterWise Landscape Rebates
- Mandatory efficiency inspections for commercial car washes
- Various other measures

Water Conservation Study (Maddaus, 2015)

Demand Management Options Process

Input:

- Austin Water
- Task Force
- Public

Previous Studies/Task Force Efforts:

- Water Conservation Study
- Previous task force reports
- Other conservation studies

Task Force Presentation

Draft Screening Criteria - Utility Perspective

- **Savings** = Water Savings (1 = low potential; 5 = significant potential) *Note: Water Savings given double weight in overall scoring*
- Cost = Relative Expected Cost to Implement Program/Policy (1 = significant expense; 5 = minimal)
- Ability = Relative Ease to Implement Program/Policy (1 = extremely difficult, many hurdles; 5 = easy, no additional staff or resources required)

Draft Screening Criteria - Customer Perspective

Unit Cost = Customer Cost of Measure / Program / Policy (1 = significant expense; 5 = minimal)

25 Conservation Options 11 Categories

- Water loss control utility side
- Automated Metering Infrastructure (AMI), analytics and alerts
- Landscape transformation ordinances and incentives
- Alternative water ordinances and incentives (for example, rainwater, graywater, and ac condensate)
- Irrigation efficiency ordinances and incentives
- Water rates and fees
- Development-focused water use estimates and benchmarking
- Commercial, Industrial, and Institutional (CII) and non-residential ordinances and incentives
- Plumbing codes and ordinances and fixture incentives
- Reclaimed water ordinances & incentives (centralized purple pipe system)
- Customer education and outreach programs

Looking Forward – 100 year planning Top Measures

- Water loss control
- AMI, rates, information, and education including AMI enabled alerts
- Landscape transformation measures such as WaterWise rebates landscapes that can thrive on 1-day per week irrigation
- Pre-development water evaluation
- Cooling tower efficiency standards
- Alternative water supply and reuse
 - Customer Scale (on-site systems)
- Water rates and fees

Looking Forward – Alternative Water Supply

- Utility Scale (regional systems) alternative water supply and reuse to be categorized as supply-side options
- Centralized reclaimed water-related strategies to be considered as supply-side options
- There may be opportunities to combine some measures

Looking Forward On the Bubble

- Specific irrigation efficiency ordinances and programs
- Specific commercial, industrial and institutional (CII) ordinances and non-residential programs
- Specific plumbing codes and fixture programs
- Swimming pool efficiency

Thank you!

See you in November.

Peter Mayer, P.E. WaterDM

Questions and Discussion

Preliminary Draft Water Supply Options List Presentation

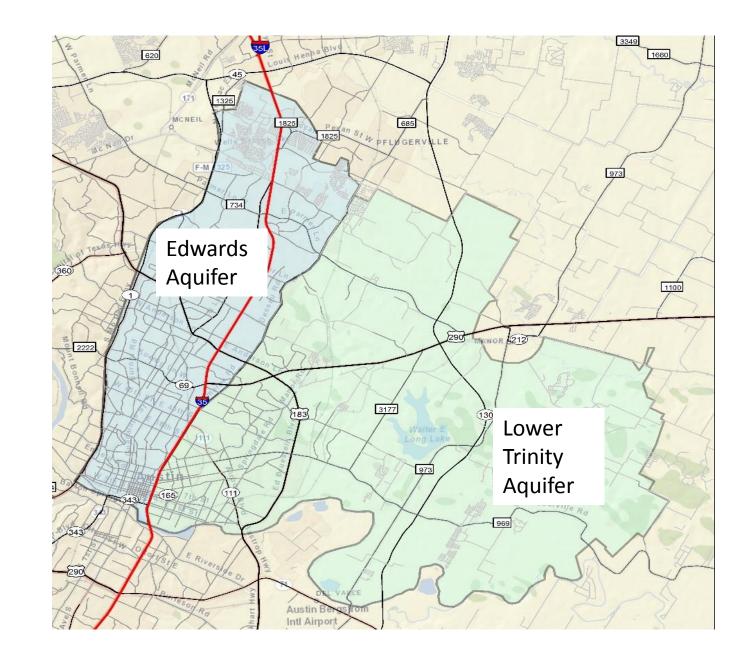
Preliminary Draft Water Supply Options List

- Preliminary draft list provided to consultant team for initial review
 - Included in Task Force member packets
- Seeking feedback from Task Force on additional water supply options to be considered
 - Deadline: Friday, October 14th (end of day)
- Seeking public input
 - On-line public comment portal
 - \circ Open October 5th 14th (end of day)

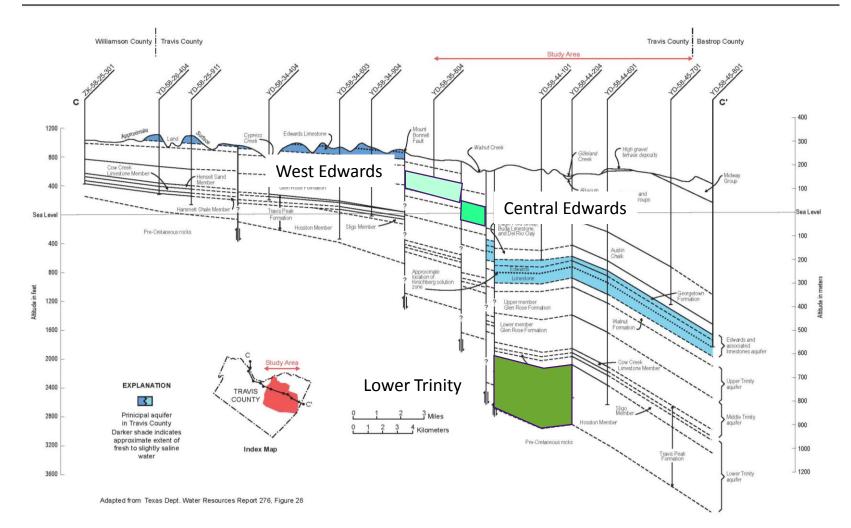
Preliminary Draft Water Supply Options List

- 22 supply-side options will be identified for initial screening by AW/consultant team
- Screening process will narrow list down to 10 supply-side options for further analysis (options characterization)
- Resulting list of 10 will be used in portfolio development and evaluation process
- Essentially the same process as was used for demandside options

Questions and Discussion


City of Austin Aquifer Storage and Recovery Preliminary Investigation and Feasibility Analysis

October 4, 2016 Presentation to Water Forward Task Force



Overview

- Scope
- Findings
- Next steps

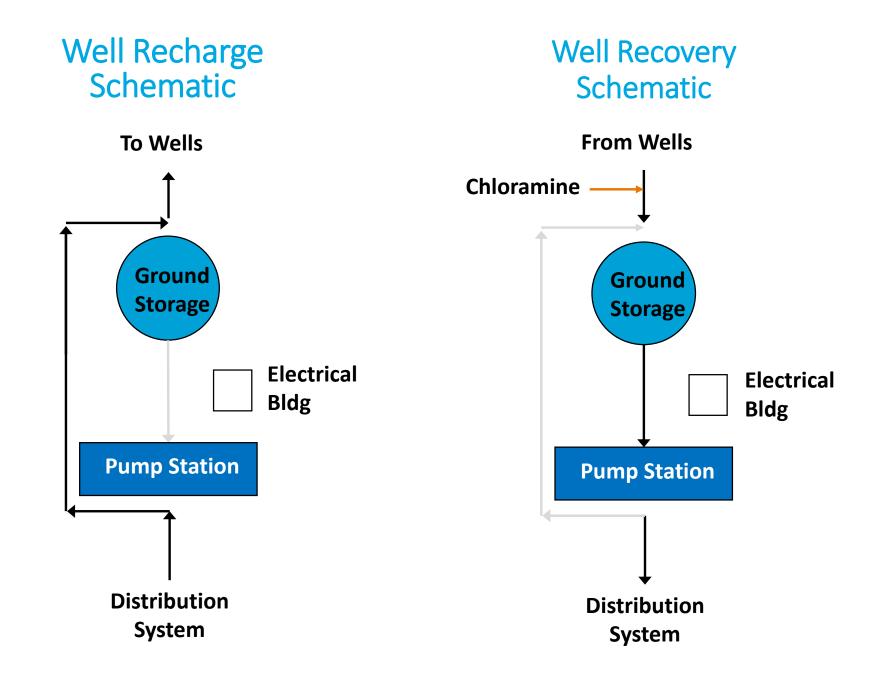
Regional Cross-Section

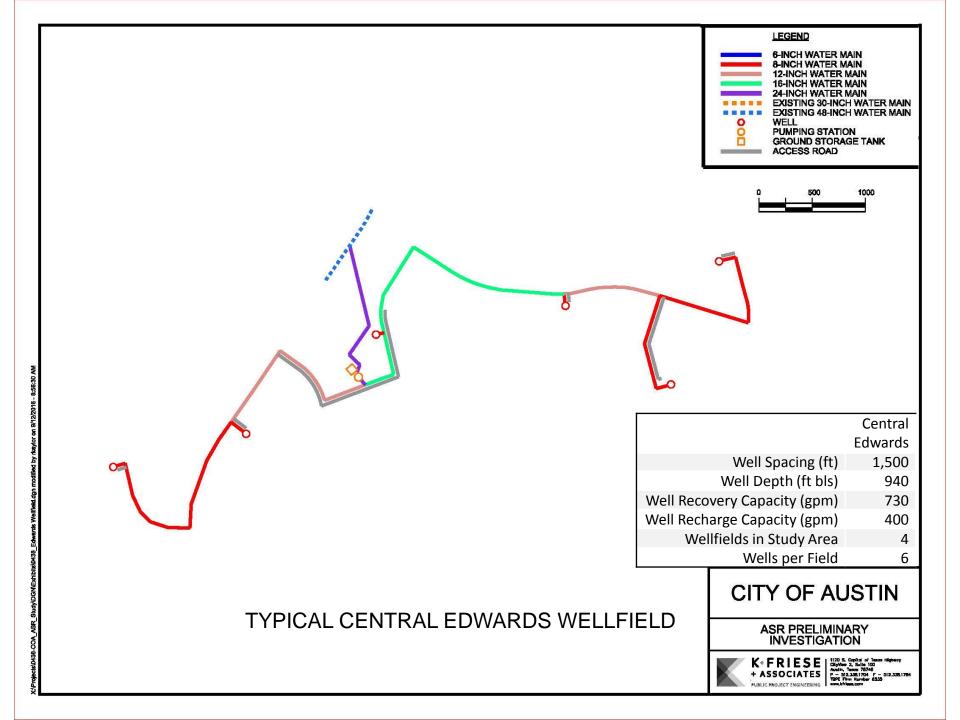
City of Austin ASR Feasibility Study

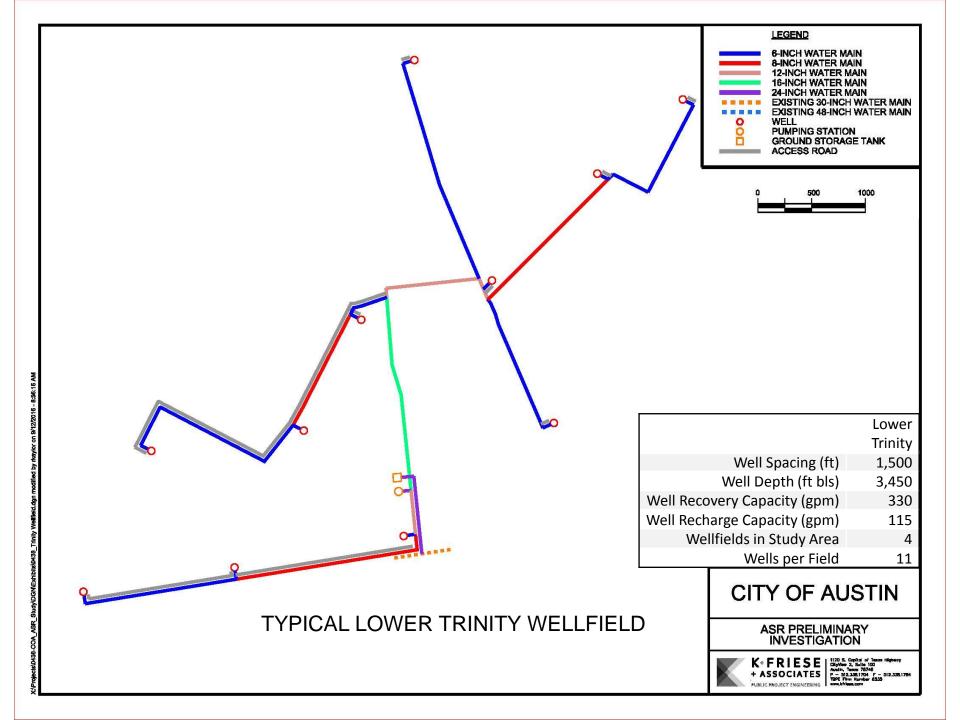
Scope

- Source Water Assessment and Strategic Direction characterize the quality and general availability of three potential source waters; drinking water, reuse water, and surface water; identify key factors for suitability for recharge
- Groundwater Assessment characterize the hydraulic and water quality of the two storage zones; northern Edwards aquifer and lower Trinity Aquifer; complete a preliminary geochemical analysis
- ASR Applications and Feasibility develop conceptual design for each storage zone and estimate capital and O&M costs (including integration piping), peak recovery rate, total storage capacity, and storage losses
- Permitting and Regulatory Consideration ID regulatory requirements for implementing ASR applications; assess potential for impact to sensitive groundwater receptors
- Project Implementation and Phasing Provide development of phases to implement the full-scale ASR system to include pilot testing and subsequent design and construction phases to reach full-scale
- **Report** draft and final report preparation
- **PM and Coordination** includes up to four presentations to stakeholders

Well Layouts


	West Edwards	Central Edwards	Lower Trinity
Well Spacing (ft)	2,500	1,500	1,500
Well Depth (ft bls)	570	940	3,450
Well Recovery Capacity (gpm)	150	730	330
Well Recharge Capacity (gpm) Number of Wellfields in	120	400	115
Study Area	3	4	4
Number of Wells per Field ¹	11	5.5	11
Total Wells	33	22	44


1) Average number of wells per field, includes 10 % standby


Well Recovery Rates

	West Edwards	Central Edwards	Lower Trinity
Study Area Total Recovery			
Capacity (mgd)	6.5	21.0	19.0
Study Area Total Recharge			
Capacity (mgd)	5.2	10.7	6.6
3-Yr Study Area Total Target			
Storage Volume (ac-ft)	21,792	70,703	63,923
Study Area Max Recharge			
Demand (ac-ft/yr)	5,811	12,912	7,425
Estimated Fill Time (yr)	NA ¹	13.83	9.0
Study Area Annual			
Maintenance Recharge (ac-			
ft/yr)	NA ¹	7,664	292
Annual Loss (%)	NA ¹	10.8	0.5

1) Target storage volume cannot be achieved in the West Edwards subarea due to high regional flow velocity

Cost Comparison – Planning Level Costs

	Central Edwards	Lower Trinity	Notes
Total Cost of Facilities	\$53,672,342	\$100,703,856	
Total Implementation Cost (includes cost of facilities)	\$83,148,830	\$138,749,827	
O&M Cost	\$41,630,207	\$40,193,803	
Total Project Cost	\$124,779,037	\$178,943,630	2, 3-yr recovery events
Project Yield (ac-ft)	141,406	127,846	30-yr project life
Recovered Water Cost (\$ per ac-ft)	\$882	\$1,400	

Permitting

- Revised rules issued April 29, 2016
 - streamlines permitting by removing requirements for two-phase project approval by TCEQ
 - eliminates the need to amend existing water rights for projects using appropriated surface water
 - limits the authority of a groundwater conservation district to permit ASR wells to only wells that recover more water than is stored
 - allows storage and recovery of non-drinking water quality waters so long as the associated activities do not cause the native groundwater to become harmful to animals or people or require a higher degree of treatment than is currently required for beneficial use

Next Steps

- Provide comments on potential pilot sites
- Finalize report

Questions

ch2m:

