

City Council Questions and Answers for Thursday, June 22, 2017

These questions and answers are related to the Austin City Council meeting that will convene at 10:00 AM on Thursday, June 22, 2017 at Austin City Hall 301 W. Second Street, Austin, TX

Mayor Steve Adler
Mayor Pro Tem Kathie Tovo, District 9
Council Member Ora Houston, District 1
Council Member Delia Garza, District 2
Council Member Sabino □Pio□ Renteria, District 3
Council Member Gregorio Casar, District 4
Council Member Ann Kitchen, District 5
Council Member Jimmy Flannigan, District 6
Council Member Leslie Pool, District 7
Council Member Ellen Troxclair, District 8
Council Member Alison Alter, District 10

The City Council Questions and Answers Report was derived from a need to provide City Council Members an opportunity to solicit darifying information from City Departments as it relates to requests for council action. After a City Council Regular Meeting agenda has been published, Council Members will have the opportunity to ask questions of departments via the City Manager's Agenda Office. This process continues until 5:00 p.m. the Tuesday before the Council meeting. The final report is distributed at noon to City Council the Wednesday before the council meeting.

QUESTIONS FROM COUNCIL

Agenda Item # 3: Approve recommendations of the Electric Utility Commission Resource Planning Working Group for the update to the Austin Energy Resource, Generation and Climate Protection Plan, including long-range planning through 2027.

QUESTION: Please provide detail on the makeup and selection criteria of the working group membership. COUNCIL MEMBER ALTER'S OFFICE

ANSWER: Action on this item will be postponed to August. Staff is working on a response and will provide it at that time.

QUESTION: From a financial perspective, how much more does it cost to move from our current goal of 55% renewable to 65%? How much additional would it cost to move from a 65% renewable goal to a goal of 75% renewable? For each increment, what can we expect to be the impact on rate payers? What additional risks may be involved with each increment? Would we be able to meet our needs for reliable energy during peak loads with a 75% renewable goal? The working group recommended a 65% renewable energy commitment with a goal to study the possibility of a 75% and 80% goal for 2027. If we followed that recommendation, what would such a study entail and how would AE operationalize that recommendation? How would that approach fit with the plan to revise the plan only every 5 years?

How do the costs of implementing more renewables play out over time? From the discussion on Monday, we got the impression that if we go out 5 years there might be big increases in costs after 5 years.

In the chart of 20 year NPV vs. Cost at Risk, please explain how we should interpret the dots representing current Council Goals, the working group's recommendation (65% renewable), vs. a 75% renewable option (working group with 75%). We are particularly interested in understanding what the risk axis represents as there seems to be quite a bit of variation.

What are other peer cities' goals wrt renewable energy?

It has been said that other cities have reached a 100% renewable goal. Please provide some examples and share the breakdown of their renewable portfolio broadly (i.e. do their methods differ from ours in substantive ways? If so, how?)

What does the resource plan draft include in terms of energy storage investments / R&D opportunities?

How does the resource plan draft incorporate energy efficiency efforts?

What is the rationale behind not increasing our local solar goals?

Why were no goals for the support of EV's incorporated into the draft plan?

Did the Resource Planning Working Group take a final vote on the complete package of recommendations? If so, what was the outcome?

If we update the plan only every 5 years, what would the process be if there were "significant changes in technology or market conditions to warrant more frequent updates"?

Please revise the cost impact slide to provide graphics that capture the \$350 million underneath so we can get a snapshot of the implications within the larger context and not just the incremental costs above what we already expect. COUNCIL MEMBER ALTER'S OFFICE

ANSWER: Action on this item will be postponed to August. Staff is working on a response and will provide it at that time.

QUESTION: 1) What is the year-to-date (YTD) energy profile for the City of Austin, both in generation and in demand? What percentage of renewables (solar, wind, etc) and other (natural gas, coal, nuclear) does the City have for both generation and demand? Where will the City be if it decides to approve an additional 200 MW of wind being considered on June 22, 2017? 2) In the slide attached, Austin Energy provided a number of different scenarios in terms of cost and risk. How are both cost and risk calculated? What factors are considered in those calculations? Can you provide a rate and bill impact for the scenarios listed on that graph? COUNCIL MEMBER TROXCLAIR'S OFFICE

ANSWER: Action on this item will be postponed to August. Staff is working on a response and will provide it at that time.

Agenda Item(s) 4-7: Austin Energy: energy efficient improvement rebates.

QUESTION: Are any of the properties involved in items 4-7 on the repeat offender's lists for code violations? If they are have they resolved these offenses? COUNCIL MEMBER ALTER'S OFFICE

ANSWER: 1) The apartment complex in Item 5 is currently on the Austin Code Department's repeat offender registration list. The properties in the other items are not.

2) Yes, in 2015, the apartment complex underwent a total renovation to update the property and resolve code issues. It will be removed from the code violation list in October 2017, if it remains free of violations and passes inspection. Austin Energy intends to bring this rebate request back to Council after successful completion of the inspection.

Agenda Item #8: Authorize negotiation and execution of an interlocal agreement with the Capital Metropolitan Transportation Authority for capital improvements made to the bus stop at Austin-Bergstrom International Airport, and to establish the parties' respective responsibilities. (District 2)

QUESTION: Will the design stage of the transit shelter include input from users of transit (employees and travelers)? How will that input be solicited and received? COUNCIL MEMBER HOUSTON'S OFFICE

ANSWER: The design process of this project is complete and the iconic guitar-shape bus shelter is currently under construction, per City Council Authorization on 01/26/17. Staff from the Aviation Department worked hand-in-hand with CapMetro executives and staff throughout this process to finalize architectural design and technological features representing Austin. The lighted guitar-shape design was selected after an informal architectural competition from the City's approved architect rotation list. The purpose of this interlocal agreement is to memorialize the partnership between Aviation Department and CapMetro in the development and operation of the bus shelter and transportation service at the airport.

Agenda Item # 13: Authorize the use of the design-build procurement method in accordance with Texas Government Code Chapter 2269 for design and construction services for the Austin Convention Center warehouse and marshalling yard.

QUESTON: What is the distance from the proposed location of the warehouse and marshalling yard to the convention center? What is the travel time during peak times? COUNCIL MEMBER HOUSTON'S OFFICE

ANSWER: The distance is approximately 12 minutes or 5.1 miles. ACCD will utilize the proposed facility (marshalling yard) as a staging site to facilitate move-in/move-out of events that will be coordinated utilizing an event operations schedule. Increase travel times will be factored into the event operations schedule and could increase and/or decrease the travel time depending on the group hosting the event. In order to support our clients and events, the facility (ACC) operates from 6 a.m. to 12 p.m. daily utilizing an events operations schedule to coordinate move-in/move-out operations.

QUESTION: 1) Is the proposed Warehouse and Marshalling Yard part of the

proposed Convention Center Expansion? 2) How does it fit into that proposal? 3) Will the proposed Yard be built on the current ACC property? 4) Did the Visitor Impact Task Force review or make a recommendation on this proposal? 5) Has ATD reviewed the issues raised in the RCA regarding queing and staging of idling trucks on Red River St. and the traffic impacts in the area? 6) Has ATD made recommendations? COUNCIL MEMBER KITCHEN'S OFFICE

ANSWER: 1) Although the proposed warehouse and marshalling yard were not part of the Visitor Impact Task Force's (VITF) scope, the use of a marshalling yard is a proven tool and strategy utilized by high occupancy Convention Centers around the country, like the Austin Convention Center (ACCD), to manage traffic demands, relieve vehicular compression, and avoid any queuing in and around adjacent thoroughfares. A marshalling yard presents a range of transportation management strategies and has the flexibility to respond to the diverse and unique needs of each event with minimal disruption to the Convention Center and surrounding area. Recognizing the expanding development in the area and the potential need for a larger staging area, ACCD and ORES have worked over the past seven years to identify a unique parcel of land to expand warehouse operations and marshalling yard needs to enhance ACCD's ability to facilitate event coordination and to increase operational efficiency and public safety in the area. The current infrastructure at the Convention Center is inadequate to support the intensified activity around the Convention Center; the development of this site will allow ACCD to accommodate the increased demand for facility event coordination and to mitigate traffic congestion and customer interruptions adequately and safely. 2) The marshalling yard addresses the immediate need to mitigate traffic congestion and customer interruptions adequately and safely, providing a longterm solution that can accommodate any expanded facility capacity in the future.

- 3) No. On April 20th, 2017, the City Council approved the acquisition of approximately 41.67 acres for a proposed warehouse and marshaling yard for the Austin Convention Center Department off U.S. Hwy, 183.
- 4) The VITF did not make a recommendation on the proposed location of the warehouse and marshalling yard, but the marshalling yard is being designed to address the future demands and business opportunities at the ACC.
- 5) The Austin Transportation Department (ATD) has not completed a traffic study of the Convention Center specific to Red River thoroughfare.
- 6) No, but ATD concurs that the current constraints of the ACC service yard and marshalling infrastructure have reached a tipping point for capacity on the surrounding thoroughfares, outpacing ACCD's ability to mitigate traffic congestion and customer interruptions adequately and safely. An offsite storage facility and marshalling yard will help to alleviate vehicular congestion that inhibits mobility along thoroughfares and provide a buffer for controlling ingress and egress of vehicular traffic related to events at both City-owned venues. It will also help to ensure that emergency vehicles will have a path into the area if an emergency arises.

Agenda Item # 14: Authorize negotiation of an interlocal agreement with the STATE OF TEXAS, acting by and through the TEXAS FACILITIES COMMISSION, for development of Phase One of the 2016 Texas Capitol Complex Master Plan.

QUESTION: 1) Please provide an assessment of how the proposed Texas Capitol Complex master Plan will impact downtown traffic and coordination with current mobility planning as it relates to conversions of identified streets to two-way and vacation of portions of street row. Include impacts to transit services if possible. 2) Please provide a fiscal and staff hourly assessment for providing "expedited processing of all aspects of the project requiring City consideration" and expected impact to existing development services workload. 3) Please provide a fiscal and utility impacts for granting of waiver and easements and right-of-way usage fees. 4) Please clarify opportunity to delay item to later in 2017 to allow for the City to better prepare for proposed Capitol Planning effort. COUNCIL MEMBER KITCHEN'S OFFICE

ANSWER: See attachments.

QUESTIONS FROM WORK SESSION: 1) Please provide copies of previous Council resolutions related to work with the Facilities Commission. 2) Please provide copies of any legal memos that may have been distributed in response to the resolutions referenced in the previous question. 3) Is the Texas Facilities Commission willing to consider incorporating labor standards as a part of Phase One project specifications? MAYOR PRO TEM TOVO 4) Please provide additional information regarding direct costs to the City.5) Please provide additional information regarding proposed vehicular circulation routes in the project area as they relate to cycling vehicles in and out of the proposed parking garages entrances and exits. COUNCIL MEMBER HOUSTON'S OFFICE 6) Please provide additional information regarding the fee waivers requested by the Texas Facilities Commission. 7) Please provide additional information regarding State development activities that do not require City consent.8) Please provide additional information regarding planned public access to the parking facilities proposed as a part of Phase One. Specifically, will the spaces will be publicly accessible and if so, during what timeframe and at what cost (if applicable)? 9) Please provide additional detail regarding the \$581M Phase One project costs. COUNCIL MEMBER POOL 10) Please provide a list of right-of-way sections that the City might be interested in acquiring from the State, including the section that has recently been under discussion near the Grove Planned Unit Development (PUD) property. COUNCIL MEMBER ALTER

ANSWER: See attachment.

Agenda Item # 15: Authorize negotiation and execution of an interlocal agreement with the University of Texas at Austin's Ray Marshall Center for process development, data collection, and analysis of youth-focused programs in science, technology, engineering, math, creative and entrepreneurship workforce

development programs for a total contract amount not to exceed \$100,000.

QUESTION: 1) What was the reason for the previous postponement to this interlocal agreement? 2) What tools will this research yield that will help evaluate related programs proposed by Quality of Life Commissions and other boards and commissions of the City? COUNCIL MEMBER ALTER'S OFFICE

ANSWER: 1) The item was approved by council for postponement to allow staff to refine the idea around the scope of the University of Texas data collection and analysis in support of a program measuring the extent and the effect of youth focused programs in Title 1 schools, STEM organizations and participating Technology companies. The results will be used to evaluate a design connectivity between education and careers in cluster industries. 2) The revised interlocal now contains two focuses, adults and youth.

For the adult focused research, the work will be used to present return on investment on individuals who previously received training and obtained middle skill employment. The outcome based impact model will calculate the amount of taxes now being paid by the individual and municipal cost saving from subsidized programs that support lower income citizens, no longer necessary for the trained and now employed individuals. This report will provide recommended performance measurements for the city to be able to evaluate direct outcomes from workforce development programs.

For the youth focused research, the systems analysis will identify gaps in services using quantitative and qualitative date. This gap analysis will provide a comprehensive system evaluation and recommendation for improving access to a pipeline for lower income students to training, internships and career opportunities. An evaluation of the current STEM ecosystems will be prepared to better define the role for government to strengthen STEM outreach in Title 1 schools.

Agenda Item # 18: Approve an ordinance amending the Fiscal Year 2016- 2017 Human Resources Department Operating Budget Special Revenue Fund (Ordinance No. 20160914-001) to accept and appropriate an additional \$26,700 in grant funds from the Quality of Life Foundation for the Emerging Leader Summer Internship Program which provides paid internships for Austin area youth.

QUESTION: Will this program be included in the baseline research being proposed in item 15 from Economic Development? Please provide detail on outcome measures and outcome achievements for the program from the start of the program to the current cohort. Are participants given the opportunity to participate multiple times and build on their skill sets? COUNCIL MEMBER ALTER'S OFFICE

ANSWER: See attachment.

Agenda Item # 26: Authorize negotiation and execution of a contract through the Texas Local Government Purchasing Cooperative, administered by the Texas Association of School Boards, Inc. (BuyBoard) with GT DISTRIBUTORS INC., for the purchase of night vision goggles and helmet mounts, in an amount not to exceed \$96,300.

QUESTION: Please provide the breakdown of cost for night vision goggles and helmet mounts. Also, what is the current inventory, its age and useful life? Is the proposed new equipment a qualitative upgrade or is current inventory failing or near failing? How many SWAT units/ members does current inventory supply, as well as with additional inventory? COUNCIL MEMBER KITCHEN'S OFFICE

ANSWER: The breakdown of cost for night vision goggles and helmet mounts are approximately \$11,600 each for the goggles and \$500 each for the mounts. 2) The current inventory consists of 24 units on hand. Of these, nine were purchased in August 2015, four were ordered in December 2016, and the remaining 11 are aging equipment, some of which are more than 19 years old. These additional eight units will complete the equipment upgrade, which will outfit officers for the next 8-10 years. 3) The new equipment is an upgrade to replace some of the aging equipment which is in excess of 19 years old. Parts required on the older equipment to complete repairs are becoming more difficult to source and are sometimes unavailable. 4) 25 SWAT members utilize the current and future inventory.

Agenda Item #31: Authorize negotiation and execution of a 24-month contract with ASPLUNDH TREE EXPERT CO., or one of the other qualified offerors to Request For Proposals TVN0061, to provide energized transmission line clearance services in an amount of \$6,000,000, with three 12-month extension options in an amount of \$2,500,000 per extension option, for a total contract amount not to exceed \$13,500,000.

QUESTION: Can we see the full evaluation criteria? COUNCIL MEMBER KITCHEN'S OFFICE

ANSWER: The evaluation criteria as stated in the solicitation were as follows:

Evaluation Factors: Total will be 100 points.

a) Technical Solutions Proposed (Grasp of the requirement and its solution(s), responsiveness to terms and conditions, completeness and thoroughness of the technical data and documentation.) (reference 1B (i) and 1B (iii) Safety and training program) – 30 points

1B. – Technical Proposed Solution: Define in detail your understanding of the requirements presented in the Scope of Work of this request for proposal. Provide all details as required in the Scope of Work to show your plan for accomplishing the work, assembling the crews and equipment, and completing

work in a safe and timely manner. Also provide additional information you deem necessary to evaluate your proposal.

- i. A description of your work program by tasks. Detail the steps you will take in the following tasks found in the Scope of Work (Section 0500 and Attachments).
- iii. A description of your company's training and safety program per Section 0500 Item 13. see attached Section 0500)
- b) Demonstrated Applicable Experience (reference 1D (i) and 1D (ii)), Equipment/Facilities (reference 1B (ii.a)), and Personnel Qualifications (reference 1B (ii.b)) 35 points
- 1D. Part V Prior Corporate Experience: Describe only relevant corporate experience and individual experience for personnel who will be actively engaged in the project. Do not include corporate experience unless personnel assigned to this project actively participated. Do not include experience prior to 1998. Supply the project title, year, and reference name, title, present address, and phone number of principal person for whom prior projects were accomplished.
- i. Contactor must demonstrate a minimum of five (5) years of work as a successful energized utility line clearance Contractor per Section 0500 Item 3 (A).
- ii. A minimum of five (5) positive references where Contractor has provided services of a similar size and scope within the last three (3) years.
- c) Total Evaluated Cost (Section 0705, AE Distribution Energized Line Clearance Cost Sheet) 25 points
- d) Local Business Presence (Maximum 10 points)

Agenda Item #33: Approve a resolution relating to the development of a Ciclovía Open Streets weekend day event on Congress Avenue from 11th Street to Mary Street.

QUESTION: 1) In order to reach geographic equity in access, is there a plan to bring Ciclovía to the parts of the city/ Is this on a geographic rotation? Pleas provide details. 2) Have ATD and ACE weighed in on the matter? 3) Are ATD and ACE in favor of the allowing the closure? 4) Since its start what has been the annual spend from the city (including any fee waivers) for each Ciclovía event? 5) What is the total cost of a Ciclovía event and what is the target amount (% of total cost) of City resources to go to the event for the upcoming Ciclovía? COUNCIL MEMBER ALTER'S OFFICE

ANSWER: 1) At this time, there are no active plans to bring Ciclovia events to other parts of the city. However, there is interest from community groups in doing so and a successful history of hosting these types of events throughout the city including in the Central East along 6th street (downtown/IH-35 to Robert T Martinez), in the Mueller neighborhood, in Dove Springs and in

North Central Austin. 2) ATD and ACE staff have been briefed on the concept and are prepared to gather the requested information should the resolution be approved by Council. ACE staff have advised that if this event were to move forward, the traffic control plan would need to maintain east-west traffic at 11th, 5th, 6th and Cesar Chavez streets. 3) Should this resolution move forward, staff would prefer to evaluate this event holistically before providing a recommendation, including how the event relates to the current moratorium on street events and the anticipated impact to mobility in this part of Austin. 4) Staff estimate that the total amount of fee-waivers for Ciclovia-related events since 2015 totals approximately \$50,000. 5) As with any event, the cost depends on varying dynamics, including the specific location and event plan. Staff is prepared to provide estimates on the proposed event's cost impact to City, as per the direction in the resolution.

Agenda Item #35: Approve a resolution directing the City Manager to draft a business plan related to establishing a Veterans Resource Center.

Question: Will this process assess the possibility of federal funding sources? COUNCIL MEMBER ALTER'S OFFICE

Answer: Yes, it would be considered as part of developing a business plan. There will be a revised version of the resolution that will make this explicit.

Agenda Item #41: Approve a resolution authorizing the City Manager to negotiate and execute amendments to the City's Improvement of Cultural Facilities for Public Use Funded With Bond Funds Agreement with the Mexic-Arte Museum extending the deadline for the expenditure of bond funds.

QUESTION: Does Mexicarte have any money already lined up for this project outside of the \$5 million? Will the plan and design costs come from the City's \$5million? COUNCIL MEMBER ALTER'S OFFICE

ANSWER: 1) Attached is a spreadsheet provided by Mexic-Arte representative Sylvia Orozco. Based upon the information attached, it appears there has been approximately \$1.1 million raised in private donations and/or grants. Something to consider, however, is this information does not include expense accounting. The Mexic-Arte stated a third party was hired (Butler Non-Profit) to conduct a capital campaign feasibility analysis (suggesting the Mexic-Arte had the capacity to raise between \$1.7 million and \$3.7 million)- however, the information provided does not outline the cost of the study. 2) The Bond Agreement allows up to 10% of the Bond Funds to assist in the planning/programming and design phases of the project. To date \$31,333 of the 10% has been spent on the Museum Program Plan. The Museum plans to access the remaining funds for planning/programming and design phase as needed.

Agenda Item # 58: Conduct a public hearing and consider an ordinance authorizing execution of an agreement with Austin Independent School District establishing

site development standards for redevelopment of Bowie High School, located at 4103 W. Slaughter Lane; and granting approval for redevelopment of Bowie High School (This action concerns land located within the Barton Springs Zone).

QUESTION: 1) What are the differences between the proposed agreement with Austin Independent School District and the existing agreement? 2) Is it accurate SOS compliance would limit the site to 15% impervious cover, the existing AISD/City agreement provides for 20-25%, and current proposal would allow 40% or more impervious cover? 3) Please provide more detail/accounting on the arrangement for mitigating impervious cover. What will be the final total impervious cover for the tract calculated as a percent of net site area? 4) Are area tracts of land being used to offset existing impervious cover on the Bowie High School site? If yes, which sites and are they secured? Are the transfer credits for the sites available or have they already been dedicated? 5) Council's resolution provided for including the Travis Country tract for transfer of impervious cover for AISD and there appeared to be an understanding that AISD and City staff agreed the Travis Country tract is suitable for transfer of development rights within the Barton Springs Zone. Why is the agreement/exhibit without reference to this tract of land? COUNCIL MEMBER KITCHEN'S OFFICE

ANSWER: See attachment.

Agenda Item # 62: Approve a resolution establishing a 2018 Charter Review Commission to align the City Charter with changes to municipal ordinances and to make recommendations on improving other functions of city government.

QUESTION:1) Has this topic in the resolution: "City boards and commissions, including terms of Planning Commission members;" already been treated by the Board and Commissions Transition Taskforce? 2) What were their findings and what is left for this commission to explore? 3) Has this type of commission existed in the past for the City? If so, please provide a copy of their work products. 4) Please provide context for the establishment of this commission at this juncture. COUNCIL MEMBER ALTER'S OFFICE

ANSWER: See attachment.

END OF REPORT - ATTACHMENTS TO FOLLOW

The City of Austin is committed to compliance with the Americans with Disabilities Act. Reasonable modifications and equal access to communications will be provided upon request.

 \mathcal{C}_{For} assistance, please call 512-974-2210 or TTY users route through 711.

Council Question and Answer

Related To Item #14 Meeting Date June 22, 2017

Additional Answer Information

QUESTION: 1) Please provide an assessment of how the proposed Texas Capitol Complex master Plan will impact downtown traffic and coordination with current mobility planning as it relates to conversions of identified streets to two-way and vacation of portions of street row. Include impacts to transit services if possible. 2) Please provide a fiscal and staff hourly assessment for providing "expedited processing of all aspects of the project requiring City consideration" and expected impact to existing development services workload. 3) Please provide a fiscal and utility impacts for granting of waiver and easements and right-of-way usage fees. 4) Please clarify opportunity to delay item to later in 2017 to allow for the City to better prepare for proposed Capitol Planning effort. COUNCIL MEMBER KITCHEN'S OFFICE

ANSWER:

1) Please provide an assessment of how the proposed Texas Capitol Complex Master Plan will impact downtown traffic and coordination with current mobility planning as it relates to conversions of identified streets to two-way and vacation of portions of street row. Include impacts to transit services if possible.

Based on the Traffic Impact Analysis (TIA) submitted by the Applicant, the project is expected to impact downtown traffic most significantly in the area bounded by Guadalupe Street, Martin Luther King Jr. Boulevard, Trinity Street, and 15th Street. Several site transportation improvements were identified to mitigate site impacts from increased project trips. These site transportation improvements include signalization, additional turn lanes, and re-assignment of lanes at several intersections. Additionally, similar system transportation improvements were identified along the periphery of the study area to mitigate impacts on the bordering intersections that are currently servicing non-project traffic. The TIA indicates that the conversion of 16th, 17th, and 18th Streets and vacation of Congress Avenue can be accommodated with the proposed mitigation measures.

The Applicant has agreed to design its proposed project such that it will not preclude possible future urban rail service along 18th Street. Capital Metro has developed an acceptable plan to reroute its limited existing bus service in this area.

2) Please provide a fiscal and staff hourly assessment for providing "expedited processing of all aspects of the project requiring City consideration" and expected impact to existing development services workload.

Phase One of the Capitol Complex Master Plan is a multi-package project with buildout projected to occur over a 4 ½ year period. Of the work proposed, City staff would be responsible for review of work impacting City utilities and/ or City right-of-way or easements.

The Texas Facilities Commission's (TFC) plans are in the conceptual stage at this time but based on available information, staff prepared the attached cost of service estimate. TFC will be responsible for all costs of service (includes direct staff time) associated with review, processing, and inspections. The cost of service estimate assumes that the review and permitting will occur under the General Permit Program. The TFC request for expedited review would primarily be fulfilled through the utilization of the General Permit Program, which

costs \$5,000 annually. This program was also made available to Capital Metro and the University of Texas in recent interlocal agreements.

Outside of the General Permit Program, City staff would prioritize related project submittals and is not committed to any specific days for review other than those that are established by each department. The intent of prioritization is that TFC project submittals "get put at the top of the stack" once the submittal is received.

TFC is requesting the assignment of a project team. Staff does not envision having to invoke this project team outside of the team that normally meets under the General Permit Program.

ATTACHMENT 1

3) Please provide a fiscal and utility impacts for granting of waiver and easements and right-of-way usage fees.

The Texas Facilities Commission (TFC) has requested a waiver of fees associated with the subterranean easements required for construction of the underground utility tunnels extending from the Central Utility Plant, located at 201 East 14th Street, to the new building proposed for 1801 Congress Avenue (see Slide 5). Staff estimates the value at approximately 5% of the fee simple interest. At \$250/ square foot for 21,867 square feet, the estimated fee is \$273,338.

TFC has also requested a waiver of the fees associated with right-of-way usage in the project area over the 4 ½ year project term. The fee structure for right-of-way usage includes tiers for which the cost is calculated based on square footage and duration. Fees were estimated over a 5-year period and rounded up to account for the potential for unanticipated issues during the construction stage. The projected total is approximately \$6.6M. Attached is a spreadsheet that details those calculations.

The total amount requested is \$6.9M. Neither fee type is considered a direct staff cost nor a cost to the City; they are considered unrealized revenue. This is consistent with the previously approved interlocal agreement with the University of Texas.

Utility relocations associated with this project will be reviewed and approved by the City and subject to City design standards. TFC will be responsible for all project related costs.

ATTACHMENT 2

4) Please clarify opportunity to delay item to later in 2017 to allow for the City to better prepare for proposed Capitol Planning effort.

The following response was provided by the Texas Facilities Commission (TFC).

To meet its legislative mandate, and make efficient use of taxpayer's funds, TFC needs to execute the work as efficiently as possible. An interlocal with the City will allow TFC to collaborate and coordinate with City staff and services so the work can be expedited, street closure times reduced, and the project completed sooner. TFC believes this is a mutually beneficial arrangement and needs to complete the ILA process by August in order to achieve these objectives.

5) Please provide a copy of the Traffic Impact Analysis.

A copy of the TIA is attached.

ATTACHMENT 3

6) Please provide additional information regarding any analysis of the potential impact on the surrounding stormwater system.

At this point in time, City staff has not received detailed plans for review. The Texas Facilities Commission (TFC)

provided the following information.

Stormwater Management:

The design intent is that the project will comply with the City of Austin water quality requirements. Both the Texas Government Code and the City of Austin require the proposed improvements not increase the runoff rate from existing conditions. To achieve this requirement, some form of detention is required for any increase in impervious cover. The existing site for the Capitol Complex Phase 1 project is mostly impervious (roughly 85%). Our design team has assumed that new green spaces built over the top of below grade structures will be considered impervious for the purpose of stormwater calculations, even though there will be more public green space once the project is completed. Given this assumption, the project site will have a slight increase in impervious cover (90%, up from 85%). This small increase in impervious cover will require some on-site detention. The design concept for achieving the on-site detention is to utilize a sustainable design concept to capture rainwater in the porous fill materials at the bottom of the tree wells, at the allée of trees flanking each side of the new mall. This achieves the goals of mitigating runoff, while directing stormwater into planted, landscaped areas.

Stormwater Infrastructure:

The TFC project team has met with the City of Austin Watershed Protection Department, and will continue to collaborate with the City departments in developing the final design. There are existing storm sewer systems in place within the project area, specifically 17th Street and 18th Street. The project will assume the responsibility for maintaining conveyance of the storm discharge during construction, and will replace these lines with new pipes installed within the fill material over the new below grade parking structure to reconnect the gravity flows of the existing infrastructure. The new stormwater infrastructure installed will be sized to accommodate any increased demand from the project, modeling the fully developed conditions for the watershed. The model will account for COA infrastructure upstream and downstream.

Stormwater Quality:

The Texas Commission of Environmental Quality regulates stormwater discharges from construction activity. To minimize the effect of non-point source pollutants, stormwater control measures will be put in place to improve water quality by removing suspended solids. Stormwater Pollution Prevention Plans (SWPPP) will be followed for all phases of construction.

7) With regard to Slide 8 which summarizes the requests related to Expedited Process, please clarify whether these benefits are extended to other community partners such as the Austin Independent School District (AISD), Capital Metro, etc.

The interlocal proposed for negotiation with the Texas Facilities Commission (TFC) is for Phase One of the Capitol Complex Master Plan and is not intended to apply to all TFC projects. The City of Austin has entered into similar agreements with the referenced community partners. Although the terms and the vehicle for those terms may vary on a case by case basis based on the specific needs of the community partner, requests similar to those made by the TFC are typically reviewed by staff and forwarded to Council for consideration.

As described previously, the TFC request for expedited review would primarily be fulfilled through the utilization of the General Permit Program, which costs \$5,000 and will be paid by the TFC. This program was also made available to Capital Metro and the University of Texas in recent interlocal agreements.

Outside of the General Permit Program, City staff would prioritize related project submittals and is not committed to any specific days for review other than those that are established by each department. The intent of prioritization is that TFC project submittals "get put at the top of the stack" once the submittal is received.

Capitol Complex Project- Phase One Fee Estimates June 21, 2017

	COST OF SERVICE ESTIMA	TES (TO BE PAID BY TEXAS FACILITIES	CON	MMISSIO	N)		
Туре	Fee Description	Qualification		Cost	Unit	Qty	Total
General	Annual General Development Permit Application Fee	Annual fee for estimated project term (2017-2021)	\$	5,000.00	each	4	\$ 20,000.00
Inspection	Site and Subdivision Inspection Fees	Site Improvements and Civil Work in the ROW, TRUSS Support for temporary utilities	\$35	56,106.40	each	1	\$ 356,106.40
Austin Water	Service Extension Request (SER) Application Fees	Assume 3 SER submissions at minimum review charge	\$	656.00	each	3	\$ 1,968.00
Austin Water	Water/ Wastewater Plan Review Submittals	Assume 6 work packages, 1 submittal	\$	215.00	each	6	\$ 1,290.00
Austin Water	Water/ Wastewater Plan Review Submittals	Assume 6 work packages, 5 related resubmittals	\$	536.00	each	30	\$ 16,080.00
Right of Way (ROW)	ROW Vacation Application	Congress and 17th	\$	1,000.00	each	1	\$ 1,000.00
Right of Way (ROW)	ROW Vacation Appraisal	Congress and 17th- Estimated cost of \$15K - \$20K based on area proposed for vacation	\$ 2	20,000.00	each	1	\$ 20,000.00
Right of Way (ROW)	Easement Release Application Fee	Public Utility Easement: Congress Ave., 17th St., Martin Luther King Jr Blvd.	\$	435.00	each	3	\$ 1,305.00
Right of Way (ROW)	License Agreement Fee	Temporary Suspension Utility Crossing	\$	425.00	each	1	\$ 425.00
Right of Way (ROW)	License Agreement Fee	Tower Crane	\$	425.00	each	4	\$ 1,700.00
Right of Way (ROW)	License Agreement Fee	Tie-backs (1801 and 1601 Congress)	\$	425.00	each	2	\$ 850.00
Right of Way (ROW)	Encroachment Agreement Fee	Tie-backs (1801 and 1601 Congress)	\$	1,000.00	each	2	\$ 2,000.00
Right of Way (ROW)	Encroachment Agreement Appraisal Fee	Tie-backs	\$	3,500.00	each	2	\$ 7,000.00
Right of Way (ROW)	Temp Use of ROW Permit	Temporary Use of ROW (5 year period)	\$	150.00	each	20	\$ 3,000.00
Right of Way (ROW)	Barricade Inspection Fees	Capital Improvement Project (CIP) Barricade Inspection Fee (20 streets over 5 years)	\$	1,500.00	each	20	\$ 30,000.00
Right of Way (ROW)	ROW Traffic Control Review and Inspection Fees	Estimated by Year @ \$50 an Hour - 100 hrs per year	\$	50.00	per hour	500	\$ 25,000.00
Right of Way (ROW)	Excavation Permit Application Fees	Permit Application Fees (20 Streets over 5 years)	\$	45.00	each	100	\$ 4,500.00
					ESTIMATE	D TOTAL	\$ 492,224.40

Capitol Complex Phase One Right-of-Way Usage Estimates- 5yr period

TIER 1 - (day 1 - 180)	length	width	# of days	fee per sq.ft	Total
Sidewalk Space (1700 Brazos)	345	10	180	0.01	\$6,210.00
Sidewalk Space (E MLK)	390	10	180	0.01	\$7,020.00
Sidewalk Space (E 18th)	390	10	180	0.01	\$7,020.00
Sidewalk Space (E 17th N)	150	10	180	0.01	\$2,700.00
Sidewalk Space (E 17th S)	150	10	180	0.01	\$2,700.00
Sidewalk Space (E 16th N)	280	10	180	0.01	\$5,040.00
Sidewalk Space (W 17th N)	190	10	180	0.01	\$3,420.00
Sidewalk Space (W 17th S)	190	10	180	0.01	\$3,420.00
1st Traffic Lane (E 17th)	150	22	180	0.1	\$59,400.00
1st Traffic Lane (W 17th)	190	22	180	0.1	\$75,240.00
				total	\$172,170.00
TIER 2 - (day 181 - 365)	length	width	# of days	fee per sq.ft	Total
Sidewalk Space (W MLK)	345	10	185	0.05	\$31,912.50
Sidewalk Space (1800 Colorado)	390	10	185	0.05	\$36,075.00
Sidewalk Space (W 18th n/c)	390	10	185	0.05	\$36,075.00
Sidewalk Space (W 18th s/c)	150	10	185	0.05	\$13,875.00
Sidewalk Space (1700 Colorado)	150	10	185	0.05	\$13,875.00
Sidewalk Space (W 17th n/c)	280	10	185	0.05	\$25,900.00
Sidewalk Space (W 17th s/c)	190	10	185	0.05	\$17,575.00
Sidewalk Space (1600 Colorado)	190	10	185	0.05	\$17,575.00
1st Traffic Lane (W 18th)	150	22	185	0.14	\$85,470.00
1st Traffic Lane (W 17th)	190	22	185	0.14	\$108,262.00
, ,				total	\$386,594.50
TIER 3 - (day 366 - 545)	length	width	# of days	fee per sq.ft	Total
Sidewalk Space (W MLK)	345	10	180	0.09	\$55,890.00
Sidewalk Space (1800 Colorado)	390	10	180	0.09	\$63,180.00
Sidewalk Space (W 18th n/c)	390	10	180	0.09	\$63,180.00
Sidewalk Space (W 18th s/c)	150	10	180	0.09	\$24,300.00
Sidewalk Space (1700 Colorado)	150	10	180	0.09	\$24,300.00
Sidewalk Space (W 17th n/c)	280	10	180	0.09	\$45,360.00
Sidewalk Space (W 17th s/c)	190	10	180	0.09	\$30,780.00
Sidewalk Space (W 16th n/c)	190	10	180	0.09	\$30,780.00
1st Traffic Lane (W 18th)	150	22	180	0.18	\$106,920.00
1st Traffic Lane (W 17th)	190	22	180	0.18	\$135,432.00
				total	\$580,122.00
TIER 4 - (546 days and over)	length	width	# of days	fee per sq.ft	Total
Sidewalk Space (W MLK)	345	10	1280	0.13	\$574,080.00
Sidewalk Space (1800 Colorado)	390	10	1280	0.13	\$648,960.00
Sidewalk Space (W 18th n/c)	390	10	1280	0.13	\$648,960.00
Sidewalk Space (W 18th s/c)	150	10	1280	0.13	\$249,600.00
Sidewalk Space (1700 Colorado)	150	10	1280	0.13	\$249,600.00
Sidewalk Space (W 17th n/c)	280	10	1280	0.13	\$465,920.00
Sidewalk Space (W 17th s/c)	190	10	1280	0.13	\$316,160.00
Sidewalk Space (W 16th n/c)	190	10	1280	0.13	\$316,160.00
1st Traffic Lane (W 18th)					
	150	22	1280	0.2	\$844,800.00
1st Traffic Lane (W 17th)		22 22	1280 1280	0.2 0.2	\$844,800.00 \$1,070,080.00 \$5,384,320.00

ESTIMATED TOTAL: \$6,523,206.50

TRAFFIC IMPACT ANALYSIS FOR

Texas Facilities Commission Texas Capitol Complex Master Plan 2018 Update

AUSTIN, TEXAS

DeShazo Project No. 15206

Prepared for:

Page Southerland Page, LLP

400 W. Cesar Chavez Street Suite 500 Austin, Texas 78701

Prepared by:

DeShazo Group, Inc.

Texas Registered Engineering Firm F-3199

400 South Houston Street, Suite 330 Dallas, Texas 75202 214.748.6740

December 5, 2016

Traffic Impact Analysis for

Texas Facilities Commission – Texas Capitol Complex Master Plan 2018 Update

~ DeShazo Project No. 15206

Table of Contents

EXECUTIVE SUMMARY	I
PROJECT SITE	
INTRODUCTION	1
Purpose	1
Project Description	2
Study Parameters	2
Study Area	3
TRAFFIC IMPACT ANALYSIS	6
Approach	6
Background Traffic Volume Data	6
Existing Volumes	
Projected Background Traffic Volumes	
Site-Related Traffic Trip Generation	
Trip Distribution and Assignment	
Site-Generated Traffic Volumes	9
Traffic Operational Analysis — Roadway Intersections	9
Description	
Analysis Traffic Volumes	
Traffic Operational Analysis — Roadway Links	
Description	
Summary of Results	
SITE ACCESS REVIEW	15
Driveway Spacing	
SUMMARY OF FINDINGS AND RECOMMENDATIONS	15

LIST OF TABLES:

- Table 1. Development Program Summary
- Table 2. Study Area Intersections and Proposed Changes
- **Table 3. Projected Trip Generation Summary**
- Table 2. HCM Level of Service Criteria
- Table 5. Peak Hour Intersection Capacity Analysis Results Summary (Signalized Intersections)
- Table 6. Peak Hour Intersection Capacity Analysis Results Summary (Unsignalized Intersections)
- Table 7. Daily Service Volumes by Roadway Function
- Table 8. Roadway Link Capacity Analysis Results Summary
- Table 9. Capitol District Plan Driveway Spacing Summary
- Table 10. Detailed Recommendation by Intersection

LIST OF EXHIBITS:

- Exhibit 1. Site Location and Study Area Map with Phase Developments
- **Exhibit 2. Existing Roadway Geometry and Traffic Control**
- Exhibit 3. Phase I Roadway Geometry and Traffic Control
- Exhibit 4. Phase II Roadway Geometry and Traffic Control
- **Exhibit 5. Phase III Roadway Geometry and Traffic Control**

LIST OF APPENDICES:

Appendix A. Traffic Volume Exhibits

Appendix B. Detailed Traffic Volume Data

Appendix C. Trip Generation and Distributions by Phases

Appendix D. Synchro 9 Model Results per Model Scenario

LIST OF STANDARDS:

ITE Trip Generation Manual, 9th Edition Highway Capacity Manual, 2010 Edition

EXECUTIVE SUMMARY

The services of **DeShazo Group, Inc.** (DeShazo) were retained by **Page Southerland Page, LLP** (Page) on behalf of the Texas Facilities Commission to conduct a Traffic Impact Analysis (TIA) for the proposed *Texas Capitol Complex Master Plan* development ("the Project") located in Austin, Texas, encompassing the area bounded by Trinity Street on the east, 15th Street on the south, Guadalupe Street on the west and Martin Luther King Boulevard on the north. The Project will consist of converting the one-way street of 16th, 17th and 18th to two-way operation, closing Congress Street to vehicle traffic between the blocks from 18th Street to 15th street, limiting vehicle traffic on Congress Street from Martin Luther King Boulevard to 18th Street and eliminating traffic travelling through on 17th Street. The study will also look at the buildout condition of construction of underground parking under Congress Street and future capital offices buildings. Buildout of the Project is estimated to occur in three phases. Even though, the Texas Legislature has only appropriated funding for Phase 1, this report analyzes the effect of this additional building construction and potential associated additional vehicle impacts for all three phases.

The purpose of this report is to summarize the vehicular traffic operational characteristics of the background conditions within a specific study area and to measure the projected incremental impact related to the Project as determined by standardized engineering analyses. The study parameters used in this TIA are based upon the requirements of the City of Austin and are consistent with the standard industry practices used in similar studies.

The following findings and recommendations are based upon buildout of the subject property in accordance with the development scenario outlined in the *Project Description* section of this report.

FINDING: The existing roadway system generally provides enough capacity to accommodate the projected traffic generated by the proposed changes included in the Texas Capitol Master Plan 2018 update with some minor modification to traffic signals and other traffic controls.

FINDING: Based on the analysis discussed above in this report, the 16th Street, 17th Street and 18th Street has enough capacity to accommodate additional traffic due to one way to two way conversion and additional traffic due to proposed office spaces.

- ❖ RECOMMENDATION: The existing stop sign on east west approaches on 16th Street and 18th Street is recommended to be kept at the intersection with Congress Street as it will allow pedestrian to safely cross these streets after the development of Pedestrian Boulevard along Congress Street.
- RECOMMENDATION: Driveway 4 and Driveway 5 is recommended to be constructed in the middle of 15th Street and 16th Street to form a four way intersection to maximize available spacing in order to meet the City of Austin driveway spacing requirements.
- ❖ RECOMMENDATION: It is also recommended that the driveway 6 and driveway 7 to be constructed in the middle of Lavaca Street and Colorado Street to form four way intersection and maximize available spacing.
- * RECOMMENDATION: It is also recommended that the traffic signal should be considered at the intersections of Lavaca Street and 18th Street as well as MLK Blvd and Colorado Street. If reviewing agency selected a new traffic signal at these intersections, a detailed traffic signal warrant analysis should be performed prior to the signal installation.

Refer to **Table 10** following summary of findings and recommendations for detail on proposed changes and mitigation at each intersection.

END

Technical Memorandum

To: Ryan Losch, AIA — Page Southerland Page, LLP

From: DeShazo Group, Inc.

Date: December 5, 2016

Re: Traffic Impact Analysis for Texas Capitol Master Plan 2018 Update in Austin, Texas

DeShazo Project Number 15206

INTRODUCTION

The services of **DeShazo Group, Inc.** (DeShazo) were retained by **Page Southerland Page, LLP** (**Page**) on behalf of the **Texas Facilities Commission** to conduct a Traffic Impact Analysis (TIA) for the *Texas Capitol Complex Master Plan* (the **Master Plan**) 2018 Update ("the Project") located in Austin, Texas. A site location map is provided for reference in *Exhibit 1*.

As mandated by Texas Government Code, Section 2166.105, the Texas Facilities Commission has produced the 2016 Texas Capital Complex Master Plan which addresses the strategic vision and long-term goals for the Capitol Complex and the extent to which Texas is able to satisfy its space needs through use of state owned property within the complex. The Texas Capital Complex Master Plan provides detailed, site-specific proposals for use of the property to meet the space needs of state agencies and public sector purposes. The Master Plan establishes for the construction of six (6) new state office buildings within the northern half of the Capitol complex.

The Texas Facilities Commission is seeking the cooperation of the City of Austin to facilitate development of the Project. Submittal of a TIA, prepared by a registered professional engineer experienced and skilled in the field of traffic/transportation engineering, is one of the standard practices for any development process. This TIA was prepared in accordance with industry and local standards by registered professional engineers employed by DeShazo. DeShazo is a licensed engineering firm based in Dallas, Texas, that provides professional services in traffic engineering, transportation planning, and related fields.

Purpose

The purpose of a TIA is to determine if any additional improvements, other than those proposed in the Master Plan, to the adjacent transportation system are needed to maintain a satisfactory level of service, an acceptable level of safety, and appropriate access for a proposed development. A TIA is a site specific investigation of traffic conditions in a localized area and is not a substitute for area-wide or regional transportation planning, which are responsibilities of the local and regional government agencies.

To achieve this objective, this report summarizes the traffic operational characteristics of the background conditions within a designated study area and the projected incremental impact of the Project as determined through standardized engineering analyses. Based upon the results of this analysis, DeShazo may recommend measures to mitigate traffic impacts that excessively or unduly effect safety or operational efficiency. Some mitigation may be attributable, in part or in whole, to the proposed development. It is intended that the findings and recommendations presented in this study provide information to the public and the governing agency regarding potential transportation improvements that may be warranted. But, also, this study is intended to provide a credible basis upon which the governing agency may determine whether some actions may be required as a condition of the Project's approval.

Project Description

The Project will consist of adding six additional office buildings, constructing underground parking facilities, closing Congress Avenue to vehicle traffic from 15th Street to 18th Street and converting three streets (16th, 17th & 18th) from one-way traffic operation to two-way traffic operation. The 17th Street will be discontinued on either side of Congress Avenue to enter underground parking entrance. The Project will be built in three (3) phases. Buildout of the Project is estimated to occur by 2024. Existing uses on the site include government office buildings and a museum, which will remain in place. A summary of the proposed development program, by phase, is provided in **Table 1.** A preliminary site plan for the Project as prepared by **Page** is attached following the *Executive Summary*.

FUTURE SQUARE ADDITIONAL PROPOSED PARKING USE **FOOTAGE EMPLOYEES SPACES** 1,025,000 SF 710 - General Office -4,100 4,451 Phase 1 (2 buildings) 525,000 SF 710 - General Office -2,281 2,100 Phase 2 (2 buildings) 530,000 SF 710 - General Office -876 2,120 Phase 3 (2 buildings)

Table 1. Development Program Summary

NOTE: The development program provided above is based upon the most current and complete information available at the time of this study publication.

Study Parameters

The study parameters used in this TIA are based upon the requirements of the City of Austin and are consistent with the standard industry practices used in similar studies. Specific study parameters were reviewed with the Austin Transportation Department staff at the outset of the study.

This TIA analyzed the day-to-day traffic operations at time periods that were considered representative of the overall most critical conditions on the public roadway system with some effect from the proposed Project. Based upon the prevailing background traffic conditions and the trip generation characteristics of the proposed development, the following periods were analyzed:

- traditional weekday AM and PM peak hours of adjacent street traffic
 - o at existing area roadway conditions ("Existing" scenario)
 - o at year 2020 without site-generated traffic ("Background" scenario)
 - o at Phase 1 buildout year 2020 with site-generated traffic ("Phase 1" scenario)
 - o at Phase 2 buildout year 2022 with site-generated traffic ("Phase 2" scenario)
 - o at Phase 3 buildout year 2024 with site-generated traffic ("Phase 3" scenario)

The following technical assumptions were also made in this analysis.

- Background traffic includes projected traffic volumes included in the TIA prepared by the Alliance Transportation Group for a nearby Dell Medical School development located between Trinity & Red River Road.
- Background traffic is expected to increase at a rate of one (1) percent per year based upon the direction received from City of Austin.

Study Area

The study area for a TIA is typically defined to allow an assessment of the most relevant traffic impacts to the local area. The extent of the study area is discretionary but is generally commensurate with the scale of the proposed development. Special localized factors may also be considered. The specific locations included in the study area of this TIA are listed below with the changes proposed in the 2016 Texas Capitol Complex Master Plan. The intersections and roadways are depicted in *Exhibit 1*.

Table 2. Study Area Intersection and Proposed Changes

Intersection	Proposed Changes
15th Street at Trinity Street	Traffic signal operation remains the same, 3- northbound lanes and bike lane on east side of street, west outside lane is reduced to 12 feet wide.
15th Street at San Jacinto Boulevard	no change
15th Street at Brazos Street	no change
15th Street at Congress Avenue	Congress Avenue closed to vehicle traffic north of 15th St. Remove 15 th Street left turn lane onto Congress Avenue
15th Street at Colorado Street	no change
15th Street at Lavaca Street	no change
15th Street at Guadalupe Street	no change
16th Street at San Jacinto Boulevard	16th St will be converted from one-way westbound to two-way; parking remains on north side of street; travel lanes will be 11 ft. wide
16th Street at Brazos Street	16th St will be converted from one-way westbound to two-way; parking remains on north side of street; travel lanes will be 11 ft. wide

Intersection	Proposed Changes
16th Street at Congress Avenue	16th St will be converted from one-way westbound to two-way; parking remains on north side of street; travel lanes will be 11 ft. wide;
16th Street at Colorado Street	16th St will be converted from one-way westbound to two-way; parking remains on north side of street; travel lanes will be 11 ft. wide
16th Street at Lavaca Street	16th St will be converted from one-way westbound to two-way; parking remains on north side of street; travel lanes will be 11 ft. wide
16th Street at Guadalupe Street	16th St will be converted from one-way westbound to two-way; parking remains on north side of street; travel lanes will be 11 ft. wide
17th Street at Trinity Street	17th St will be converted from one-way eastbound to two-way; parking remains on the north side of roadway only; travel lanes will be 11 ft. wide
17th Street at San Jacinto Boulevard	17th St will be converted from one-way eastbound to two-way; parking remains on the north side of roadway only; travel lanes will be 11 ft. wide
17th Street at Brazos Street	17th St will be converted from one-way eastbound to two-way; parking remains on the north side of roadway only; travel lanes will be 11 ft. wide
17th Street at Congress Avenue	17th St will be converted from one-way eastbound to two-way; parking remains on north side of street; travel lanes will be 11 ft. wide; 17 th Street will be terminated and no longer intersect with Congress Avenue.
17th Street at Colorado Street	17th St will be converted from one-way eastbound to two-way; parking remains on the north side of roadway only; travel lanes will be 11 ft. wide
17th Street at Lavaca Street	17th St will be converted from one-way eastbound to two-way; parking remains on the north side of roadway only; travel lanes will be 11 ft. wide
17th Street at Guadalupe Street	no changes at this time
18th Street at Trinity Street	Traffic signal operation remains the same, 3- northbound lanes and bike lane on east side of street, west outside lane is reduced to 12 feet wide. 18th St gets converted from one-way westbound to two-way;
18th Street at San Jacinto Boulevard	18th St will be converted from one-way westbound to two-way; parking remains on the north side of roadway only; travel lanes will be 12 ft. wide

Intersection	Proposed Changes
18th Street at Brazos Street	18th St will be converted from one-way westbound to two-way; parking remains on the north side of roadway only; travel lanes will be 12 ft. wide
18th Street at Congress Avenue	Congress Ave will be closed to vehicle traffic south of 18th St; 18th St will be converted from one-way westbound to two-way; parking remains on north side of 18th St; travel lanes will be 12 ft. wide; allway stop control to remain
18th Street at Colorado Street	18th St will be converted from one-way westbound to two-way; parking remains on the north side of roadway only; travel lanes will be 12 ft. wide
18th Street at Lavaca Street	18th St will be converted from one-way westbound to two-way; parking remains on the north side of roadway only; travel lanes will be 12 ft. wide
18th Street at Guadalupe Street	18th St will be converted from one-way westbound to two-way; parking remains on the north side of roadway only; travel lanes will be 12 ft. wide
MLK Jr Boulevard at Trinity Street	no changes at this time
MLK Jr Boulevard at San Jacinto Boulevard	no changes at this time
MLK Jr Boulevard at Brazos Street	no changes at this time
MLK Jr Boulevard at Congress Avenue	Congress will be closed for through traffic and pedestrian Mall will be provided along congress. Only southbound bus traffic will be permitted along Congress Avenue. All other traffic will be restricted on Congress.
MLK Jr Boulevard at Colorado Street	no changes at this time
MLK Jr Boulevard at Lavaca Street	no changes at this time
MLK Jr Boulevard at Guadalupe Street	no changes at this time

Roadway Links:

- (A) Congress Avenue from Martin Luther King Boulevard to 18th Street
 - □ Convert to one-travel lane in south direction
 - Only southbound bus traffic will be permitted
 - Pedestrian boulevard median section added
 - ☐ Bus drop-off lane provided in southbound direction
- (B) Congress Avenue from 15th Street to 18th Street
 - □ Restrict north-south traffic movement along Congress Street.
 - ☐ Provide pedestrian boulevard along Congress Avenue

- (C) 18^h Street from Trinity Street to Guadalupe Street
 - □ Convert from 2-lanes, one-way westbound direction to one-lane in both directions, east and west bound
 - Provide a bus staging lane on the north side westbound
- (D) 17^h Street from Trinity Street to Guadalupe Street
 - □ Convert from 2-lanes, one-way eastbound direction to one-lane in both directions east and west bound
 - □ Provide parallel parking along the north curb line in the westbound direction
 - ☐ Terminate 17th Street on the either side of Congress Avenue to enter onto parking garage from both sides
- (E) 16^h Street from Trinity Street to Guadalupe Street
 - □ Convert from 2-lanes, one-way westbound direction to one-lane in both directions, east and west bound
 - Provide parallel parking along the north curb line in the westbound direction

TRAFFIC IMPACT ANALYSIS

Traffic Impact Analysis for this study is prepared as part of the Texas Capitol Complex Master Plan 2018 Update for the proposed buildings included in phase 1 to phase 3. The study is provided to the Staff for technical review. DeShazo's engineering recommendations are provided to the City of Austin Transportation Department for consideration. All recommendations made in this study are subject to approval by the State and the City of Austin.

Approach

The TIA presented in this report analyzed the operational conditions for the peak hours and study area as defined above using standardized analytical methodologies where applicable. Current (or recent) traffic volume data were collected on a typical day throughout the study area to represent existing traffic conditions. Where applicable, growth factors were applied to the existing volumes to project future background traffic at the Master Plan Phase buildout year conditions. Then, traffic generated by the proposed development was projected using the standard three-step approach: Trip Generation, Trip Distribution, and Traffic Assignment. By adding the site-generated traffic to the background traffic, the resulting site-plus-background traffic impact to operational conditions of the changed roadway network may be assessed from which approach mitigation measures may be recommended, if needed.

Background Traffic Volume Data

Existing Volumes

Current traffic volumes were collected during the analysis periods at the study area intersections on March 22, 2016. Due to equipment issues, three of the 34 intersections had to be recounted the following week on March 30, 2016. Traffic volumes are graphically summarized in **Appendix A**; detailed data sheets are provided in **Appendix B**.

Projected Background Traffic Volumes

Background traffic growth is defined as the normal growth of traffic that is not directly related to the subject development of this study. The study area is mostly developed and saturated with a minimal expected growth in traffic. However, for this study DeShazo conservatively used an annual growth rate of one (1) percent based on the discussion with the City of Austin Staff.

By applying this growth rate, future background traffic volumes each phases and project buildout year were calculated for the study area intersections. These volumes are graphically summarized in **Appendix A.**

Site-Related Traffic

Trip Generation

Trip generation is calculated in terms of "trip ends" – a trip end is a one-way vehicular trip entering or exiting a site driveway (i.e., a single vehicle entering and exiting a site represents <u>two</u> trip ends). Trip generation for this Project was calculated using the Institute of Transportation Engineers (ITE) *Trip Generation* manual (9th Edition). ITE *Trip Generation* is a compilation of actual, vehicular traffic volume generation data and statistics by land use as collected over several decades by creditable sources across the country. Using the ITE equations and rates is an accepted methodology to calculate the projected site-generated traffic volumes for many land uses (though engineering judgment is strongly advised).

The base trip generation data from ITE generally reflect average conditions for a standalone use on a typical day. However, in some cases, the Engineer may judge that other factors may be of sufficient significance to warrant adjusting the base ITE calculations in order to more accurately reflect Project-specific conditions. Since the area surrounding the Texas Capitol Complex has urban, rather than suburban characteristics, with it grid street network of blocks and documented use of bicycles, for this analysis "mode split" was considered to be of sufficient significance to justify adjustment of the base ITE data.

"Mode split" is the consideration of trips being conducted by all modes of transportation, including public transit, bicycle, walking, etc. The default trip generation data from ITE incorporate "typical" mode split characteristics; however adjustments to mode split are required based on the characteristics of the study area.

Capitol Metro provides north and south high frequency bus service along the western study area roadways of Guadalupe and Lavaca via their Express Bus Service where dedicated bus lanes are provided. Capitol Metro also provides commuter high frequency bus service at the peak travel periods along the eastern study area roadways on San Jancinto and Trinity. East and west local bus service is also provided on MLK Boulevard along the northern edge of the study area and on 15th Street along the southern edge of the study area.

Currently local transit service is also provided through the study area along Congress Avenue. This service is anticipated to the remain, but the north – south leg of the service relocated to Colorado Street when Congress Avenue is closed to vehicle traffic as proposed in the Master Plan. Due to availability of transit service and stops located within ¼ mile of the site complex, a daily, PM and AM trip reduction of was used for the additional trips generated by proposed office spaces.

The 2014 Austin Bike Plan Update sets a goal to reduce daily car trips to the downtown by 7% or 300,000 daily passenger trips within the area of the City classified as the "ring of congestion." The Capitol Plan falls within the area. However, this is a Transportation Demand Management (TDM) strategy and need to be evaluated further after implementation. For the purpose if this study, existing trips were not reduced to evaluate the worst scenario. Also, it is expected that most of the employees working the State Capitol Complex will live outside the central region. Therefore, the anticipated employees cycling to work is expected to be rather low. The transit and bike credit

was only included for the new trips generated by the proposed office spaces for phases 1 through 3.

Turning movement counts conducted at the 34 intersections in the study area shows some peak bike volumes in the range of 0.5% to 7% with an average of 2% for the total 6 hours counted. Hence, a 2% bicycling mode reductions is used for this analysis. Similarly, the traffic counts during same period shows the percentage of buses at these intersections ranges from 0.1% to 3.9%. A 2% transit trip reduction is assumed for this analysis. In addition to bicycle and transit, a 1% trip reduction is also used for walking trips as the project area has better pedestrian facilities. In summary a 5% additional reduction on additional trip generated by new office buildings was used for this analysis.

Although the Trip Generation Manual provides a land use category for government offices (730), due to the lack of case studies provided for this land use category, it was determined that general office land use (710) would provide a more accurate trip generation rate for the proposed Master Plan phase build-out land use. **Table 3** provides a summary of the calculated net increase in trip ends generated by the project. Supplemental information used in the trip generation calculations is provided in **Appendix C.**

Phase **AM Peak Hour** PM Peak Hour Land Quantity Average Use (SF) **Daily Trips** In Out **Total** Out In Total 7,698 1,083 148 1,231 208 1,018 1,226 1 1,025,000 710 7,313* 1,029* 141* 1,169* 198* 967* 1,165* 2 4,629 634 87 721 113 553 666 710 525,000 4,398* 602* 83* 685* 107* 525* 633* 4,663 640 87 727 114 558 672 3 710 530,000 4,430* 608* 83* 691* 108* 530* 638* 16,990 2,357 322 435 2,679 2,129 2,564 **Totals** 2,080,000 16,141* 2.239* 307* 2.546* 413 2,022 2,435

Table 3. Projected Trip Generation Summary

Note: All trips shown above with (*) are adjusted for 5% combined transit, walking and bicycle reduction.

Trip Distribution and Assignment

The distribution and assignment of site-generated trip ends to the surrounding roadway system is determined by proportionally estimating the orientation of travel via various travel routes. This is a subjective exercise based upon professional judgment considering such factors as directional characteristics of existing local traffic; trip attributes (e.g., trip purpose, trip length, travel time, etc.), roadway features (e.g., capacity, operational conditions, character of environment), regional demographics, etc.

Traffic for the proposed redevelopment was distributed and assigned to the study area roadway network based upon consideration of the factors listed above. Detailed trip distribution and traffic assignment calculations and results are summarized in **Appendix C**.

Traffic currently using Congress Avenue going north and south were redistributed to Colorado Street, Brazos Street, San Jacinto Street and Trinity Street. The Congress Avenue between MLK

Blvd and 18th Street is converted to one way in southbound direction. The eastbound right and westbound left turns at MLK Blvd at Congress Avenue are restricted to limit buses only.

Where the roadways segments of 16th Street, 17th Street and 18th Street are proposed to be converted from one-way to two-way traffic, the existing volumes were proportionally distributed in the opposite directions based on assumption that the unrestricted two way movement will generate similar traffic pattern on 16th Street, 17th Street and 18th Street except for the through movements on 17th Street at Congress Avenue which were further distributed into 16th Street or 18th Street.

Site-Generated Traffic Volumes

Site-generated traffic is calculated by multiplying the trip generation value (from **Table 3**) by the corresponding traffic assignments (from **Appendix C**). The resulting cumulative (for all uses) peak period site-generated traffic volumes at buildout of the Project are graphically summarized in **Appendix A**.

Traffic Operational Analysis — Roadway Intersections

Description

The level of performance of civil infrastructure can often be measured through an analysis of volume and capacity that considers various physical and operational characteristics of the system. For vehicular traffic an operational analysis of roadway intersection capacity is the most detailed type of analysis. An industry-standardized methodology for this type of analysis was developed by the Transportation Research Board and is presented in the *Highway Capacity Manual (HCM)*. HCM uses the term "Level of Service" (or, LOS) to qualitatively describe the efficiency using a letter grade of A through F. Generally, LOS A is described as free, unobstructed flow while LOS F represents facilities operating over design capacity.

Traffic operational analysis is typically measured in one-hour periods during day-to-day peak conditions. In most urban settings, LOS *C*, or better, is desirable, although LOS *D* is considered to be acceptable. Nevertheless, periods of LOS *E* or *F* conditions are not uncommon for brief periods of time at major transportation facilities. In some cases measures to add more capacity, either through operational changes and/or physical improvements, can be identified to increase efficiency and sometimes raise Level of Service.

For traffic-signal-controlled ("signalized") intersections and STOP-controlled ("unsignalized") intersections, LOS is determined based upon the calculated average seconds of delay per vehicle. For signalized intersections the average delay per vehicle can be effectively calculated for the entire intersection; however, for unsignalized intersections the average delay per vehicle is calculated only by approach or by individual traffic maneuvers that must stop or yield right-of-way. For unsignalized intersections of a minor street or driveway and a major roadway, the analysis methodology often breaks down and yields low Levels of Service (often, LOS *F*) than cannot be mitigated unless a traffic signal is installed. However, for a traffic signal to be installed, the responsible agency that governs the right-of-way must issue their approval subject to very specific warrant criteria being met *and* several other operational considerations being satisfied. Neither Level-of-Service nor delay is considered a criterion for traffic signal installation.

The following table summarizes the LOS criteria for signalized and unsignalized intersections as defined in the latest edition of the *Highway Capacity Manual*.

Table 4. HCM Level of Service Criteria

	Signalized Intersection (Avg. Delay/Veh, sec.)	Unsignalized Intersection (Avg. Delay/Veh, sec.)
LOS A	<u>≤</u> 10	<u><</u> 10
LOS B	>10 - <u><</u> 20	>10 - <u><</u> 15
LOS C	>20 - <u><</u> 35	>15 - <u><</u> 25
LOS D	>35 - <u><</u> 55	>25 - <u><</u> 35
LOS E	>55 - <u><</u> 80	>35 - <u><</u> 50
LOS F	>80	>50

Analysis Traffic Volumes

Determination of the traffic impact associated with the Project is measured by comparing the incremental change in operational conditions during peak periods with and without site-related traffic. **Appendix A** provides exhibits summarizing the following:

- Existing traffic volumes during study peak hours
- Projected Background traffic volumes at the Site Buildout Year during study peak hours
- Projected Site-Generated traffic volumes during study peak hours
- Projected Background-plus-Site-Generated traffic volumes at the Site Buildout Year during study peak hours.

A summary of the existing intersection/roadway geometry and traffic control devices is shown in **Exhibit 2**.

Summary of Results

Intersection capacity analyses presented in this study were performed using the *Synchro* 9 software package. **Table 5** (signalized intersections) and **Table 6** (unsignalized intersections) provide a summary of the peak period intersection operational conditions under the analysis conditions presented previously. Detailed software output is provided in **Appendix D**.

NOTE: Traffic signal operational parameters used in this analysis were based upon actual, existing traffic signal operational characteristics observed in the field at the time of traffic data collection.

See specific recommendations in the *Summary of Findings and Recommendations* section of this report.

Table 5. Peak Hour Intersection Capacity Analysis Results
(Signalized Intersections)

		Conditions														
	Existing Contiditions		PHASE 1			PHASE 2			PHASE 3							
Signalized	2016 Ex	isting	2020 Bac	kground	2020 Backgro	ound + Site	2022 Back	ground	2022 Backgro	und + Site	2024 Back	kground	2024 Backgro	ound + Site		
Intersections	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM		
Martin Luther King Jr at Guadal upe Street	C (24.9)	C (23.9)	C (22.2)	C (24.6)	C (22.7)	C (29.4)	C (23.0)	C (31.3)	C (23.9)	D (42.4)	C (24.2)	D (42.6)	C (25.5)	D (44.1)		
Martin Luther King Jr at Lavaca Street	B (15.6)	C (26.7)	B (14.4)	C (26.3)	B (19.1)	C (27.8)	B (19.1)	C (28.3)	B (19.7)	D (36.8)	B (19.7)	D (38.9)	B (19.7)	D (48.4)		
Martin Luther King Jr at N. Congress Avenue	В (11.9)	A (7.8)	A (0.3)	A (0.5)	A (0.4)	A (0.5)	A (0.4)	A (0.5)	A (0.4)	A (0.5)	A (0.4)	A (0.5)	A (0.4)	A (0.5)		
Martin Luther King Jr at Brazos Street	В (13.2)	A (8.9)	B (11.2)	A (9.9)	B (16.5)	B (13.3)	B (17.1)	B (13.6)	B (18.0)	B (13.9)	B (18.9)	B (14.3)	C (20.7)	B (15.7)		
Martin Luther King Jr at San Jacinto Boulevard With Optimized Signal Timings	В (18.3)	B (14.1)	B (12.7)	B (15.2)	C (23.6)	B (19.4)	C (24.2)	C (20.4)	D (47.9)	C (23.9)	D (46.2) D (44.9)	C (25.4)	E (61.1) D (49.2)	C (31.7)		
<u>Martin Luther King Jr at</u> Trinity Street With Optimized Signal Timings	В (17.5)	C (27.1)	B (10.7)	C (29.9) C (24.8)	B (16.5)	E (63.7) C (28.0)	C (21.9) B (14.0)	E (66.8) C (28.8)	D (47.0) D (38.7)	F (>100) C (32.9)	D (47.7) D (35.1)	F (>100) C (33.7)	E (66.6) D (47.2)	F (>100) D (35.6)		
E. 17 th Street at Guadalupe Street	C (20.7)	A (7.5)	A (7.6)	B (12.9)	A (8.1)	B (16.1)	A (8.3)	B (16.3)	A (8.9)	B (16.5)	A (9.0)	B (16.9)	A (9.7)	B (17.2)		
E. 17 th Street at Lavaca Street	A (4.6)	B (10.1)	A (8.2)	B (12.3)	B (12.9)	B (12.8)	B (12.2)	B (12.8)	B (12.3)	B (13.8)	B (12.1)	B (13.6)	B (12.8)	B (15.3)		
<i>E. 16.th Street at</i> Lavaca Street	A (8.2)	A (9.2)	A (3.7)	A (8.6)	A (3.7)	A (8.3)	A (3.3)	A (8.4)	A (6.8)	B (15.7)	A (6.7)	B (16.2)	A (7.9)	C (21.3)		
W. 15 th Street at Guadalupe Street	C (26.7)	C (23.2)	C (29.5)	C (24.1)	C (31.9)	C (27.8)	C (33.5)	C (28.3)	D (40.1)	C (30.2)	D (43.6)	C (31.1)	D (53.4)	C (34.1)		
<u>W. 15 th Street at</u> Lavaca Street	В (14.4)	C (23.2)	B (13.6)	C (23.2)	B (17.6)	C (24.3)	B (17.9)	C (25.0)	B (19.8)	C (26.3)	C (20.5)	C (27.7)	C (22.5)	C (32.2)		
W. 15 th Street at Colorado Street	A (7.4)	B (12.7)	A (7.7)	A (9.2)	A (8.7)	A (9.2)	A (8.6)	A (9.4)	B (14.7)	B (15.7)	B (15.6)	B (16.1)	C (34.8)	D (40.6)		
W. 15 th Street at N. Congress Avenue	A (4.3)	A (8.8)	A (5.0)	A (7.3)	A (5.2)	A (7.3)	A (5.2)	A (6.2)	A (5.6)	A (6.9)	A (5.6)	A (7.0)	A (6.0)	A (7.9)		
<u>W. 15 th Street at</u> Brazos Street	A (6.8)	B (11.4)	A (3.1)	B (13.6)	A (3.0)	B (13.8)	A (3.0)	B (12.0)	A (3.0)	B (11.5)	A (3.0)	B (11.6)	A (3.1)	B (11.6)		
<i>W.</i> 15 th Street at San Jacinto Boulevard	A (5.7)	B (19.8)	A (7.3)	C (21.4)	A (8.0)	C (28.1)	A (8.1)	C (28.7)	A (7.9)	C (28.4)	A (7.9)	C (29.5)	A (7.9)	C (29.5)		
W. 15 th Street at Trinity Street	A (9.3)	B (15.5)	B (12.2)	B (16.3)	B (13.2)	B (16.7)	B (13.4)	B (19.0)	B (14.3)	B (18.4)	B (14.6)	B (18.6)	B (15.6)	B (18.1)		

Table 6. Peak Hour Intersection Capacity Analysis Results (Unsignalized Intersections)

						-	ed Intersect	ions) Conditi							
Unsignalized Intersections	Traffic Movemen	2016 E	onditions xisting PM	<u>2020 Bacl</u> AM	ground PM	SE 1 2020 Backgro AM	ound + Site PM	2022 Back	PHA ground PM	SE 2 2022 Backgro AM	und + Site PM	<u>2024 Bac</u> l	kground PM	2024 Backgro AM	und + Site PM
Martin Luther King Jr. at Colorado Street	WBL NBLR	B (13.5) B (13.6)	A (9.2) B (12.7)	B (14.1) B (13.9)	A (9.3) B (13.0)	C (15.6) B (14.8)	A (9.5) B (13.2)	C (16.0) B (15.0)	A (9.4) B (13.4)	C (19.8) D (32.5)	A (9.5) C (19.5)	C (20.6) E (35.3)	A (9.6) C (20.1)	E (42.5) F (>100)	A (9.7) F (>100)
W. 18 th Street at	EBT			C (24.3)	C (24.7)	D (31.6)	D (26.0)	D (32.8)	D (26.8)	E (38.8)	D (27.4)	E (40.1)	D (28.5)	E (48.6)	D (29.2)
Guadalupe Street	EBR WBLT	B (13.0) C (18.2)	B (13.5) F (55.7)	B (14.0) C (19.6)	B (13.7) F (52.4)	B (14.8) D (27.6)	B (13.9) F (>100)	C (15.1) D (29.4)	B (14.0) F (>100)	C (16.2) E (35.5)	B (14.2) F (>100)	C (16.6) E (36.8)	B (14.4) F (>100)	C (17.9) E (46.3)	B (14.5) F (>100)
W. 18th Street at Lavaca Street	EBLT WBTR NBL	 B (11.6) A (8.3)	 C <i>(15.8)</i> A <i>(8.6)</i>	C (17.7) C (15.7) A (8.5)	D (31.1) D (29.8) A (8.4)	D (26.9) C (18.6) A (8.5)	 F (>100) A (8.4)	D (27.7) C (18.9) A (8.5)	 F (>100) A (8.4)	D (28.7) C (19.3) A (8.5)	 F (>100) A (8.4)	D (29.7) C (19.7) A (8.5)	F (>100) A (8.4)	D (30.6) C (20.0) A (8.5)	 F (>100) A (8.4)
<u>W. 18th Street at</u> Colorado Street	EBLTR WBLTR SBTR	 A (7.8) A (8.5)	 A (8.7) A (8.0)	A (7.7) A (8.1) A (9.1)	A (9.3) A (9.7) A (9.3)	B (10.5) A (8.8) B (10.4)	B (11.0) C (15.3) B (11.1)	B (10.6) A (8.8) B (10.5)	B (11.2) C (15.7) B (11.2)	B (11.6) A (9.4) B (13.2)	B (13.4) C (21.3) B (13.6)	B (11.8) A (9.4) B (13.4)	B (13.7) C (21.9) B (13.9)	B (14.8) B (12.1) D (29.9)	C (16.1) D (28.5) C (17.1)
W. 18th Street at	NBTL	A (7.5)	A (8.5)	A (7.7)	B (10.5)	A (8.5)	В (13.4)	A (8.5)	B (13.8)	A (9.2)	E (37.1)	A (9.2)	F (69.7)	B (11.3)	F (>100)
N. Congress Avenue	EBLT WBLTR WBTR SBTR	 A (7.7) A (7.6)	 B (10.2) A (9.0)	A (7.4) A (7.2) 	A (9.1) A (8.4)	A (8.9) A (7.5) 	B (10.1) B (10.7) 	A (8.9) A (7.6) 	B (10.1) B (11.0)	A (9.1) A (7.6) 	B (12.4) B (11.4) 	A (9.1) A (7.6) 	B (12.6) B (11.5)	A (9.3) A (8.0)	B (13.5) B (11.9)
	NBTL SBR	A (7.9)	B (10.1)	 A (6.6)	 A (7.4)	 A (7.1)	 A <i>(7.9)</i>	 A (7.1)	 A (8.0)	 A (7.2)	 A (8.2)	 A (7.2)	 A (8.3)	 A (7.3)	 A (8.4)
W. 18th Street at Brazos Street	EBLTR WBLTR SBTR NBTL	 A (7.9) A (9.0) A (7.6)	 A (8.4) A (7.9) B (10.2)	A (9.3) A (8.3) B (10.2) A (8.2)	B (12.1) A (9.6) A (9.6) C (15.2)	B (12.1) B (12.0) B (13.7) A (9.6)	C (23.1) B (12.4) C (17.0) C (24.0)	B (12.2) B (12.1) B (13.9) A (9.6)	C (24.3) B (12.6) C (17.5) D (25.7)	B (12.8) B (12.2) B (14.2) A (9.7)	F (62.1) B (14.2) C (22.2) E (36.0)	B (13.0) B (12.3) B (14.5) A (9.8)	F (68.6) B (14.5) C (23.3) E (39.9)	B (13.7) C (15.2) C (15.6) B (10.2)	F (87.8) B (15.0) C (23.6) E (39.7)
W. 18th Street at San Jacinto Boulevard	EBTR			A (8.9)	B (10.6)	B (10.4)	C (18.8)	B (10.5)	C (19.3)	B (11.4)	E (37.7)	B (10.9)	E (39.6)	B (10.9)	E (39.9)
	WBTL SBT SBLT SBTR	B (12.3) 	B (11.5) 	B (10.4) B (11.1) B (11.1) A (5.4)	A (10.0) B (11.4) B (11.4) A (5.6)	C (15.3) C (15.1) C (15.1) A (6.3)	B (11.2) B (14.0) B (14.0) A (6.4)	C (15.4) C (15.4) C (15.4) A (6.3)	B (11.2) B (14.3) B (14.3) A (6.4)	C (16.6) C (19.6) C (19.6) A (6.4)	B (11.8) C (16.3) C (16.3) A (6.9)	C (16.6) C (19.4) C (19.4) A (6.3)	B (11.9) C (16.7) C (16.7) A (6.9)	C (16.7) C (19.5) C (19.5) A (6.6)	B (11.9) C (16.7) C (16.7) A (6.9)
W. 18th Street at Trinity Street	EBL NBL	Free	Free	B (13.4) A (7.6)	C (18.4) A (7.5)	C (21.3) A (7.9)	D (28.7) A (7.6)	C (21.5) A (7.9)	D (30.2) A (7.6)	C (23.1) A (7.9)	F (74.6) A (7.6)	C (23.5) A (8.0)	F (81.1) A (7.6)	C (23.6) A (8.0)	F (95.2) A (7.6)
E. 17 th Street at Colorado Street	EBLTR	A (8.7)	B (11.0)	A (7.9)	A (8.7)	B (10.5)	A (9.8)	B (10.6)	A (9.9)	B (11.5)	B (11.3)	B (11.6)	B (11.4)	C (17.7)	B (14.4)
	WBLTR SBLT NBTR	 A (9.4) A (7.7)	A (9.1) A (9.6)	A (7.7) A (8.8) A (7.8)	A (7.9) A (8.3) A (8.7)	A (8.4) B (10.2) A (8.6)	B (10.3) A (9.5) A (10.0)	A (8.4) B (10.3) A (8.7)	B (10.4) A (9.7) B (10.1)	A (8.9) B (12.6) A (9.2)	B (12.1) B (11.1) C (15.7)	A (8.9) B (12.8) A (9.2)	B (12.1) B (11.2) C (15.9)	B (10.4) E (42.8) B (11.3)	C (15.4) B (15.0) F (98.0)
E. 17 th Street at N. Congress Avenue	EBLTR EBT	A (8.6)	B (14.0)												
	WBT SBLT NBTR	A (8.3) A (8.7)	 В (11.0) А (9.9)												
E. 17 th Street at Brazos Street	EBLT	A (7.5)	A (9.2)	A (0.0)	A (7.3)	A (7.4)	A (9.1)	A (7.5)	A (9.1)						
	WBTR SBL SBLR	B (12.9)	В (12.7)	A (6.5) A (7.4)	A (6.8) A (7.9)	A (8.6) A (8.0)	A (7.8) A (8.8)	A (8.6) A (8.0)	A (7.8) A (8.9)	A (8.6) A (8.0)	A (7.8) A (8.9)	A (8.6) A (8.0)	A (7.8) A (8.9)	A (8.6) A (8.0)	A (7.8) A (8.9)
E. 17 th Street at San Jacinto Boulevard	EBT			C (15.2)	F (67.1)	C (16.1)	F (>100)	C (16.3)	F (>100)	C (18.8)	F (>100)	C (19.2)	F (>100)	C (19.2)	F (>100)
	EBR WBLT SBL	B (11.2) A (7.3)	C (15.1) A (7.6)	B (10.6) C (15.5) A (7.3)	F (134.0) F (93.0) A (7.6)	B (10.8) D (26.3) A (7.3)	C (16.3) A (7.6)	B (10.9) D (27.4) A (7.3)	C (19.4) A (7.6)	B (11.6) E (38.1) A (7.3)	C (16.9) A (7.6)	B (11.7) E (40.7) A (7.3)	C (20.5) A (7.6)	B (11.7) E (40.7) A (7.3)	C (20.5) A (7.6)
E. 17 th Street at Trinity Street	EBL	A (9.9)	B (13.2)	A (9.8)	B (11.3)	B (12.0)	В (13.8)	B (12.0)	В (13.9)	B (12.0)	В (13.9)	B (12.0)	B (14.1)	B (12.0)	B (14.1)
E. 16 th Street at Guadalupe Street	EBTR WBLT	 C (15.1)	 E <i>(38.6)</i>	C (18.7) C (22.0)	D (28.0) F (>100)	C (19.2) C (22.8)	E (38.0) F (>100)	C (20.0) C (23.4)	E (39.0) F (>100)	C (23.7) E (40.3)	E (41.4) F (>100)	C (24.4) E (43.7)	E (44.6) F (>100)	D (26.4) F (60.8)	E (45.9) F (>100)
E. 16 th Street at Colorado Street	EBLTR	 D (11.2)	 D (13.5)	B (11.2)	C (23.5)	B (11.2)	C (23.5)	B (11.2)	C (24.3)	B (13.3)	F (>100)	B (13.4)	F (>100)	D (31.4)	F (>100)
	WBLTR SBLR SBLTR NBLT	B (11.2) A (0.0) A (7.5)	B (12.5) A (0.0) A (8.9)	B (12.9) A (8.1)	C (20.8) A (7.5)	B (12.9) A (8.1)	C (20.8) A (7.5)	B (13.1) A (8.1)	C (21.5) A (7.5)	F (50.1) A (8.2)	F (93.2) A (8.0)	F (53.6) A (8.2)	F (>100) A (8.0)	F (>100) A (8.9)	F (>100) A (8.1)
th -	NBLTR			A (7.4)	A (8.8)	A (7.4)	A (8.8)	A (7.4)	A (8.8)	A (7.7)	A (9.1)	A (7.7)	A (9.1)	A (8.2)	B (10.2)
E. 16 th Street at N. Congress Avenue	EBT WBLTR	 В (10.2)	 B (12.0)	A (9.2)	A (9.8)	A (9.2)	A (9.8) 	A (9.2)	A (9.9)	A (9.2)	A (9.9) 	A (9.2) 	A (9.9)	A (9.2)	A (9.9)
	WBT SBLR NBLT	A (0.0) A (7.4)	A (0.0) A (8.1)	A (9.1) 	A (9.8) 	A (9.1) 	A (9.8) 	A (9.1) 	A (9.9) 	B (10.1) 	B (10.1) 	B (10.1) 	B (10.1) 	B (10.1) 	B (10.1)
E. 16 th Street at Brazos Street	WBLT NBLR	A (7.3) A (8.9)	A (7.3) B (10.1)	A (7.3) A (9.1)	A (7.5) B (10.6)	A (7.3) A (9.1)	A (7.5) B (10.6)	A (7.4) A (9.1)	A (7.5) B (10.6)	A (7.4) B (10.3)	A (7.5) B (11.0)	A (7.4) B (10.3)	A (7.5) B (11.1)	A (7.4) B (10.3)	A (7.5) B (11.1)
E. 16 th Street at San Jacinto Boulevard	EBR	Free	Free	B (12.6)	C (16.4)	B (12.9)	C (19.7)	B (13.0)	C (20.1)	B (13.0)	C (20.1)	B (13.1)	C (20.5)	B (13.1)	C (20.5)
Brazos Street at Parking Driveway 1	EBLR NBLT	 				C (17.2) A (9.3)	C (16.7) A (7.5)	C (18.8) A (9.3)	C (16.9) A (7.5)	C (17.3) A (9.3)	C (16.9) A (7.5)	C (17.5) A (9.3)	C (17.0) A (7.5)	C (17.7) A (9.3)	C (18.8) A (7.5)
W. 18 th Street at Parking Driveway 2	EBLT SBLR NBR	 				A (7.8) B (10.9)	A (8.2) C (18.7)	A (7.8) B (11.3)	A (8.2) C (19.0)	A (7.8) B (11.1)	A (8.2) C (21.8)	A (7.8) B (11.1)	A (8.1) C (22.5)	A (8.0) B (11.7)	A (8.2) C (24.0)
Colorado Street at Parking Driveway 3	WBLR SBLT									C (20.2) A (9.2)	B (14.8) A (7.5)	C (20.6) A (9.3)	B (15.0) A (7.5)	D (30.8) B (10.5)	C (21.0) A (7.6)
<u>Colorado Street at</u> Parking Driveway 4	EBLR NBLT									C (19.0) A (9.0)	C (17.3) A (8.5)	C (19.2) A (9.1)	C (17.5) A (8.5)	D (26.0) A (9.2)	D (27.4) A (9.2)
E. 16 th Street at Parking Driveway 5	WBLT NBLR									A (8.0) B (11.1)	A (7.5) B (11.5)	A (8.0) B (11.2)	A (7.5) B (11.6)	A (8.0) B (12.2)	A (7.7) B (13.2)
<u>F. 16 th Street at</u> Parking Driveway 6	EBLT													A (7.8)	A (7.9)
Colorado Street at	SBLR													B (11.6)	B (13.1)
Parking Driveway 7/Parking Dr. 8	EBLR WBLR SBL NBL													D (35.0) D (29.2) A (8.7) A (9.0)	C (18.8) C (17.4) A (8.0) A (7.6)

Traffic Operational Analysis — Roadway Links

Description

A roadway link is a segment of roadway between two intersections. Roadway link capacity analysis is a comparison of actual or forecasted traffic volumes to the theoretically optimum roadway capacity. The capacity of the roadway link is predominantly a function of the roadway's cross-section (i.e., number of lanes, lane widths, type of center divider, etc.). However, other more theoretical factors also apply, such as the character of environment and the functional classification of the roadway. Generally, roadway link capacity is less critical than intersection capacity; however, it can provide a gage of the utilization of given roadway.

A specific industry standard for roadway link capacity does not exist, but the typical concept is derived from a base saturation flow rate (i.e., the maximum theoretical rate of continuous flow under ideal, unobstructed conditions - in the traffic engineering industry, this value is generally considered to range between 1,900-2,100 vehicles per lane per hour). A series of adjustment factors are then applied to the saturation flow rate to reflect the characteristics of a given location. The following table was developed by North Central Texas Council of Government (NCTCOG) represents a typical capacity of hourly traffic volumes based on the characteristics and functional classification of the roadways.

Table 7. Daily Service Volumes by Roadway Function

	Principa	l Arterial	_	rterial & ge Road	Collector & Local Street		
Area Type	Median- Divided or One-Way	Undivided Two-Way	Median- Divided or One-Way	Undivided Two-Way	Median- Divided or One-Way	Undivided Two-Way	
CBD	7,250	6,500	7,250	6,500	4,750	4,250	
Urban/ Commercial	8,500	7,750	8,250	7,500	5,250	4,750	
Suburban Residential	9,250	8,750	9,000	8,250	5,750	5,250	
Rural	10,250	9,250	9,750	8,750	6,000	5,500	

NOTE: Daily capacity is equal to 10x peak hour capacity.

Volume: Capacity Ratio ≤ 45% is LOS A/B,

Volume: Capacity Ratio > 45% and \leq 65% is LOS C, Volume: Capacity Ratio > 65% and \leq 80% is LOS D, Volume: Capacity Ratio < 80% and \leq 100% is LOS E,

Volume: Capacity Ratio ≥ 100% is LOS F

Summary of Results

For roadways adjacent to or in the vicinity of the subject site, the volume/capacity ratio was calculated for existing and site buildout conditions. The following table provides a summary of volume to capacity ratio for all roadways within the study area. The results of the analysis shows that all roadways links within the project area are expected to operate at LOS E or better.

Table 8. Roadway Link Capacity Analysis Results Summary

Roadway	Condition	Daily Traffic Volume	Functional Classification	Theoretical Capacity	V/C	LOS
	Existing	3,210	Collector(One way)	5,250	0.61	С
16 th Street	Background	2,450	Collector(Two way)	10,500	0.23	A/B
	Phase 1 Buildout	2,450	Collector(Two way)	10,501	0.23	A/B
	Phase 2 Buildout	3,650	Collector(Two way)	10,502	0.35	A/B
	Phase 3 Buildout	4,920	Collector(Two way)	10,503	0.47	C
	Existing	3,150	Collector(One way)	5,250	0.60	С
	Background	2,110	Collector(Two way)	10,500	0.20	A/B
17 th Street	Phase 1 Buildout	3,900	Collector(Two way)	10,501	0.37	A/B
	Phase 2 Buildout	4,580	Collector(Two way)	10,502	0.44	A/B
	Phase 3 Buildout	6,490	Collector(Two way)	10,503	0.62	C
	Existing	2,350	Collector(One way)	5,250	0.45	A/B
	Background	3,570	Collector(Two way)	10,500	0.34	A/B
18 th Street	Phase 1 Buildout	5,630	Collector(Two way)	10,501	0.54	Ċ
20 0001	Phase 2 Buildout	6,760	Collector(Two way)	10,502	0.64	C
	Phase 3 Buildout	7,210	Collector(Two way)	10,503	0.69	C
	Existing	25,990	Minor Arterial - Divided(4 lanes)	33,000	0.79	D
	Background	27,050	Minor Arterial - Divided(4 lanes)	33,000	0.82	E
15 th Street	Phase 1 Buildout	27,050	Minor Arterial - Divided(4 lanes)	33,000	0.82	E
15 500000	Phase 2 Buildout	29,110	Minor Arterial - Divided (4 lanes)	33,000	0.88	E
	Phase 3 Buildout	30,630	Minor Arterial - Divided (4 lanes)	33,000	0.93	E
	Existing	19,190	Minor Arterial - Undivided(4 lanes)	· · · · · · · · · · · · · · · · · · ·	0.64	C
	Background	19,980	Minor Arterial - Undivided(4 lanes	•	0.67	D
MLK Jr Blvd	Phase 1 Buildout	21,720	Minor Arterial - Undivided(4 lanes)	•	0.72	D
	Phase 2 Buildout	22,760	Minor Arterial - Undivided(4 lanes	•	0.76	D
	Phase 3 Buildout	24,000	Minor Arterial - Undivided(4 lanes)	•	0.80	D
	Existing	11,290	Minor Arterial (One way)	24,750	0.46	C
	Background	11,490	Minor Arterial(One way)	24,750	0.46	C
Guadalupe Street	Phase 1 Buildout	13,420	Minor Arterial(One way)	24,750	0.54	C
Guadalape Street	Phase 2 Buildout	14,040	Minor Arterial(One way)	24,750	0.57	C
	Phase 3 Buildout	14,640	Minor Arterial(One way)	24,750	0.59	C
	Existing	11,270	Minor Arterial(One way)	33,000	0.34	A/B
	Background	10,990	Minor Arterial(One way)	33,000	0.34	A/B
Lavaca Street	Phase 1 Buildout	11,390	Minor Arterial(One way)	33,000	0.35	A/B
Lavaca Street	Phase 2 Buildout	•	Minor Arterial(One way)	33,000	0.33	A/B
	Phase 3 Buildout	12,820 13,470	Minor Arterial(One way)	·	0.39	A/B
	Existing	3,130	Collector(Two way)	33,000 9,500	0.41	A/B
	Background	2,500	Collector(Two way)	9,500	0.33	A/B
Colorado Street	Phase 1 Buildout	•	` ''	•	0.26	A/B
Colorado Street	Phase 1 Buildout	2,500	Collector(Two way)	9,500	0.26	C A/B
		4,370	Collector(Two way)	9,500		
	Phase 3 Buildout	6,670	Collector(Two way)	9,500	0.70	D A /D
	Existing	10,620	Minor Arterial(One way) Minor Arterial(One way)	24,750	0.43 0.42	A/B A/B
Can lacinto Divid	Background	10,450	` ''	24,750		•
San Jacinto Blvd	Phase 1 Buildout	12,860	Minor Arterial (One way)	24,750	0.52	С
	Phase 2 Buildout	13,290	Minor Arterial (One way)	24,750	0.54	С
	Phase 3 Buildout	14,040	Minor Arterial (One way)	24,750	0.57	C
	Existing	7,280	Minor Arterial(One way)	24,750	0.29	A/B
	Background	6,280	Minor Arterial(One way)	24,750	0.25	A/B
Trinity Street	Phase 1 Buildout	7,550	Minor Arterial(One way)	24,750	0.31	A/B
	Phase 2 Buildout	7,680	Minor Arterial(One way)	24,750	0.31	A/B
	Phase 3 Buildout	8,600	Minor Arterial(One way)	24,750	0.35	A/B

Based on the above table, the relocated trips calculated for 16th Street, 17th Street and 18th Street conversion from one-way to two way operation, these streets are expected to have enough capacity to handle the additional traffic generated by the conversion as well as proposed office spaces. The existing on-street parking will be eliminated after the conversion takes place. The **Table 8** above summarizes the results of link analysis performed for project roadways on existing condition, background condition and at the end of each phases.

SITE ACCESS REVIEW

The only roadway in the study area that has a raised divided median is 15th Street. The 2025 Austin Metropolitan Area Transportation designates 15th Street to be a MAD-6. The proposed Master Plan does not proposed an additional median access opening and therefore is not applicable to this analysis. All the other roadways within the study area are undivided or have a flush median or two-way left turn lane (MLK Boulevard).

Driveway Spacing

Section 5 of the City of Austin's Transportation Criteria Manual establishes the spacing requirements for driveways with the City of Austin. **Table 9** below summarizes the minimum driveway spacing for the classification of the roadway being accessed.

Table 9. Capitol District Plan - Driveway Spacing Criteria

Classification	Street Name	Minimum Spacing to the Nearest Conflict point
MAU-4	MLK BOULEVARD	150 FT.
С	18th STREET	100 FT.
С	17th STREET	100 FT.
С	16th STREET	100 FT.
MAD-4	15th STREET	150 FT.
MA	GUADALUPE STREET	150 FT.
MA	LAVACA STREET	150 FT.
С	COLORADO STREET	100 FT.
С	CONGRESS AVENUE	100 FT.
MA	SAN JACINTO BOULEVARD	150 FT.
MA	TRINITY STREET	150 FT.

LEGEND:

MA - MINOR ARTERIAL

C -COLLECTOR

MA - D MINOR ARTERIAL DIVIDED

Based on the review of the development plan, the parking driveways proposed for Phase 1 at Brazos Street and 18th Street meets the City of Austin's driveway spacing requirements. Similarly, the driveways proposed at 17th Street for Phase 2 and Phase 3 also meets the requirements. Parking driveways proposed at Colorado Street and 16th Street should be located at the middle of respective blocks to form a four way intersection at these driveways on order to meet the driveway spacing requirements as shown above. This will allow an opportunity to maximize the spacing between respective cross streets and the both parking entrances will be at the middle of the block.

SUMMARY OF FINDINGS AND RECOMMENDATIONS

The following findings and recommendations are based upon buildout of the subject property in accordance with the phased development scenario outlined in the *Project Description* section of this report. It should be noted that the merit of any recommended mitigation measures may warrant re-evaluation should the site develop to a lower or higher intensity.

FINDING: The existing roadway system generally provides enough capacity to accommodate the projected traffic generated by the proposed changes included in the Texas Capitol Master Plan 2018 update with some minor modification to traffic signals and other traffic controls.

FINDING: Based on the analysis discussed above in this report, the 16th Street, 17th Street and 18th Street has enough capacity to accommodate additional traffic due to one way to two way conversion and additional traffic due to proposed office spaces.

- ❖ RECOMMENDATION: The existing stop sign on east west approaches on 16th Street and 18th Street is recommended to be kept at the intersection with Congress Street as it will allow pedestrian to safely cross these streets after the development of Pedestrian Boulevard along Congress Street.
- RECOMMENDATION: Driveway 4 and Driveway 5 is recommended to be constructed in the middle of 15th Street and 16th Street to form a four way intersection to maximize available spacing in order to meet the City of Austin driveway spacing requirements.
- * RECOMMENDATION: It is also recommended that the driveway 6 and driveway 7 to be constructed in the middle of Lavaca Street and Colorado Street to form four way intersection and maximize available spacing.
- ❖ RECOMMENDATION: It is also recommended that the traffic signal should be considered at the intersections of Lavaca Street and 18th Street as well as MLK Blvd and Colorado Street. If reviewing agency selected a new traffic signal at these intersections, a detailed traffic signal warrant analysis should be performed prior to the signal installation.

Furthermore, the following **Table 10** below provides the summary of proposed changes and mitigation for each intersection.

Table 10. Detailed Recommendation by Intersection

Intersection	Proposed Changes	Proposed Mitigation
	Traffic signal operation remains the same, 3-	
15th Street at Trinity Street	northbound lanes and bike lane on east side of street, west outside lane is reduced to 12 feet wide.	No mitigation measures required.
15th Street at San Jacinto Boulevard	No change.	Optimze the current PM peak hour traffic signal timings to improve the level of service.
15th Street at Brazos Street	No change.	No mitigation measures required.
15th Street at Congress Avenue	The southbound leg of Congress Avenue will be closed to vehicular traffic.	No mitigation measures required.
15th Street at Colorado Street	No change.	No mitigation measures required.
15th Street at Lavaca Street	No change.	No mitigation measures required.
15th Street at Guadalupe Street	No change.	No mitigation measures required.
16th Street at San Jacinto Boulevard	16th St will be converted from one-way westbound to a two-way street; the on-street parking will be removed; travel lanes will be 11 ft wide.	A stop sign is required for the eastbound approach.
16th Street at Brazos Street	16th St will be converted from one-way westbound to two-way; on-street parking will be removed; travel lanes will be 11 ft wide	No mitigation measures required.
16th Street at Congress Avenue	16th St will be converted from one-way westbound to to a two-way street; on-street parking will be removed; travel lanes will be 11 ft wide. Vehicular traffic on Congress Avenue will be prohibited.	A stop sign is required for the eastbound approach.
16th Street at Colorado Street	16th St will be converted from one-way westbound to to a two-way street; on-street parking will be removed; travel lanes will be 11 ft wide.	A stop sign is required for the eastbound approach.
16th Street at Lavaca Street	16th St will be converted from one-way westbound to to a two-way street; on-street parking will be removed; travel lanes will be 11 ft wide.	A traffic signal head will be required for the eastbound approach.
16th Street at Guadalupe Street	16th St will be converted from one-way westbound to to a two-way street; on-street parking will be removed; travel lanes will be 11 ft wide.	A stop sign is required for the eastbound approach.
17th Street at Trinity Street	17th St will be converted from one-way westbound to to a two-way street; on-street parking will be removed; travel lanes will be 11 ft wide.	No mitigation measures required.
17th Street at San Jacinto Boulevard	17th St will be converted from one-way westbound to to a two-way street; on-street parking will be removed; travel lanes will be 11 ft wide.	A stop sign is required for the eastbound approach.
17th Street at Brazos Street	17th St will be converted from one-way westbound to to a two-way street; on-street parking will be removed; travel lanes will be 11 ft wide.	Provide all way stop signs at this interesectoion
17th Street at Congress Avenue	17th St will be converted from one-way eastbound to two-way; parking remains on north side of street; travel lanes will be 11 ft. wide; 17th Street will be terminated and no longer intersect with Congress Avenue.	Remove stop signs on Congress Avenue. Retain stop sign aon 16th Street.
17th Street at Colorado Street	17st St will be converted from one-way westbound to to a two-way street; on-street parking will be removed; travel lanes will be 11 ft wide.	A stop sign is required for the westbound approach.
17th Street at Lavaca Street	17th St will be converted from one-way westbound to to a two-way street; on-street parking will be removed; travel lanes will be 11 ft wide.	A traffic signal head will be required for the westbound approach.
17th Street at Guadalupe Street	17th St will be converted from one-way westbound to to a two-way street; on-street parking will be removed; travel lanes will be 11 ft wide.	A traffic signal head will be required for the westbound approach.

Intersection	Proposed Changes	Proposed Mitigation
intersection	The west outside lane on Trinity Street will be	
18th Street at Trinity Street	reduced from 23 ft to 12 feet wide. 18th St gets converted from a one-way westbound to a two-way street.	No mitigation measures required.
18th Street at San Jacinto Boulevard	18th St will be converted from a one-way westbound to a two-way street; parking will be removed; travel lanes will be 12 ft wide.	All-way-stop operation is recommended.
18th Street at Brazos Street	18th St will be converted from a one-way westbound to a two-way street; parking will be removed; travel lanes will be 12 ft wide.	A stop sign is required for the eastbound approach.
18th Street at Congress Avenue	18th St will be converted from a one-way westbound to a two-way street; parking will be removed; travel lanes will be 12 ft wide. Northbount vehicular traffic on Congress Avenue will be prohibited.	A stop sign is required for the eastbound approach. Remove stop sign for northbound approach on Congress Avenue.
18th Street at Colorado Street	18th St will be converted from a one-way westbound to a two-way street; parking will be removed; travel lanes will be 12 ft wide.	A stop sign is required for the eastbound approach.
18th Street at Lavaca Street	18th St will be converted from a one-way westbound to a two-way street; parking will be removed; travel lanes will be 12 ft wide.	A stop sign is required for the eastbound approach. Perform traffic signal warrant analysis. Consider installing traffic signal at this intersection.
18th Street at Guadalupe Street	18th St will be converted from a one-way westbound to a two-way street; parking will be removed; travel lanes will be 12 ft wide.	A stop sign is required for the eastbound approach.
MLK Jr Boulevard at Trinity Street	No change	Optimze the PM peak hour traffic signal timings in phase I. Optimize the peak hour traffic signal timings in phases 1 and 2.
MLK Jr Boulevard at San Jacinto Boule	No change	Optimze the AM peak hour traffic signal timings in phase 3.
MLK Jr Boulevard at Brazos Street	No change	No mitigation measures required.
MLK Jr Boulevard at Congress Avenue	Congress will be closed for through traffic and pedestrian Mall will be provided along congress. Only southbound bus traffic will be permitted along Congress Avenue. All other traffic will be restricted on Congress.	Restrict MLK Blvd westbound left and eastbound right turns to only allow buses only. Provide signage to restrict these movement to other vehicle. Also provide exclusive pedestrian phase at this intersection.
MLK Jr Boulevard at Colorado Street	no changes at this time	Perform traffic signal warrant analysis. Consider installing traffic signal at this intersection.
MLK Jr Boulevard at Lavaca Street	no changes at this time	No mitigation measures required.
MLK Jr Boulevard at Guadalupe Street		No mitigation measures required.
Brazos Street at Parking Driveway 1	no changes at this time	No mitigation measures required.
18th Street at Parking Driveway 2	no changes at this time	No mitigation measures required.
17th Street at Parking Driveway 3	no changes at this time	No mitigation measures required.
Colorado Street at Parking Driveway 4	Consider aligning Parking Driveway 4 with Parking Driveway 5 at midblock on Colorado Street.	No mitigation measures required.
Colorado Street at Parking Driveway 5	Consider aligning Parking Driveway 5 with Parking Driveway 4 at midblock on Colorado Street.	No mitigation measures required.
16th Street at Parking Driveway 6	Consider aligning Parking Driveway 6 with Parking Driveway 7 at midblock on 16th Street.	No mitigation measures required.
16th Street at Parking Driveway 7	Consider aligning Parking Driveway 7 with Parking Driveway 6 at midblock on 16th Street.	No mitigation measures required.
Colorado Street at Parking Driveway 8	no changes at this time	No mitigation measures required.
17th Street at Parking Driveway 9	no changes at this time	No mitigation measures required.

END OF MEMO

Appendix A. Traffic Volume Exhibits

Appendix A1. Existing Conditions AM Peak Hour Traffic Volumes

(Quada)											NTS
© 1 299 ←479	← 778 ⊭ 196	← 665		← 718 ► 138		← 845 ⊭ 80	10 1 1 40 V	130 ←911 ►128	34.4 48.4 2.4 4.4	← 1133 ← 312	№ 55 ← 1399
63.4 670.7 152.4	897→	Martin Martin	Luther King Jr Blvd 940 80	202	910→ 50¬×	123	132 -7 705 -> 118- 1	£00 €	652 > 140 - ×	143 -4 474 ->	3357
942 * 30 *	← 18 ► 41	★ 22 ← 22	ý	~3 ←10 ►20	63 4	≈ 5 ← 23 ► 10	215 > 16 2	₹ 7 ₹ 18 ₹ 16	16×	← 34 ▶ 135	~ 0
		32¥ 511 →	18th St	12-4	Congress Ave	43.4 53. 4		Brazos St 8⊀			216*
913* 913*			202	64	70)		23		44 . * 468*		
37 → 132 →	12 .4 51 >	138 ≯	17th St 10 7. 96	27 V 25	14 -7 80 -> 14- 3	79 ↓	127 .4 111 .>		17 > 127 >	39. 4 0>	358
	Guadalupe St	Lavaca St		Colorado St						San Jacinto Blvd	
1023→ 21→	← 8 ► 76	1 3 ← 25	20	1 2 ←11 ←7	16 ×	≈ 6 ← 7 ► 2		← 17 ⊭ 3	328+ 32+	o)	Trinity St
		213-4	16th St	30.4		15× 253+		Brazos St 13-4			Trir
974 6364 504	←910 ►187	► 122 ← 984	70 N	131 ←104 ←67	4 32	1245 ★17	\$ 0 ° ¥ €	► 78 ← 1345 ► 25	33.55 33.55 4.4.4	← 1421 ► 151	► 237 ← 1524
1429→ 305~▲	114# 1342 >	123.4 582.4 149.2	15th St 17 129 4	7	169-7 1130-> 26-7	<u>*</u>	74 ~ 1046 > 45~	¥ 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	655→ 330 →	84. 4 655. >	26.4 126.★ 9.4

Appendix A2. Existing Conditions PM Peak Hour Traffic Volumes

✓ DeShazo Group

2,596 →932	← 1528 ⊯ 309	← 1153		← 1171 ► 31		← 1036 ► 87	92× 24+ 234×	~126 ← 836 ← 14	36 188 133 1	← 925 ► 284		NTS ►49 ← 1069
143.7 (488.5) 338.5 (20.3) 95.3	488		uther King Jr Blvd 602→ 32→		663 > 36 - 3	1454	84# 702÷ 11**	264 1494	882 > 21 -	204	80.₹ 912÷	1907 1907 1908 1908 1909
933 →	← 137 ► 57	№ 28 ← 79	63+ 24+	≈ 20 ≈ 70 ≈ 39	107+ 15*	108 ★50 ★77	544 644	≈ 15 ≈ 37 ≈ 10	487→ 12×	← 44 ☞ 68		← 0
		113.4	18th St	29.4 86. 4	Congress Ave	13-4		Brazos St 133✓ 154✓				135. √ 593. ♦
76 v 944 v			26. √ 71. ↓		35 √ 154 √		66.4		100.▼ 727.▼			
57 → 33 ¬	30 -4 125 >	960 >	17th St 19# 200> 40*	85 →	86. √ 190→ 73. ∼	104 → 39 →	56 -₹ 229 >		140 > 175 - ×	p	248 -7 0->	481◆
	Guadalupe St	Lavaca St		Colorado St						San Jacinto Blvd		
941 * 25 *	← 133 ► 188	► 48 ← 77	346→ 93→	~ 6 ← 33 ☞ 11	248 *	~ 48 ← 27 ► 43		← 90 ► 14	1033+ 29+	o o		Trinity St
		69√	16th St	13.4		34		Brazos St 35-◀				Trin
143× 808+ 257×	← 1640 ▶− 204	~ 63 ← 1543	122× 6+ 257×	13 1320 121 121 1320	165 \\ 174 \\ 174 \\	~ 34 ~ 1095 ▶ 8	822 4 8	₹ 994 ₹ 9	252 4 564 4 258 4	← 782 ► 62		~ 46 ← 680
837→ 91¬▲	85 - ∕ 865 →	370-4 828+ 151-4	15th St 26-7 1019-> 20-1	8.4 25.4 104.4	36 -▼ 1264→	* 7	5.★ 1289→ 36★	125-4 3+ 110-4	1521 > 108*		39. 4 1521→	169-4 280-4 266-4

Appendix A3. 2020 Background AM Peak Hour Traffic Volumes (Phase I)

Appendix A4. 2020 Background PM Peak Hour Traffic Volumes (Phase I)

Appendix A5. Site-Generated AM Peak Hour Traffic Volumes (Phase I)

Appendix A6. Site-Generated PM Peak Hour Traffic Volumes (Phase I)

Appendix A7. 2020 Background Plus Site-Generated AM Peak Hour Traffic Volumes (Phase I)

Appendix A8. 2020 Background Plus Site-Generated PM Peak Hour Traffic Volumes (Phase I)

Appendix A9. 2022 Background AM Peak Hour Traffic Volumes (Phase II)

Appendix A10. 2022 Background PM Peak Hour Traffic Volumes (Phase II)

Appendix A11. Site-Generated AM Peak Hour Traffic Volumes (Phase II)

Appendix A12. Site-Generated PM Peak Hour Traffic Volumes (Phase II)

Appendix A13. 2022 Background Plus Site-Generated AM Peak Hour Traffic Volumes (Phase II)

Appendix A14. 2022 Background Plus Site-Generated PM Peak Hour Traffic Volumes (Phase II)

Appendix A15. 2024 Background AM Peak Hour Traffic Volumes (Phase III)

Appendix A16. 2024 Background PM Peak Hour Traffic Volumes (Phase III)

Appendix A17. Site-Generated AM Peak Hour Traffic Volumes (Phase III)

Appendix A18. Site-Generated PM Peak Hour Traffic Volumes (Phase III)

Appendix A19. 2024 Background Plus Site-Generated AM Peak Hour Traffic Volumes (Phase III)

Appendix A20. 2024 Background Plus Site-Generated PM Peak Hour Traffic Volumes (Phase III)

Appendix B. Detailed Traffic Volume Data

DeShazo Group, Inc.

Location: Guadalupe Street at 15th Street

Study Peak Hour: 4:30 PM - 5:30 PM

City/State: Austin, Texas

Data Collector(s): Camera Day/Date: Tuesday, March 22, 2016 Weather Conditions: Mild/Normal Conditions

Project-ID #: 15206-01 Traffic Control: **Signalized**

Data Source: CJ Hensch

Time		-		ound o		_	outhbo			I		ound or Street	1	٧		ound o	n
Begin	End	Peds	L	T	R	Peds	L L	T	R	Peds	L	T	R	Peds	L	T	R
7:00 AM	7:15 AM	2	-	-	-	7	13	57	5	4	-	381	49	0	34	123	_
7:15 AM	7:30 AM	5	-	_	-	8	12	92	6	4	-	336	41	0	35	185	-
7:30 AM	7:45 AM	5	-	-	-	3	16	102	11	4	-	333	38	0	41	232	-
7:45 AM	8:00 AM	8	-	_	-	25	30	121	12	3	-	403	68	0	45	224	-
8:00 AM	8:15 AM	10	-	-	-	14	24	154	10	2	-	360	81	0	42	210	-
8:15 AM	8:30 AM	10	-	_	-	13	20	181	13	2	-	340	80	o	44	233	-
8:30 AM	8:45 AM	9	-	-	-	9	23	180	15	7	-	326	76	0	56	243	-
8:45 AM	9:00 AM	9	-	-	-	16	24	191	15	12	-	348	101	0	47	235	-
Interse	ection PHV:		0	0	0		91	706	53		0	1,374	338		189	921	0
	PHF:		0.00	0.00	0.00		0.95	0.92	0.88		0.00	0.95	0.84		0.84	0.95	0.00
	Interse	ction Pea	ak Hour:	8:00 AN	1 - 9:00 A	1 <i>M</i>								In	tersection	on PHF:	0.96
Study	Area PHV:		0	0	0		97	636	50		0	1,429	305		187	910	0
_	PHF:		0.00	0.00	0.00		0.81	0.88	0.83		0.00	0.89	0.94		0.83	0.94	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.98
						-											
4:30 PM	4:45 PM	3	-	-	-	7	47	227	69	1	-	284	32	7	61	440	-
4:45 PM	5:00 PM	7	-	-	-	5	44	205	57	5	-	221	27	3	51	394	-
5:00 PM	5:15 PM	2	-	-	-	9	35	191	81	9	-	165	19	7	55	422	-
5:15 PM	5:30 PM	4	-	-	-	8	17	185	50	12	-	167	13	3	37	384	-
5:30 PM	5:45 PM	2	-	-	-	6	38	141	47	9	-	256	16	10	33	321	-
5:45 PM	6:00 PM	3	-	-	-	8	44	207	42	6	-	228	28	5	37	288	-
6:00 PM	6:15 PM	5	-	-	-	7	39	196	39	6	-	277	20	5	43	291	-
6:15 PM	6:30 PM	8	-	-	-	6	39	174	42	6	-	272	34	12	31	293	-
Interse	Intersection PHV: 0 0						143	808	257		0	837	91		204	1,640	0
	PHF:		0.00	0.00	0.00		0.76	0.89	0.79		0.00	0.74	0.71		0.84	0.93	0.00
		ction Pea	ak Hour:	4:30 PN	1 - 5:30 F	PM								In	ntersection	on PHF:	0.86
Study	Area PHV:		0	0	0		143	808	257		0	837	91		204	1,640	0
	PHF:		0.00	0.00	0.00		0.76	0.89	0.79		0.00	0.74	0.71		0.84	0.93	0.00

Observations:

Study Area PHF: 0.86

DeShazo Group, Inc.

Location: Lavaca Street at 15th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March* 22, 2016 Weather Conditions: *Mild/Normal Conditions*Project-ID #: 15206-02 Traffic Control: *Signalized*

Data Source: **CJ Hensch**

Time				ound o			outhbo			E		und or	1	V	Vestbo		n
Cou	End	Peds	<i>Lavaca</i> L	a Stree	r R	Peds	Lavaca L	T Stree	R	Peds	15tn (<u>Street</u> T	R	Peds	15tn 3	Street T	R
Begin	7:15 AM	11			37	2			Λ		38		<u> </u>	7			31
7:00 AM 7:15 AM	7:15 AW 7:30 AM	4	23 15	127 128	37 37	5	-	-	-	4 5	38 27	293 293	-	7	-	133 211	37
7:15 AIVI 7:30 AM	7:30 AW 7:45 AM	0	15 28	170	3 <i>1</i>	5 1	-	-	-	3	27 19	293 306	-	7	-	247	37 27
7.30 AIVI 7:45 AM	7.45 AIVI 8:00 AM	5	30	170 154	30 34	7	-	-	-	3 3	31	373	-	6 8	-	241 241	41
8:00 AM	8:15 AM	4	28	164	44	7				8	36	332		8		219	30
8:15 AM	8:30 AM	2	29	127	30	12	_	_		3	22	330		11	_	254	32
8:30 AM	8:45 AM	2	36	137	30 41	10	_	_	_	9	25	307		16	_	270	32 19
8:45 AM	9:00 AM	3	30 24	104	27	10 10	_	_	_	1	29	337		15	_	288	1 9 16
	ection PHV:		123	582	149	10	0	0	0	-	114	1,342	0	13	0	984	122
Interse	PHF:		0.85	0.89	0.85		0.00	0.00	0.00		0.79	1,342 0.90	0.00		0.00	984 0.91	0.74
		D				10.0	0.00	0.00	0.00		0.79	0.90	0.00				
		ction Pea		7:45 AN		AM				Г				Ir	ntersectio		0.94
Study A	Area PHV: PHF:		123	582	149		0	0	0 0.00		114	1,342	0		0 0.00	984	122
			0.85	0.89	0.85	<u> </u>	0.00	0.00	0.00		0.79	0.90	0.00			0.91	0.74
	Stud	у Реак	Hour:	7:45 A	M - 8:4	IS AIVI								Stud	dy Area	PHF:	0.94
4:30 PM	4:45 PM																
		7	<i>8</i> 7	177	45	6	-	-	-	4	21	305	- 1	10	_	433	16
4:45 PM	5:00 PM	7 5	87 83	177 214	45 39	6 6	- -	- -	-	<i>4</i> 8	21 18	305 238		10 9	-	433 375	16 13
4:45 PM 5:00 PM		_	_			-	- - -	- - -	-	-			-	_	- -		
1111111111	5:00 PM	5	83	214	39	6	- - -	- - -		8	18	238	- - -	9	- - -	375	13
5:00 PM	5:00 PM 5:15 PM	5 10	83 102	214 234	39 43	6 6	- - - -	- - - -	- - - -	8 11	18 21	238 162		9 15		375 405	13 20
5:00 PM 5:15 PM	5:00 PM 5:15 PM 5:30 PM	5 10 4	83 102 98	214 234 203	39 43 24	6 6 2	- - - -	- - - -	-	8 11 6	18 21 25	238 162 160	- - - -	9 15 10	- - - -	375 405 330	13 20 14
5:00 PM 5:15 PM 5:30 PM	5:00 PM 5:15 PM 5:30 PM 5:45 PM	5 10 4	83 102 98	214 234 203	39 43 24 48	6 6 2	- - - - -	- - - - -	-	8 11 6	18 21 25	238 162 160 273	- - - -	9 15 10	- - - -	375 405 330 284	13 20 14
5:00 PM 5:15 PM 5:30 PM 5:45 PM	5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM	5 10 4 7 5	83 102 98 101 110	214 234 203 188 202	39 43 24 48 48	6 6 2 10 3	- - - - - -	- - - - - -	- - - -	8 11 6 6 12	18 21 25 25 15	238 162 160 273 276	- - - - -	9 15 10 10 5	- - - -	375 405 330 284 210	13 20 14 6 13
5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	5 10 4 7 5 5	83 102 98 101 110 107	214 234 203 188 202 177	39 43 24 48 48 44	6 6 2 10 3 4	- - - - - - -		- - - - - - -	8 11 6 6 12 7	18 21 25 25 15 17	238 162 160 273 276 284	- - - - - - -	9 15 10 10 5	- - - - - -	375 405 330 284 210 244	13 20 14 6 13 12
5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 6:30 PM	5 10 4 7 5 5	83 102 98 101 110 107 97	214 234 203 188 202 177 159 828 0.88	39 43 24 48 48 44 36 151 0.84	6 6 2 10 3 4 4	- - - - - - - - 0 0.00	- - - - - - - - 0 0.00	- - - - - - - - 0 0.00	8 11 6 6 12 7	18 21 25 25 15 17 11	238 162 160 273 276 284 300	- - - - - - - - 0 0.00	9 15 10 10 5	- - - - - - - - 0 0.00	375 405 330 284 210 244 229	13 20 14 6 13 12 9
5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 6:30 PM ection PHV: PHF:	5 10 4 7 5 5	83 102 98 101 110 107 97 370 0.91	214 234 203 188 202 177 159 828 0.88 4:30 PM	39 43 24 48 48 44 36 151 0.84	6 6 2 10 3 4 4	Ü	-	-	8 11 6 6 12 7	18 21 25 25 15 17 11 85 0.85	238 162 160 273 276 284 300 865 0.71	-	9 15 10 10 5 15 1	Ū	375 405 330 284 210 244 229 1,543 0.89	13 20 14 6 13 12 9 63 0.79
5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 6:30 PM ection PHV: PHF: Intersect	5 10 4 7 5 5 2	83 102 98 101 110 107 97 370 0.91 k Hour:	214 234 203 188 202 177 159 828 0.88 4:30 PM	39 43 24 48 48 44 36 151 0.84 M - 5:30 F	6 6 2 10 3 4 4	0.00	0.00 0	0.00	8 11 6 6 12 7	18 21 25 25 15 17 11 85 0.85	238 162 160 273 276 284 300 865 0.71	0.00	9 15 10 10 5 15 1	0.00 ntersectio	375 405 330 284 210 244 229 1,543 0.89 on PHF: 1,543	13 20 14 6 13 12 9 63 0.79 0.90
5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 6:30 PM ection PHV: PHF: Intersec Area PHV: PHF:	5 10 4 7 5 5 2 ction Pea	83 102 98 101 110 107 97 370 0.91 k Hour: 370 0.91	214 234 203 188 202 177 159 828 0.88 4:30 PM 828 0.88	39 43 24 48 48 44 36 151 0.84	6 6 2 10 3 4 4	0.00	0.00	0.00	8 11 6 6 12 7	18 21 25 25 15 17 11 85 0.85	238 162 160 273 276 284 300 865 0.71	0.00	9 15 10 10 5 15 1	0.00 ntersectio	375 405 330 284 210 244 229 1,543 0.89 on PHF: 1,543 0.89	13 20 14 6 13 12 9 63 0.79 0.90 63 0.79

Observations:

DeShazo Group, Inc.

Location: Colorado Street at 15th Street

City/State: Austin, Texas Data Collector(s): Camera

Day/Date: Tuesday, March 22, 2016 Weather Conditions: Mild/Normal Conditions

Project-ID #: 15206-03 Traffic Control: Signalized

Data Source: CJ Hensch

Time	e of	١	orthbo	ound o	n	S	outhbo	ound o	n	E	Eastbo	und or	1	\ \	Nestbo		n
Cou			olorad	lo Stre			olorad	o Stre			15th 3	Street			15th 3	Street	
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R
7:00 AM	7:15 AM	6	0	6	2	0	1	1	4	9	48	304	1	6	13	156	25
7:15 AM	7:30 AM	5	1	3	6	4	2	3	6	7	34	305	7	8	10	245	27
7:30 AM	7:45 AM	2	0	7	1	4	5	1	8	19	47	285	7	7	10	249	27
7:45 AM	8:00 AM	7	1	13	8	2	1	4	4	20	45	364	8	14	11	252	48
8:00 AM	8:15 AM	3	0	2	4	1	1	4	6	13	54	319	12	6	25	244	26
8:15 AM	8:30 AM	4	0	3	4	3	2	6	4	19	37	319	15	2	12	267	33
8:30 AM	8:45 AM	0	0	2	4	1	1	4	5	22	41	297	14	2	19	281	24
8:45 AM	9:00 AM	5	1	3	4	5	4	5	7	15	26	331	21	6	22	280	26
Interse	ection PHV:		1	20	20		5	18	19		177	1,299	49		67	1,044	131
	PHF:		0.25	0.38	0.63		0.63	0.75	0.79		0.82	0.89	0.82		0.67	0.93	0.68
	Intersed	ction Pea	ak Hour:	7:45 AN	1 - 8:45 A	AM								Ir	ntersectio	on PHF:	0.94
Study A	Area PHV:		1	20	20		5	18	19		177	1,299	49		67	1,044	131
	PHF:		0.25	0.38	0.63		0.63	0.75	0.79		0.82	0.89	0.82		0.67	0.93	0.68
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stu	dy Area	a PHF:	0.94
4:30 PM	4:45 PM	6	0	4	17	2	39	1	79	23	7	333	5	10	3	358	1
4:45 PM	5:00 PM	8	2	2	19	0	26	2	59	17	11	289	4	9	8	336	4
5:00 PM	5:15 PM	11	3	10	45	2	36	0	70	31	1	213	5	6	7	368	7
5:15 PM	5:30 PM	8	3	9	23	4	21	3	49	24	7	184	6	10	3	258	1
5:30 PM	5:45 PM	6	2	8	19	1	17	1	43	4	16	318	4	3	3	234	4
5:45 PM	6:00 PM	8	2	1	12		29	0	29	14	9	333	4	4	5	204	3
6:00 PM	6:15 PM	4	0	1	8	4	22	2	46	9	2	331	1	4	4	191	3
6:15 PM	6:30 PM	0	l l	0	7	6	15	0	25	15	3	337	2	4	7	203	0
Interse	ection PHV: PHF:		8 0.67	25 0.63	104		122	6	257		26	1,019	20		21	1,320	13
	0.58		0.78	0.50	0.81		0.59	0.77	0.83		0.66	0.90	0.46				
		ction Pea		4:30 PN		PM								<u>Ir</u>	ntersectio		0.87
Study A	Area PHV:		8	25	104		122	6	257		26	1,019	20		21	1,320	13
	PHF:	<u> </u>	0.67	0.63	0.58		0.78	0.50	0.81		0.59	0.77	0.83	<u></u>	0.66	0.90	0.46
	Stud	y Peak	Hour:	4:30 P	M - 5:3	SU PM								Stud	dy Area	a PHF:	0.87

Observations:

DeShazo Group, Inc.

Location: Congress Avenue at 15th Street

City/State: Austin, Texas Data Collector(s): Camera

Day/Date: Tuesday, March 22, 2016 Weather Conditions: Mild/Normal Conditions

Project-ID #: 15206-04 Traffic Control: Signalized

Data Source: CJ Hensch

Time	e of	1	orthb	ound o	n	S	outhb	ound o	n			und or	1	V		ound o	n
Cou			ongres	s Aven			ngres	s Aven			15th :	Street			15th :	Street	
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R	Peds	L	T	R
7:00 AM	7:15 AM	1	-	0	0	0	5	0	4	4	59	291	2	1	1	169	13
7:15 AM	7:30 AM	0	-	1	0	3	6	1	6	7	72	296	0	0	0	245	9
7:30 AM	7:45 AM	5	-	0	0	1	5	1	4	9	60	289	2	0	1	292	18
7:45 AM	8:00 AM	9	-	0	0	2	5	1	7	7	57	298	3	0	2	301	20
8:00 AM	8:15 AM	5	-	0	1	1	2	2	9	7	38	292	6	1	4	299	17
8:15 AM	8:30 AM	7	-	0	0	0	4	0	7	10	33	282	5	0	7	333	25
8:30 AM	8:45 AM	4	-	0	0	3	11	1	9	5	41	258	12	1	4	312	18
8:45 AM	9:00 AM	2	-	0	3	2	7	0	5	7	50	293	8	0	7	364	11
Interse	ection PHV:		0	0	4		24	3	30		162	1,125	31		22	1,308	71
	PHF:		0.00	0.00	0.33		0.55	0.38	0.83		0.81	0.96	0.65		0.79	0.90	0.71
	Intersed	ction Pea	ak Hour:	8:00 AN	1 - 9:00 A	\М								Ir	tersection	on PHF:	0.93
Study A	Area PHV:		0	0	1		22	4	32		169	1,130	26		17	1,245	80
	PHF:		0.00	0.00	0.25		0.50	0.50	0.89		0.74	0.95	0.54		0.61	0.93	0.80
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.98
					_												
4:30 PM	4:45 PM	11	-	1	0	2	38	0	49	18	13	373	0	5	2	322	11
4:45 PM	5:00 PM	5	-	0	0	3	33	0	34	8	12	384	0	0	2	225	9
5:00 PM	5:15 PM	9	-	0	0	6	62	0	53	19	5	270	0	7	0	289	8
5:15 PM	5:30 PM	5	-	1	1	2	32	1	38	14	6	237	0	2		259	6
5:30 PM	5:45 PM	0 8	-	1	0	'	28	0	29	6	,	341	0 2	1	2	228	7
5:45 PM 6:00 PM	6:00 PM 6:15 PM	18	-	0	0	0	12 13	0	35 25	12 12	11	304 340	2	22	0	179 200	5 4
6:00 PM	6:30 PM	11	-	0	0	6	11	0 0	25 25	6	6 8	340 321	0	22 0	2 0	200 185	3
			-		0	3				0	_			U			
interse	ection PHV: PHF:		0	2) 0.25		165	1	174		36	1,264	0		8	1,095	34
			0.00	0.50	0.25	24.4	0.67	0.25	0.82		0.69	0.82	0.00	<u> </u>	0.50	0.85	0.77
0 ; :		ction Pea			1 - 5:30 F	'IVI	405		4=4	ı		4.00:		Ir	tersection		0.86
Study A	Area PHV:		0	2 0.50	1		165 0.67	1	174		36	1,264	0		8 0.50	1,095	34
	PHF:	L Dec'	0.00		0.25	O DM	0.67	0.25	0.82		0.69	0.82	0.00	<u> </u>	0.50	0.85	0.77
	Stud	у Реак	ноur:	4:30 P	IVI - 5:3	U PIVI								อเนด	зу Агеа	PHF:	บ.ช6

Observations:

DeShazo Group, Inc.

Location: Brazos Street at 15th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016*Project-ID #: 15206-05

Weather Conditions: *Mild/Normal Conditions*Traffic Control: *Signalized*

Data Source: CJ Hensch

Time	e of	l N	lorthb	ound o	n	S	outhbo	ound o	n		Eastbo	und or	1	l 1	Vestbo	ound o	n
Cou				Stree			Brazos			-		Street	-			Street	
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R
7:00 AM	7:15 AM	0	2	1	2	6	0	0	1	1	12	224	11	0	8	203	15
7:15 AM	7:30 AM	1	1	0	2	5	1	0	1	0	20	226	16	0	3	287	22
7:30 AM	7:45 AM	6	3	0	1	8	0	1	0	1	19	233	9	1	8	315	26
7:45 AM	8:00 AM	5	0	1	1	7	0	0	1	0	25	268	16	1	6	347	14
8:00 AM	8:15 AM	3	2	0	2	1	0	0	2	1	19	266	10	0	8	323	18
8:15 AM	8:30 AM	2	0	1	2	1	1	0	0	1	12	248	8	0	7	333	20
8:30 AM	8:45 AM	0	2	0	2	1	1	0	1	1	18	264	11	0	4	342	26
8:45 AM	9:00 AM	3	3	0	1	1	0	0	1	0	12	272	5	3	1	360	16
Interse	ction PHV:		4	2	7		2	0	4		74	1,046	45		25	1,345	78
	PHF:		0.50	0.50	0.88		0.50	0.00	0.50		0.74	0.98	0.70		0.78	0.97	0.75
	Interse	ction Pea	ak Hour:	7:45 AN	1 - 8:45 A	AM								Ir	ntersection	on PHF:	0.97
Study A	Area PHV:		4	2	7		2	0	4		74	1,046	45		25	1,345	78
	PHF:		0.50	0.50	0.88		0.50	0.00	0.50		0.74	0.98	0.70		0.78	0.97	0.75
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	a PHF:	0.97
4:30 PM	4:45 PM	7	28	2	22	1	20	0	19		1	354	•	1	3	200	2
4:30 PM 4:45 PM	4:43 PW 5:00 PM	2	26 25	0	23	2	20 10	0	19 20	2 2	1	364 364	9 6	1	3 2	260 277	1
5:00 PM	5:00 PM	13	48	0	23 42	2	22	2	31	1	1	304 294	7	1	1	258	2
5:15 PM	5:30 PM	2	24	1	23	3	9	1	12	0	2	2 94 277	14	1	3	199	0
5:30 PM	5:45 PM	1	17	0	17	2	12	0	16	0	1	351	6	0	2	186	2
5:45 PM	6:00 PM	6	14	0	9	3	7	0	8	1	0	400	6	1	1	169	0
6:00 PM	6:15 PM	4	12	0	9	0	7	0	5	0	0	379	2	0	3	171	0
6:15 PM	6:30 PM	1	11	0	4	0	7	0	6	0	0	357	1	0	0	174	1
Interse	ction PHV:		125	3	110		61	3	82		5	1,289	36		9	994	5
	PHF:		0.65	0.38	0.65		0.69	0.38	0.66		0.63	0.89	0.64		0.75	0.90	0.63
_	Intersed	ction Pea	ak Hour:	4:30 PN	1 - 5:30 F	PM								Ir	ntersection	on PHF:	0.93
Study A	Area PHV:		125	3	110		61	3	82		5	1,289	36		9	994	5
	PHF:		0.65	0.38	0.65		0.69	0.38	0.66		0.63	0.89	0.64		0.75	0.90	0.63
	Stud	y Peak	Hour:	4:30 P	PM - 5:3	O PM								Stud	dy Area	a PHF:	0.93

Observations:

DeShazo Group, Inc.

Location: San Jacinto Boulevard at 15th Street

Study Peak Hour: 4:30 PM - 5:30 PM

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016*Project-ID #: *15206-06*Weather Conditions: *Mild/Normal Conditions*Traffic Control: *Signalized*

Data Source: **CJ Hensch**

Time	e of	N	lorthb	ound o	n	S	outhb	ound c	n		Eastbo	ound or	1	\	Vestbo	ound o	n
Cou	ınt	Sa	ın Jaci	nto Bl	∕d.	Sa	n Jaci	nto Bl	vd.		15th -	Street			15th 3	Street	
Begin	End	Peds	L	Т	R	Peds	L	T	R	Peds	L	Т	R	Peds	L	T	R
7:00 AM	7:15 AM	1	-	-	-	0	8	25	4	1	-	152	66	1	32	223	-
7:15 AM	7:30 AM	6	-	-	-	0	4	28	6	3	-	141	59	1	48	315	-
7:30 AM	7:45 AM	8	-	-	-	2	10	38	6	2	-	155	57	1	46	352	-
7:45 AM	8:00 AM	15	-	-	-	1	9	38	6	5	-	169	90	2	39	354	-
8:00 AM	8:15 AM	2	-	-	-	0	15	37	7	0	-	173	86	3	44	343	-
8:15 AM	8:30 AM	1	-	-	-							68	5	35	362	-	
8:30 AM	8:45 AM	2	-	-	-	1	4	40	14	3	-	140	86	1	33	362	-
8:45 AM	9:00 AM	2	-	-	-	0	12	48	11	9	-	187	85	2	38	395	-
Interse	ction PHV:		0	0	0		38	169	38		0	673	325		150	1,462	0
	PHF:		0.00	0.00	0.00		0.63	0.88	0.68		0.00	0.90	0.94		0.85	0.93	0.00
	Intersed	ction Pea	k Hour:	8:00 AN	1 - 9:00 A	AM								Ir	ntersectio	on PHF:	0.92
Study A	Area PHV:		0	0	0		35	159	33		0	655	330		151	1,421	0
	PHF:		0.00	0.00	0.00		0.58	0.90	0.59		0.00	0.95	0.92		0.86	0.98	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stu	dy Area	PHF:	0.99
400 044								400			ı		1				
4:30 PM	4:45 PM	13	-	-	-	1	68	139	80	1	-	414	24	5	17	208	-
4:45 PM	5:00 PM	1	-	-	-	3	62	125	53	9	-	403	41	2	17	215	-
5:00 PM 5:15 PM	5:15 PM 5:30 PM	12 0	-	-	-	0 2	57 65	163 137	73 52	5 2	-	370 334	21 22	3 5	17 11	214 145	-
5:30 PM	5:45 PM	1				3	50	120	32	4		434	21	5	17	152	
5:45 PM	6:00 PM	'				4	44	105	21	3		390	33	1	9	154	
6:00 PM	6:15 PM	1	_	_	_	0	45	103	35	2	_	383	35	4	15	144	_
6:15 PM	6:30 PM	4	_	_		0	20	81	36	2	_	322	37	4	24	130	_
			0	0	0		252	564	258		0	1,521	108		62	782	0
Intersection PHV: 0 0 PHF: 0.00 0.00 0							0.93	0.87	0.81		0.00	0.92	0.66		0.91	0.91	0.00
		ction Pea	nk Hour:	4:30 PN	1 - 5:30 F	PM								<u> </u>	ntersection	on PHF:	0.93
Study A	Area PHV:		0	0	0		252	564	258		0	1,521	108		62	782	0
	PHF:		0.00	0.00	0.00		0.93	0.87	0.81		0.00	0.92	0.66		0.91	0.91	0.00

Observations:

Study Area PHF: 0.93

DeShazo Group, Inc.

Location: Trinity Street at 15th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016*Project-ID #: 15206-07

Weather Conditions: *Mild/Normal Conditions*Traffic Control: *Signalized*

Data Source: **CJ Hensch**

Time	e of	- N	Jorthb	ound o	n	S	outhb	ound o	n		Fastbo	und or	1		Nestbo	ound o	n
Cou				Street				Street		-		Street	•			Street	
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R
7:00 AM	7:15 AM	0	11	30	0	0	-	-	-	0	16	152	-	7	-	238	47
7:15 AM	7:30 AM	5	11	35	0	1	-	-	-	2	18	141	-	1	-	362	55
7:30 AM	7:45 AM	5	7	44	0	2	-	-	-	2	28	155	-	1	-	383	48
7:45 AM	8:00 AM	5	11	39	0	0	-	-	-	2	14	169	-	2	-	393	65
8:00 AM	8:15 AM	3	11	37	1	0	-	-	-	2	27	173	-	0	-	365	72
8:15 AM	8:30 AM	3	18	23	1	0	-	-	-	1	17	173	-	0	-	390	53
8:30 AM	8:45 AM	0	16	27	7	0	-	-	-	0	26	140	-	0	-	376	47
8:45 AM	9:00 AM	2	7	38	5	1	-	-	-	1	20	187	-	2	-	424	41
Interse	ection PHV:		52	125	14		0	0	0		90	673	0		0	1,555	213
	PHF:		0.72	0.82	0.50		0.00	0.00	0.00		0.83	0.90	0.00		0.00	0.92	0.74
	Interse	ction Pea	ak Hour:	8:00 AN	1 - 9:00 A	AM				•				Ir	ntersectio	on PHF:	0.94
Study	Area PHV:		56	126	9		0	0	0		84	655	0		0	1,524	237
	PHF:		0.78	0.81	0.32		0.00	0.00	0.00		0.78	0.95	0.00		0.00	0.97	0.82
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	a PHF:	0.97
4.00.044	4:45 PM		40							ı -	44	44.4				404	40
4:30 PM 4:45 PM	4:45 PIVI 5:00 PM	7	43 29	55 51	51 58	0	-	-	-	5	14	414	-	1	-	184 209	12 13
	5:00 PIVI 5:15 PM	0				0	-	-	-	2	18	403	-	1	-		
5:00 PM 5:15 PM	5:15 PIVI 5:30 PM	2	57 40	78 96	84 73	1 0	-	-	-	6 2	3 4	370 334	-	0	-	168 119	13 8
5:30 PM	5:45 PM	0	26	58	63	2	-		_	0	6	434	-	0	-	143	0 7
5:30 PM 5:45 PM	5:45 PM 6:00 PM	0	26 27	58 67	63 50	0	-	-	-	0	0 14	434 390	-	0	-	143	, 12
6:00 PM	6:00 PM	0	30	43	40	0	-	-	-	0	9	383	-	1	-	127	2
6:15 PM	6:30 PM	0	13	43 20	24	0				0	12	303 322		0		140	8
	ection PHV:	0	169	280	266	0	0	0	0	-	39	1,521	0	0	0	680	46
IIILEISE	PHF:		0.74	280 0.73	200 0.79		0.00	0.00	0.00		0.54	1,521 0.92	0.00		0.00	0.81	40 0.88
		otion Doc				24.4	0.00	0.00	0.00		0.54	U.7Z	0.00	1.			
Chudu		ction Pea		4:30 PN		-1VI 	0		_		20	4 F24	0 1	II.	ntersectio		0.96
Study	Area PHV: PHF:		169 0.74	280 0.73	266 0.79		0.00	0 0.00	0 0.00		39 0.54	1,521 0.92	0 0.00		0 0.00	680 0.81	46 0.88
		v Peak				n DM	0.00	0.00	0.00		0.54	0.32	0.00	C+		PHF:	
	Siuu	y reak	Hour.	4.30 F	IVI - J.J	O F IVI								Siuc	uy Aite	arnr.	0.30

Observations:

DeShazo Group, Inc.

Location: Guadalupe Street at 16th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016* Weather Conditions: *Mild/Normal Conditions*

Project-ID #: 15206-08 Traffic Control: Unsignalized

Data Source: CJ Hensch Description: Minor-Street STOP Controlled

Time				ound o		_		ound o		I		und or	า	\	Vestbo		n
Cou			uadalu	pe Stre			ıadalu	pe Stre			16th 3	Street	_			Street	
Begin	End	Peds	<u> </u>	T	R	Peds	L	T	R	Peds	L	T	R	Peds	L	T	R
7:00 AM	7:15 AM	2	-	-	-	0	-	107	2	12	-	-	-	5	13	3	-
7:15 AM	7:30 AM	0	-	-	-	2	-	159	3	7	-	-	-	6	13	2	-
7:30 AM	7:45 AM	1	-	-	-	1	-	160	2	5	-	-	-	0	10	8	-
7:45 AM	8:00 AM	1	-	-	-	2	-	245	3	3	-	-	-	5	16	0	-
8:00 AM	8:15 AM	2	-	-	-	6	-	243	7	5	-	-	-	4	18	2	-
8:15 AM	8:30 AM	0	-	-	-	11	-	279	2	7	-	-	-	4	21	4	-
8:30 AM	8:45 AM	1	-	-	-	5	-	256	9	9	-	-	-	14	21	2	-
8:45 AM	9:00 AM	0	-	-	-	7	-	287	6	16	-	-	-	5	18	6	-
Interse	ection PHV:		0	0	0		0	1,065	24		0	0	0		78	14	0
	PHF:		0.00	0.00	0.00		0.00	0.93	0.67		0.00	0.00	0.00		0.93	0.58	0.00
	Interse	ction Pea	ak Hour:	8:00 AN	1 - 9:00 A	AM				•				Ir	ntersectio	on PHF:	0.93
Study /	Area PHV:		0	0	0		0	1,023	21		0	0	0		76	8	0
	PHF:		0.00	0.00	0.00		0.00	0.92	0.58		0.00	0.00	0.00		0.90	0.50	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	a PHF:	0.92
	1		1				1		_ 1								
4:30 PM	4:45 PM	0	-	-	-	4	-	265	3	12	-	-	-	3	65	38	-
4:45 PM	5:00 PM	1	-	-	-	7	-	242	7	10	-	-	-	0	44	25	-
5:00 PM	5:15 PM	0	-	-	-	2	-	234	4	22	-	-	-	8	48	45	-
5:15 PM	5:30 PM	1	-	-	-	1	-	200	11	12	-	-	-	3	31	25	-
5:30 PM	5:45 PM	2	-	-	-	2	-	203	5	16	-	-	-	6	29	26	-
5:45 PM	6:00 PM	1	-	-	-	3	-	257	9	13	-	-	-	6	24	23	-
6:00 PM	6:15 PM	1	-	-	-	3	-	241	3	9	-	-	-	1	24	10	-
6:15 PM	6:30 PM	0	-	-	-	7	-	225	5	14	-	-	-	5	19	24	-
Interse	ection PHV:		0	0	0		0	941	25		0	0	0		188	133	0
	PHF:		0.00	0.00	0.00		0.00	0.89	0.57		0.00	0.00	0.00		0.72	0.74	0.00
		ction Pea		4:30 PN		PM								Ir	ntersectio		
Study A	Area PHV:		0	0	0		0	941	25		0	0	0		188	133	0
	PHF:		0.00	0.00	0.00	<u> </u>	0.00	0.89	0.57		0.00	0.00	0.00		0.72	0.74	0.00
I	Stud	y Peak	Hour:	4:30 P	M - 5:3	O PM								Stud	dy Area	a PHF:	0.87

Observations:

DeShazo Group, Inc.

Location: Lavaca Street at 16th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March* 22, 2016 Weather Conditions: *Mild/Normal Conditions*Project-ID #: 15206-09 Traffic Control: *Signalized*

Data Source: CJ Hensch

Time				ound o			outhbo Lavaca			I		und or S <i>treet</i>	ı	'	Nestbo	ound o Street	n
Begin	End	Peds	Lavaca L	T Street	R	Peds	Lavaca L	T	R	Peds	IOIII	T T	R	Peds	L	T	R
7:00 AM	7:15 AM	4	62	133	11	8		•	IX	10	_	-	IX	10		2	0
7:00 AM 7:15 AM	7:13 AW 7:30 AM	9	57	161	_	6		-	-	7		_	-	17		1	2
7:30 AM	7:45 AM	7	58	158	_	10	-	_	_	18	_	_	_	18	_	6	4
7:45 AM	8:00 AM	15	61	191	_	13	-	_	_	17	_	_	_	15	_	7	4
8:00 AM	8:15 AM	17	65	150	-	10	-	-	-	16	-	-	-	18	-	8	1
8:15 AM	8:30 AM	7	50	153	-	18	-	-	-	26	-	-	-	11	-	3	5
8:30 AM	8:45 AM	27	37	142	-	12	-	-	-	20	-	-	-	34	-	7	3
8:45 AM	9:00 AM	17	28	126	-	22	-	-	-	26	-	-	-	25	-	4	2
Interse	ection PHV:		241	660	0		0	0	0		0	0	0		0	25	11
	PHF:		0.93	0.86	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.78	0.69
	Interse	ction Pea	k Hour:	7:15 AN	1 - 8:15 A	\М								lr	ntersectio	on PHF:	0.89
Study A	Area PHV:		213	636	0		0	0	0		0	0	0		0	25	13
	PHF:		0.82	0.83	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.78	0.65
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stu	dy Area	PHF:	0.84
4:30 PM	4:45 PM	18	19	246		24				17				28		23	11
4:30 PM 4:45 PM	5:00 PM	14	19 16	240 274	-	24 25	_	-	-	26	_	-	-	24	_	23 18	11
5:00 PM	5:15 PM	8	16	279	-	21	_	-		22		-	_ [17		24	16
5:15 PM	5:30 PM	7	18	280	-	15	-	-	-	13	_	_	-	23	_	12	10
5:30 PM	5:45 PM	3	18	228	-	23	-	-	-	28	-	-	-	8	-	7	3
5:45 PM	6:00 PM	8	21	217		9	-		-	13	-		-	17	-	9	6
6:00 PM	6:15 PM	15	12	200	-	13	-	-	-	14	-	-	-	27	-	5	4
6:15 PM	6:30 PM	7	20	182	-	7	-	-	-	15	-	-	-	13	-	10	2
Interse	ection PHV:		69	1,079	0		0	0	0		0	0	0		0	77	48
	PHF:		0.91	0.96	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.80	0.75
	Interse	ction Pea	k Hour:	4:30 PN	1 - 5:30 F	PM								Ir	ntersectio	on PHF:	0.95
Study A	Area PHV:		69	1,079	0		0	0	0		0	0	0		0	77	48
	PHF:		0.91	0.96	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.80	0.75
	Stud	y Peak	Hour:	4:30 P	M - 5:3	O PM								Stud	dy Area	a PHF:	0.95

Observations:

DeShazo Group, Inc.

Location: Colorado Street at 16th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016* Weather Conditions: *Mild/Normal Conditions*

Project-ID #: 15206-10 Traffic Control: Unsignalized

Data Source: CJ Hensch Description: Minor-Street STOP Controlled

Time				ound o			outhb			E		und or	ı	V	Vestbo		n
Cou	End	Peds	olorad L	lo Stre	er R	Peds	olorad	o Stree	er R	Peds	16tn (Street T	R	Peds	16tn (Street T	R
Begin					ĸ								K				
7:00 AM	7:15 AM	0	3	72	-	3	-	5	4	10	-	-	-	3	3	2	5
7:15 AM	7:30 AM	3	4	57	-	1	-	7	6	6 17	-	-	-	3	1	2	3
7:30 AM	7:45 AM	3	4	64	-	1	-	10	6		-	-	-	3	1	1	6
7:45 AM	8:00 AM 8:15 AM	3	10 5	90 64	-	3 6	-	14 8	6 7	13 18	-		-	4	0	2	6
8:00 AM	8:15 AM 8:30 AM	1	_	_	-	_	-	8 14	-		-	-	-	4	1	4	-
8:15 AM		1 1	6	59 40	-	1	-		5	<i>17</i> 14	-	-	-	1 1	•	-	0
8:30 AM 8:45 AM	8:45 AM 9:00 AM	1	9 7	48 60	-	5	-	8 9	8 4	14	-	-	-	3 2	2	3 4	4 0
<u> </u>			•		-	- 1	-			14	-	-	-		- 1	•	
Interse	ction PHV:		25	277	0		0	46	24		0	0	0		6	9	14
	PHF:	<u> </u>	0.63	0.77	0.00		0.00	0.82	0.86		0.00	0.00	0.00	<u> </u>	0.38	0.56	0.58
		ction Pea		7:30 AN		AM .				1				<u> </u>	tersectio		0.81
Study A	Area PHV:		30	261	0		0	44	26		0	0	0		7	11	12
	PHF:		0.75	0.73	0.00		0.00	0.79	0.81		0.00	0.00	0.00		0.44	0.69	0.50
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.79
4:00 DM	4.45 DM		0	45				440	27	45							•
4:30 PM 4:45 PM	4:45 PM 5:00 PM	1 0	2 5	15 10	-	8	-	113 82	27 14	15 13	-	-	-	3 7	4 3	5 11	2
_		•	_		-	4	-	_			-	-	-	-	•		0
5:00 PM	5:15 PM	3	4 2	19	-	4	-	105 46	34 18	36 6	-	-	-	4	3 1	12	3
5:15 PM	5:30 PM	2		19	-	2	-						-	2	0	5	1
5:30 PM 5:45 PM	5:45 PM 6:00 PM	1	6 3	13 8	-	6	-	61 56	16 11	14 8	-	-	-	2	0	7 2	0 3
6:00 PM	6:00 PM 6:15 PM	1	ى 1	8 9	-	3	-	56 54	6	8 19	-	-	-	0	2	3	ა 1
6:00 PM 6:15 PM	6:30 PM	0	1	3	-	ა 1	-	58	6	7	-	-	-	2	2	3 4	0
		U	10		-	'	-			/	-	-	-			'	
interse	ection PHV:		13	63	0		0	346	93		0	0	0		11	33	6
	PHF:	<u> </u>	0.65	0.83	0.00	<u> </u>	0.00	0.77	0.68		0.00	0.00	0.00		0.69	0.69	0.50
		ction Pea		4:30 PN		² M				ı.				<u>Ir</u>	tersectio		0.78
Study A	Area PHV:		13	63	0		0	346	93		0	0	0		11	33	6
	PHF:	<u> </u>	0.65	0.83	0.00		0.00	0.77	0.68		0.00	0.00	0.00	<u> </u>	0.69	0.69	0.50
	Stud	v Peak	Hour:	4:30 P	PM - 5:3	80 PM								Stud	dy Area	PHF:	0.78

Observations:

DeShazo Group, Inc.

Location: Congress Avenue at 16th Street

City/State: **Austin, Texas**Data Collector(s): **Camera**

Day/Date: *Tuesday, March* 22, 2016 Weather Conditions: *Mild/Normal Conditions*

Project-ID #: 15206-11 Traffic Control: Unsignalized

Data Source: CJ Hensch Description: Minor-Street STOP Controlled

Time				ound o		S	outhb	ound o	n			und or	1	V	Vestbo		n
Cou	ınt		ngres	s Aven	ue	Co	ngres	s Aven	ue		16th :	Street			16th \$	Street	
Begin	End	Peds	L	Т	R	Peds	L	T	R	Peds	L	Т	R	Peds	L	Т	R
7:00 AM	7:15 AM	0	4	79	-	0	-	4	4	5	-	-	-	1	0	1	1
7:15 AM	7:30 AM	2	2	70	-	2	-	6	7	5	-	-	-	8	2	3	0
7:30 AM	7:45 AM	1	4	67	-	1	-	11	1	5	-	-	-	7	1	1	3
7:45 AM	8:00 AM	1	6	66	-	1	-	11	7	5	-	-	-	7	1	1	1
8:00 AM	8:15 AM	0	4	63	-	1	-	7	4	9	-	-	-	2	0	3	1
8:15 AM	8:30 AM	2	3	62	-	2	-	14	2	5	-	-	-	3	1	2	2
8:30 AM	8:45 AM	0	2	62	-	0	-	13	3	2	-	-	-	5	0	1	2
8:45 AM	9:00 AM	1	0	51	-	0	-	10	2	5	-	-	-	3	0	0	3
Interse	ection PHV:		16	282	0		0	32	19		0	0	0		4	6	5
	PHF:		0.67	0.89	0.00		0.00	0.73	0.68		0.00	0.00	0.00		0.50	0.50	0.42
	Interse	ction Pea	k Hour:	7:00 AN	1 - 8:00 A	AM								Ir	ntersectio	on PHF:	0.98
Study /	Area PHV:		15	253	0		0	45	16		0	0	0		2	7	6
	PHF:		0.63	0.96	0.00		0.00	0.80	0.57		0.00	0.00	0.00		0.50	0.58	0.75
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.92
						ı	1		_								
4:30 PM	4:45 PM	8	0	21	-	0	-	65	2	24	-	-	-	15	10	6	18
4:45 PM	5:00 PM	1	0	29	-	0	-	49	3	7	-	-	-	11	11	8	12
5:00 PM	5:15 PM	2	2	21	-	1	-	88	2	19	-	-	-	7	13	10	9
5:15 PM	5:30 PM	1	1	21	-	1	-	46	2	20	•	-	-	2	9	3	9
5:30 PM	5:45 PM	2	0	28	-	0	-	39	2	12	-	-	-	8	5	3	14
5:45 PM	6:00 PM	0	1	31	-	2	-	33	1	5	-	-	-	1	/	2	8
6:00 PM	6:15 PM	1 0	1	18 15	-	0	-	32 22	0	17	-	-	-		4 8	2 2	1
6:15 PM	6:30 PM	U	0	15	-	- 0	-		1	8	-	-	-	/			4
interse	ection PHV: PHF:		3	92 0.70	0		0	248	9 0.75		0	0	0		43	27	48
			0.38	0.79	0.00	24.4	0.00	0.70	0.75		0.00	0.00	0.00	<u> </u>	0.83	0.68	0.67
		ction Pea		4:30 PN		'M		0.10		r				<u>Ir</u>	tersection		0.81
Study /	Area PHV: PHF:		3 0.38	92 0.79	0 0.00		0 0.00	248 0.70	9 0.75		0 0.00	0 0.00	0 0.00		43 0.83	27 0.68	48 0.67
		v Peak				O DM	0.00	0.70	0.75		0.00	0.00	0.00	C4	dy Area		
	Siud	y reak	Hour:	4:30 F	TIVI - 3:3	U PIVI								<u> </u>	ay Area	י רחר:	U.O I

Observations:

DeShazo Group, Inc.

Location: Brazos Street at 16th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: Wednesday, March 30, 2016 Weather Conditions: Mild/Normal Conditions

Project-ID #: 15206-12 Traffic Control: Unsignalized

Data Source: CJ Hensch Description: Minor-Street STOP Controlled

Time				ound o			outhb					und or	า	/	Vestbo		n
Cou			Brazos	Stree			Brazos	Stree			16th :	Street			16th \$	Street	
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R
7:00 AM	7:15 AM	1	1	-	-	-	-	-	-	0	-	-	-	1	0	6	-
7:15 AM	7:30 AM	3	1	-	-	-	-	-	-	0	-	-	-	7	1	6	-
7:30 AM	7:45 AM	3	4	-	-	-	-	-	-	3	-	-	-	3	1	7	-
7:45 AM	8:00 AM	4	3	-	-	-	-	-	-	2	-	-	-	3	0	3	-
8:00 AM	8:15 AM	3	5	-	-	-	-	-	-	3	-	-	-	1	0	4	-
8:15 AM	8:30 AM	4	2	-	-	-	-	-	-	3	-	-	-	4	2	6	-
8:30 AM	8:45 AM	1	3	-	-	-	-	-	-	6	-	-	-	1	1	4	-
8:45 AM	9:00 AM	2	2	-	-	-	-	-	-	3	-	-	-	3	0	5	-
Interse	ection PHV:		14	0	0		0	0	0		0	0	0		3	20	0
	PHF:		0.70	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.38	0.71	0.00
	Intersed	ction Pea	k Hour:	7:30 AN	1 - 8:30 A	AM								Ir	ntersectio	n PHF:	0.77
Study A	Area PHV:		13	0	0		0	0	0		0	0	0		3	17	0
	PHF:		0.65	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.38	0.71	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.83
						1	1								_		
4:30 PM	4:45 PM	0	8	-	-	-	-	-	-	6	-	-	-	6	4	26	-
4:45 PM	5:00 PM	0	11	-	-	-	-	-	-	6	-	-	-	5	1	12	-
5:00 PM	5:15 PM	0	11	-	-	-	-	-	-	6	-	-	-	4	7	42	-
5:15 PM	5:30 PM	0	5	-	-	-	-	-	-	3	-		-	5	2	10	-
5:30 PM	5:45 PM	0	9	-	-	-	-	-	-	1	-	-	-	0	1	12	-
5:45 PM	6:00 PM	1 1	4	-	-	-	-	-	-	1	-	-	-	1	1	7	-
6:00 PM	6:15 PM	1	2	-	-	-	-	-	-	1	-	-	-	3	1	1	-
6:15 PM	6:30 PM	3	3	-	-	_	-	-	-		-	-	-	3	0	4	-
interse	ection PHV:		35	0	0		0	0	0		0	0	0		14	90	0
	PHF:		0.80	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00	<u> </u>	0.50	0.54	0.00
		ction Pea			1 - 5:30 F	YM				r				Ir	ntersectio		
Study A	Area PHV:		35	0	0		0	0	0		0	0	0		14	90	0
	PHF:		0.80	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.50	0.54	0.00
	O4 :	·		4 00 5	M - 5:3	0 DI4								•	dy Area	DILE	0.50

Observations:

DeShazo Group, Inc.

Location: San JacintoBoulevard at 16th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: Thursday, March 24, 2016 Weather Conditions: Mild/Normal Conditions

Project-ID #: 15206-13 Traffic Control: Unsignalized

Data Source: **CJ Hensch** Description: **Free**

Time		I		ound o			outhb			I		und or	ı	١	Vestbo		n
Cou			in Jaci	nto Bl			n Jaci			Dada	16th 3	Street		Dada		Street	_
Begin	End	Peds	<u> </u>	<u>T</u>	R	Peds	L	<u>T</u>	R	Peds	L	<u>T</u>	R	Peds	L	T	R
7:00 AM	7:15 AM	0	-	-	-	19	-	56	11	2	-	-	-	-	-	-	-
7:15 AM	7:30 AM	2	-	-	-	21	-	69	13	1	-	-	-	-	-	-	-
7:30 AM	7:45 AM	4	-	-	-	23	-	78	5	4	-	-	-	-	-	-	-
7:45 AM	8:00 AM	5	-	-	-	32	-	101	7	7	-	-	-	-	-	-	-
8:00 AM	8:15 AM	3	-	-	-	26	-	86	7	1	-	-	-	-	-	-	-
8:15 AM	8:30 AM	6	-	-	-	18	-	74	11	6	-	-	-	-	-	-	-
8:30 AM	8:45 AM	6	-	-	-	24	-	67	7	7	-	-	-	-	-	-	-
8:45 AM	9:00 AM	5	-	-	-	26	-	114	7	1	-	-	-	-	-	-	-
Interse	ection PHV:		0	0	0		0	341	32		0	0	0		0	0	0
	PHF:		0.00	0.00	0.00		0.00	0.75	0.73		0.00	0.00	0.00		0.00	0.00	0.00
	Interse	ction Pea	ak Hour:	8:00 AN	1 - 9:00 A	AM				•				Ir	ntersectio	on PHF:	0.77
Study A	Area PHV:		0	0	0		0	328	32		0	0	0		0	0	0
	PHF:		0.00	0.00	0.00		0.00	0.81	0.73		0.00	0.00	0.00		0.00	0.00	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.83
			I			ı——	ı						ı				1
4:30 PM	4:45 PM	2	-	-	-	17	-	291	8	8	-	-	-	-	-	-	-
4:45 PM	5:00 PM	3	-	-	-	25	-	240	4	2	-	-	-	-	-	-	-
5:00 PM	5:15 PM	3	-	-	-	37	-	284	8	4	-	-	-	-	-	-	-
5:15 PM	5:30 PM	5	-	-	-	8	-	218	9	6	-	-	-	-	-	-	-
5:30 PM	5:45 PM	1	-	-	-	6	-	233	5	9	-	-	-	-	-	-	-
5:45 PM	6:00 PM	2	-	-	-	15	-	173	1	1	-	-	-	-	-	-	-
6:00 PM	6:15 PM	1	-	-	-	24	-	171	12	3	-	-	-	-	-	-	-
6:15 PM	6:30 PM	0	-	-	-	7	-	126	2	5	-	-	-	-	-	-	-
Interse	ection PHV:		0	0	0		0	1,033	29		0	0	0		0	0	0
	PHF:		0.00	0.00	0.00		0.00	0.89	0.81	<u></u>	0.00	0.00	0.00		0.00	0.00	0.00
		ction Pea			1 - 5:30 F	PM								Ir	ntersectio		
Study A	Area PHV:		0	0	0		0	1,033	29		0	0	0		0	0	0
	PHF:		0.00	0.00	0.00		0.00	0.89	0.81		0.00	0.00	0.00		0.00	0.00	0.00
	Stud	y Peak	Hour:	4:30 P	PM - 5:3	O PM								Stu	dy Area	PHF:	0.89

Observations:

DeShazo Group, Inc.

Location: Guadalupe Street at 17th Street

City/State: **Austin, Texas**Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016*Project-ID #: 15206-14

Weather Conditions: *Mild/Normal Conditions*Traffic Control: *Signalized*

Data Source: **CJ Hensch**

Time				ound o			outhbo			I		und or	า	'	Westbo		n
Cou			uadalu	pe Stre			uadalu					Street		_		Street _	_
Begin	End	Peds	L	T	R	Peds	L	T	R	Peds	L	T	R	Peds	L	T	R
7:00 AM	7:15 AM	5	-	-	-	3	4	85	-	3	-	1	22	4	-	-	-
7:15 AM	7:30 AM	10	-	-	-	4	10	137	-	7	-	5	21	5	-	-	-
7:30 AM	7:45 AM	8	-	-	-	2	8	149	-	3	-	6	27	4	-	-	-
7:45 AM	8:00 AM	12	-	-	-	6	7	190	-	3	-	13	35	4	-	-	-
8:00 AM	8:15 AM	9	-	-	-	8	15	224	-	5	-	8	36	4	-	-	-
8:15 AM	8:30 AM	9	-	-	-	7	7	247	-	3	-	7	27	5	-	-	-
8:30 AM	8:45 AM	10	-	-	-	9	8	252	-	14	-	9	34	14	-	-	-
8:45 AM	9:00 AM	9	-	-	-	4	17	249	-	10	-	8	26	10	-	-	-
Interse	ection PHV:		0	0	0		47	972	0		0	32	123		0	0	0
	PHF:		0.00	0.00	0.00		0.69	0.96	0.00		0.00	0.89	0.85		0.00	0.00	0.00
	Intersed	ction Pea	ak Hour:	8:00 AN	1 - 9:00 F	AM								li	ntersectio	on PHF:	0.97
Study A	Area PHV:		0	0	0		37	913	0		0	37	132		0	0	0
	PHF:		0.00	0.00	0.00		0.62	0.91	0.00		0.00	0.71	0.92		0.00	0.00	0.00
	Stud	v Book	Hauri	7:45 ^	M - 8:4	15 AM								01			000
L	Otua	y reak	nour.	1.43 F	(IVI - 0.4	IJ AIVI								Stu	dy Area	PHF:	0.92
4:20 DM			nour.	7.45 F	NVI - 0.4	i e	7	265		20			42		dy Area	PHF:	0.92
4:30 PM	4:45 PM	13	-	7.43 A	-	9	7	265	-	29	-	4	12	9	dy Area	- PHF:	-
4:45 PM	4:45 PM 5:00 PM	13 15	- -	- - -	-	9 5	16	224	-	13	-	10	7	9	- -	- - -	- -
4:45 PM 5:00 PM	4:45 PM 5:00 PM 5:15 PM	13 15 22	- - -	- - -	- - -	9 5 9	16 24	224 235	- - -	13 <i>15</i>	- - -	10 13	7 7	9 6 11	- - -	- - - -	- - -
4:45 PM 5:00 PM 5:15 PM	4:45 PM 5:00 PM 5:15 PM 5:30 PM	13 15 22 14	- - -	- - -	- - -	9 5 9 7	16 24 29	224 235 220	-	13 15 9	- - -	10 13 30	7 7 7	9 6 11 9	- - - -	- - - - -	- - - -
4:45 PM 5:00 PM 5:15 PM 5:30 PM	4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	13 15 22 14	- - - -	- - -	- - -	9 5 9 7	16 24 29	224 235 220 195		13 15 9	- - - -	10 13 30	7 7 7 8	9 6 11	- - - -	- - - - -	- - - -
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM	13 15 22 14 6 12	- - - -	- - - -	- - -	9 5 9 7	16 24 29 24 19	224 235 220 195 274	-	13 15 9 22 27	- - - -	10 13 30 31 21	7 7 7 8 6	9 6 11 9	- - - - -		- - - - -
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM	4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	13 15 22 14 6 12 10	- - - -	- - - -	- - - -	9 5 9 7 7 9	16 24 29 24 19 14	224 235 220 195 274 250	-	13 15 9 22 27 21	- - - - -	10 13 30 31 21 2	7 7 7 8 6 9	9 6 11 9 7 7 5	- - - - - -	- - - - - -	
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 6:30 PM	13 15 22 14 6 12	- - - - - -	- - - - - - -	- - - - - -	9 5 9 7	16 24 29 24 19 14 12	224 235 220 195 274 250 219	- - -	13 15 9 22 27		10 13 30 31 21 2 7	7 7 7 8 6 9 10	9 6 11 9	- - - - - - - -	- - - - - -	- - - - - -
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 6:30 PM	13 15 22 14 6 12 10	- - - - - -	- - - - - - -	- - - - - - -	9 5 9 7 7 9	16 24 29 24 19 14 12	224 235 220 195 274 250 219	- - - - 0	13 15 9 22 27 21		10 13 30 31 21 2 7	7 7 7 8 6 9 10	9 6 11 9 7 7 5	- - - - - - -	- - - - - - -	- - - - - - -
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM 6:30 PM ection PHV: PHF:	13 15 22 14 6 12 10 4	- - - - - - - - - 0 0.00	- - - - - - - - 0 0.00	- - - - - - - 0 0.00	9 5 9 7 7 9 7 6	16 24 29 24 19 14 12	224 235 220 195 274 250 219	- - -	13 15 9 22 27 21	- - - - - - - 0 0.00	10 13 30 31 21 2 7	7 7 7 8 6 9 10	9 6 11 9 7 7 5 6	- - - - - - - 0 0.00	- - - - - - - - 0 0.00	- - - - - - - - 0 0.00
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	4:45 PM 5:00 PM 5:15 PM 5:30 PM 6:00 PM 6:15 PM 6:30 PM ection PHV: PHF:	13 15 22 14 6 12 10 4	- - - - - - - - - 0 0.00	- - - - - - - - - 0 0.000	- - - - - - - 0 0.00	9 5 9 7 7 9 7 6	16 24 29 24 19 14 12 96 0.83	224 235 220 195 274 250 219 924 0.84	- - - - 0 0.00	13 15 9 22 27 21	0.00	10 13 30 31 21 2 7 95 0.77	7 7 7 8 6 9 10 28 0.88	9 6 11 9 7 7 5 6	- - - - - - - - 0 0.00	- - - - - - - - - 0 0.00	- - - - - - - - - 0 0.000
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	4:45 PM 5:00 PM 5:15 PM 5:30 PM 6:00 PM 6:15 PM 6:30 PM ection PHV: PHF: Intersect	13 15 22 14 6 12 10 4	- - - - - - - - 0 0.00	- - - - - - - 0 0.00 5:00 PM	- - - - - - - 0 0.00 M - 6:00 F	9 5 9 7 7 9 7 6	16 24 29 24 19 14 12 96 0.83	224 235 220 195 274 250 219 924 0.84	- - - - 0 0.00	13 15 9 22 27 21	0.00	10 13 30 31 21 2 7 95 0.77	7 7 7 8 6 9 10 28 0.88	9 6 11 9 7 7 5 6	- - - - - - - 0 0.00	- - - - - - - 0 0.00 on PHF:	- - - - - - - - 0 0.00
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:00 PM 6:15 PM	4:45 PM 5:00 PM 5:15 PM 5:30 PM 6:00 PM 6:15 PM 6:30 PM ection PHV: PHF: Intersection PHV: PHF:	13 15 22 14 6 12 10 4	- - - - - - - - 0 0.00 ak Hour: 0	- - - - - - - 0 0.00 5:00 PM 0	- - - - - - - 0 0.00	9 5 9 7 7 9 7 6	16 24 29 24 19 14 12 96 0.83	224 235 220 195 274 250 219 924 0.84	- - - - 0 0.00	13 15 9 22 27 21	0.00	10 13 30 31 21 2 7 95 0.77	7 7 7 8 6 9 10 28 0.88	9 6 11 9 7 7 5 6	- - - - - - - - 0 0.00	- - - - - - - 0 0.00 on PHF: 0	- - - - - - - 0 0.00 0.89 0.00

Observations:

DeShazo Group, Inc.

Location: Lavaca Street at 17th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016*Project-ID #: *15206-15*Weather Conditions: *Mild/Normal Conditions*Traffic Control: *Signalized*

Data Source: **CJ Hensch**

Time of			ound o		S	outhb	ound o	n			und or	n		Vestbo		n
Count		Lavaca	Stree			Lavaca	Stree			17th :	Street			17th 3	Street	
Begin End	Peds	L	T	R	Peds	L	Т	R	Peds	L	T	R	Peds	L	T	R
7:00 AM 7:15 AM	6	-	101	32	5	-	-	-	2	0	5	-	0	-	-	-
7:15 AM 7:30 AM	5	-	113	41	7	-	-	-	1	3	11	-	4	-	-	-
7:30 AM 7:45 AM	9	-	121	43	10	-	-	-	6	3	11	-	7	-	-	-
7:45 AM 8:00 AM	11	-	148	51	2	-	-	-	4	4	16	-	4	-	-	-
8:00 AM 8:15 AM	7	-	128	32	9	-	-	-	1	3	15	-	4	-	-	-
8:15 AM 8:30 AM	9	-	124	28	8	-	-	-	10	2	9	-	9	-	-	-
8:30 AM 8:45 AM	7	-	122	27	16	-	-	-	8	3	11	-	4	-	-	-
8:45 AM 9:00 AM	12	-	110	27	5	-	-	-	4	8	15	-	9	-	-	-
Intersection PHV:		0	510	167		0	0	0		13	53	0		0	0	0
PHF:		0.00	0.86	0.82		0.00	0.00	0.00		0.81	0.83	0.00		0.00	0.00	0.00
Intersed	ction Pea	k Hour:	7:15 AN	1 - 8:15 A	AM								Ir	ntersectio	on PHF:	0.85
Study Area PHV:		0	522	138		0	0	0		12	51	0		0	0	0
PHF:		0.00	0.88	0.68		0.00	0.00	0.00		0.75	0.80	0.00		0.00	0.00	0.00
Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.83
4:30 PM 4:45 PM	9	-	230	26	9	-	-	-	8	10	13	-	13	-	-	-
4:45 PM 5:00 PM	7	-	250	38	4	-	-	-	9	7	18	-	5	-	-	-
5:00 PM 5:15 PM	17	-	257	49	10	-	-	-	3	6	33	-	17	-	-	-
5:15 PM 5:30 PM	13	-	223	36	5	-	-	-	5	7	61	-	12	-	-	-
5:30 PM 5:45 PM	4	-	194	38	11	-	-	-	10	3	55	-	8	-	-	-
5:45 PM 6:00 PM	7	-	213	27	8	-	-	-	12	8	32	-	8	-	-	-
6:00 PM 6:15 PM	8	-	187	19	7	-	-	-	10	10	9	-	15	-	-	-
6:15 PM 6:30 PM	4	-	187	10	2	-	-	-	8	16	7	-	5	-	-	-
Intersection PHV:		0	924	161		0	0	0		23	167	0		0	0	0
PHF:		0.00	0.90	0.82		0.00	0.00	0.00		0.82	0.68	0.00		0.00	0.00	0.00
	ction Pea	k Hour:	4:45 PN	1 - 5:45 F	PM								Ir	ntersectio	on PHF:	0.92
Study Area PHV:		0	960	149		0	0	0		30	125	0		0	0	0
PHF:		0.00	0.93	0.76		0.00	0.00	0.00		0.75	0.51	0.00		0.00	0.00	0.00
Stud	y Peak	Hour:	4:30 P	M - 5:3	O PM								Stu	dy Area	PHF:	0.92

Observations:

DeShazo Group, Inc.

Location: Colorado Street at 17th Street

Study Peak Hour: 4:30 PM - 5:30 PM

City/State: Austin, Texas Data Collector(s): Camera

Day/Date: *Tuesday, March 22, 2016*Project-ID #: *15206-16*Weather Conditions: *Mild/Normal Conditions*Traffic Control: *Unsignalized*

Data Source: CJ Hensch

Description: All-Way STOP Controlled

Time of Northbound on Southbound on Westbound on Eastbound on Count **Colorado Street** Colorado Street 17th Street 17th Street Begin **End** Peds Peds **Peds** R **Peds** R 7:00 AM 7:15 AM 7:30 AM 7:15 AM 7:45 AM 7:30 AM 7:45 AM 8:00 AM 8:00 AM 8:15 AM 8:15 AM 8:30 AM 8:30 AM 8:45 AM 8:45 AM 9:00 AM Intersection PHV: PHF: 0.00 0.59 0.46 0.00 0.33 0.86 0.97 0.00 0.73 0.81 0.00 0.00 Intersection PHF: 0.94 Intersection Peak Hour: 7:15 AM - 8:15 AM Study Area PHV: PHF: 0.00 0.75 0.57 0.75 0.83 0.00 0.50 0.69 0.84 0.00 0.00 0.00 Study Peak Hour: 7:45 AM - 8:45 AM Study Area PHF: 0.88 4:45 PM 4:30 PM 5:00 PM 4:45 PM 5:00 PM 5:15 PM 5:15 PM 5:30 PM 5:30 PM 5:45 PM 5:45 PM 6:00 PM 6:00 PM 6:15 PM 6:15 PM 6:30 PM Intersection PHV: PHF: 0.00 0.69 0.76 0.91 0.75 0.00 0.50 0.84 0.89 0.00 0.00 0.00 Intersection Peak Hour: 5:00 PM - 6:00 PM Intersection PHF: 0.85 Study Area PHV: PHF: 0.00 0.65 0.81 0.00 0.79 0.66 0.91 0.00 0.00 0.76 0.52 0.00

Observations:

Study Area PHF: 0.82

DeShazo Group, Inc.

Location: Congress Avenue at 17th Street

City/State: **Austin, Texas**Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016* Weather Conditions: *Mild/Normal Conditions*

Project-ID #: 15206-17 Traffic Control: Unsignalized

Data Source: CJ Hensch Description: All-Way STOP Controlled

Time	of	N	orthbo	ound o	n	S	outhbo	ound o	n			und or	1	V	Vestbo		n
Cou	ınt		ngres	s Aven			ngres	s Aven			17th :	Street			17th 3	Street	
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	T	R	Peds	L	Т	R
7:00 AM	7:15 AM	0	-	15	56	13	6	7	-	4	2	26	2	6	-	-	-
7:15 AM	7:30 AM	3	-	22	54	17	7	16	-	9	6	21	2	8	-	-	-
7:30 AM	7:45 AM	8	-	25	39	5	5	14	-	6	11	20	3	6	-	-	-
7:45 AM	8:00 AM	2	-	22	49	11	3	19	-	6	4	26	4	10	-	-	-
8:00 AM	8:15 AM	3	-	15	43	10	3	15	-	11	2	21	3	4	-	-	
8:15 AM	8:30 AM	1	-	20	42	13	6	17	-	7	5	21	5	1	-	-	-
8:30 AM	8:45 AM	6	-	22	25	10	5	19	-	4	3	12	2	6	-	-	-
8:45 AM	9:00 AM	9	-	17	34	16	2	19	-	6	7	15	3	18	-	-	-
Interse	ction PHV:		0	84	198		21	56	0		23	93	11		0	0	0
	PHF:		0.00	0.84	0.88		0.75	0.74	0.00		0.52	0.89	0.69		0.00	0.00	0.00
	Intersed	ction Pea	k Hour:	7:00 AN	1 - 8:00 A	AM								Ir	ntersectio	on PHF:	0.95
Study A	Area PHV:		0	79	159		17	70	0		14	80	14		0	0	0
	PHF:		0.00	0.90	0.81		0.71	0.92	0.00		0.70	0.77	0.70		0.00	0.00	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.85
			1								1				1		
4:30 PM	4:45 PM	2	-	32	8	12	8	44	-	41	13	24	17	10	-	-	-
4:45 PM	5:00 PM	2	-	27	13	13	10	37	-	25	21	38	11	8	-	-	-
5:00 PM	5:15 PM	7	-	23	7	12	8	46	-	37	28	61	29	6	-	-	-
5:15 PM	5:30 PM	1	-	22	11	5	9	27	-	16	24	67	16	2	-	-	-
5:30 PM	5:45 PM	2	-	29	9	1	3	33	-	11	25	93	10	9	-	-	-
5:45 PM	6:00 PM	0	-	21	17	5	3	25	-	12	14	40	8	1	-	-	-
6:00 PM	6:15 PM	3	-	12	8	6	6	30	-	19	10	16	5	5	-	-	-
6:15 PM	6:30 PM	2	-	16	4		0	23	-	12	8	10	2		-	-	-
Interse	ection PHV:		0	101	40		30	143	0		98	259	66		0	0	0
	PHF:		0.00	0.87	0.77		0.75	0.78	0.00		0.88	0.70	0.57		0.00	0.00	0.00
		ction Pea	k Hour:	4:45 PN 104		PM								<u>Ir</u>	ntersectio		0.91
Study A	Area PHV:	39		35	154	0		86	190	73		0	0	0			
	PHF:		0.00	0.81	0.75	<u> </u>	0.88	0.84	0.00		0.77	0.71	0.63	<u> </u>	0.00	0.00	0.00
	Stud	y Peak	Hour:	4:30 P	M - 5:3	O PM								Stud	dy Area	PHF:	0.84

Observations:

DeShazo Group, Inc.

Location: Brazos Street at 17th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March* 22, 2016 Weather Conditions: *Mild/Normal Conditions*

Project-ID #: 15206-18 Traffic Control: Unsignalized

Data Source: CJ Hensch Description: Minor-Street STOP Controlled

Time				ound o			outhb			I		und or	ı	V	Vestbo		n
Cou		Peds	Brazos L	Stree		-	Brazos L	T	R	Peds	17tn .	Street T	R	Peds	17tn 3	Street T	R
Begin	End	reus	<u> </u>		R	Peds		<u> </u>	ĸ	=	L		ĸ				ĸ
7:00 AM	7:15 AM	-	-	-	-	67	4	-	-	0	50	41	-	8	-	-	-
7:15 AM	7:30 AM	-	-	-	-	79	3	-	-	0	40	29	-	12	-	-	-
7:30 AM	7:45 AM	-	-	-	-	98	2	-	-	0	43	25	-	/	-	-	-
7:45 AM	8:00 AM	-	-	-	-	113	4	-	-	0	39	29	-	10	-	-	-
8:00 AM	8:15 AM	-	-	-	-	117	5	-	-	0	29	32	-	13	-	•	-
8:15 AM	8:30 AM	-	-	-	-	96	8	-	-	0	39	27	-	12	-	-	-
8:30 AM	8:45 AM	-	-	-	-	79	6	-	-	0	20	23	-	6	-	-	-
8:45 AM	9:00 AM	-	-	-	-	77	2	-	-	0	25	23	-	3	-	-	-
Interse	ection PHV:		0	0	0		13	0	0		172	124	0		0	0	0
	PHF:		0.00	0.00	0.00		0.81	0.00	0.00		0.86	0.76	0.00		0.00	0.00	0.00
		ction Pea	ak Hour:	7:00 AN	1 - 8:00 A	<u>4M</u>								Ir	tersectio	on PHF:	0.81
Study A	Area PHV:		0	0	0		23	0	0		127	111	0		0	0	0
	PHF:		0.00	0.00	0.00		0.72	0.00	0.00		0.81	0.87	0.00		0.00	0.00	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	15 AM								Stud	dy Area	PHF:	88.0
4.00 PM	4 45 014					140	40				_			40			
4:30 PM	4:45 PM 5:00 PM	-	-	-	-	112 74	18 18	-	-	0	5 10	33 51	-	19 5	-	-	-
4:45 PM		-	-	-	-		_	-	-	0	. •	_	-		-	-	-
5:00 PM	5:15 PM	-	-	-	-	126	20 10	-	-	0	13 28	76 69	-	6	-	-	-
5:15 PM 5:30 PM	5:30 PM 5:45 PM	-	-	-		58	5		-	0	28	66	-	12	-	-	-
5:30 PIVI 5:45 PM	5:45 PIVI 6:00 PM	-	-	-	-	39	7	-	-	0	37 22	00 51	-	5	-	-	-
6:00 PM	6:00 PM 6:15 PM	-	-	-	-	25	5	-	-	0	9	31	-	9	-	-	-
6:00 PM	6:30 PM	-	-	-	-	18	2	-	-	0	10	31 14	-	3	-	-	-
	ection PHV:	_	- 0	-	-	10		-	-	0	• •		-	3	-		-
interse	ection PHV: PHF:		0 0.00	0 0.00	0 0.00		42 0.53	0 0.00	0 0.00		100 0.68	262 0.86	0 0.00		0 0.00	0 0.00	0 0.00
		D				<u> </u>	0.53	0.00	0.00		U.0ŏ	U.80	0.00	<u> </u>			
		ction Pea		5:00 PN		JIVI II				1		200		Ir	tersection		0.93
Study	Area PHV: PHF:		0 0.00	0 0.00	0 0.00		66 0.83	0 0.00	0 0.00		56 0.50	229 0.75	0 0.00		0 0.00	0 0.00	0 0.00
		L Doo!:					0.03	0.00	0.00		0.50	0.73	0.00	<u> </u>			
	Stua	y Peak	Hour:	4:30 P	'IVI - 5:3	SU PIVI								<u> </u>	dy Area	I PHF:	บ.ชา

Observations:

DeShazo Group, Inc.

Location: San Jacinto Boulevard at 17th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016*Project-ID #: *15206-19*Weather Conditions: *Mild/Normal Conditions*Traffic Control: *Unsignalized*

Data Source: CJ Hensch Description: Minor-Street STOP Controlled

						-											
Time	e of	N	lorthb	ound o	n	S	outhb	ound o	n		Eastbo	und or	า	V	Vestbo	und o	n
Cou	ınt	Sa	ın Jaci	nto Bl	∕d.	Sa	n Jaci	nto Bl			17th 3	Street			17th \$	Street	
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R	Peds	L	T	R
7:00 AM	7:15 AM	3	-	-	-	0	13	76	-	13	-	4	41	3	-	-	-
7:15 AM	7:30 AM	6	-	-	-	2	12	111	-	5	-	8	25	7	-	-	-
7:30 AM	7:45 AM	6	-	-	-	6	8	99	-	6	-	5	20	11	-	-	-
7:45 AM	8:00 AM	7	-	-	-	6	12	111	-	4	-	8	28	3	-	-	-
8:00 AM	8:15 AM	3	-	-	-	7	12	124	-	0	-	3	40	2	-	-	-
8:15 AM	8:30 AM	1	-	-	-	4	9	122	-	5	-	1	30	4	-	-	-
8:30 AM	8:45 AM	5	-	-	-	3	11	111	-	0	-	5	29	4	-	-	-
8:45 AM	9:00 AM	3	-	-	-	2	8	124	-	14	-	7	18	5	-	-	-
Interse	ction PHV:		0	0	0		44	468	0		0	17	127		0	0	0
	PHF:		0.00	0.00	0.00		0.92	0.94	0.00		0.00	0.53	0.79		0.00	0.00	0.00
	Intersed	ction Pea	k Hour:	7:45 AN	1 - 8:45 A	NM								<u> </u>	tersectio	n PHF:	0.92
Study A	rea PHV:		0	0	0		44	468	0		0	17	127		0	0	0
•	PHF:		0.00	0.00	0.00		0.92	0.94	0.00		0.00	0.53	0.79		0.00	0.00	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM				·				Stud	dy Area	PHF:	0.92
4:30 PM	4:45 PM	12	-	-	-	4	30	194	-	3		23	37	13	-	-	-
4:45 PM	5:00 PM	11	-	-	-	8	22	165	-	15	-	31	44	13	-	-	-
5:00 PM	5:15 PM	19	-	-	-	13	30	204	-	0	-	48	52	20	-	-	-
5:15 PM	5:30 PM	9	-	-	-	3	18	164	-	2	-	38	42	7	-	-	-
5:30 PM	5:45 PM	5	-	-	-	9	15	163		1	-	51	26	20	-	-	-
5:45 PM	6:00 PM	14	-	-	-	4	11	135	-	6	-	34	25	15	-	-	-
6:00 PM	6:15 PM	10	-	-	-	5	13	122	-	2	-	12	24	9	-	-	-
6:15 PM	6:30 PM	4	-	-	-	2	4	122	-	2	-	11	7	8	-	-	-
Interse	ction PHV:		0	0	0		100	727	0		0	140	175		0	0	0
	PHF:		0.00	0.00	0.00		0.83	0.89	0.00		0.00	0.73	0.84		0.00	0.00	0.00
	Intersed	ction Pea	k Hour:	4:30 PN	1 - 5:30 F	PM								Ir	tersectio	n PHF:	0.85
Study A	Area PHV:		0	0	0		100	727	0		0	140	175		0	0	0
	PHF:	<u> </u>	0.00	0.00	0.00		0.83	0.89	0.00		0.00	0.73	0.84		0.00	0.00	0.00
	Stud	y Peak	Hour:	4:30 P	M - 5:3	O PM								Stud	dy Area	PHF:	0.85

Observations:

DeShazo Group, Inc.

Location: Trinity Street at 17th Street

City/State: Austin, Texas Data Collector(s): Camera

Day/Date: Tuesday, March 22, 2016 Weather Conditions: Mild/Normal Conditions Project-ID #: **15206-20** Traffic Control: **Unsignalized**

Data Source: CJ Hensch Description: Minor-Street STOP Controlled

Time				ound o		S		ound o		E		und or Street	า	V	Vestbo	ound o Street	n
Begin	End	Peds	L	T	R	Peds	L	T	R	Peds	L	T	R	Peds	L	T	R
7:00 AM	7:15 AM	0	-	69	-	0	-	-	-	1	10	-	-	-	-	-	-
7:15 AM	7:30 AM	0	-	96	-	0	-	_	-	1	15	_	-	-	-	-	-
7:30 AM	7:45 AM	0	-	98	-	0	-	-	-	1	8	-	-	-	-	-	-
7:45 AM	8:00 AM	0	-	102	-	0	-	-	-	2	12	-	-	-	-	-	-
8:00 AM	8:15 AM	0	-	104	-	0	-	-	-	2	8	-	-	-	-	-	-
8:15 AM	8:30 AM	0	-	80	-	2	-	-	-	1	6	-	-	-	-	-	-
8:30 AM	8:45 AM	0	-	72	-	2	-	-	-	0	13	-	-	-	-	-	-
8:45 AM	9:00 AM	0	-	95	-	8	-	-	-	2	13	-	-	-	-	-	-
Interse	ction PHV:		0	400	0		0	0	0		43	0	0		0	0	0
	PHF:		0.00	0.96	0.00		0.00	0.00	0.00		0.72	0.00	0.00		0.00	0.00	0.00
	Interse	ction Pea	ak Hour:	7:15 AN	1 - 8:15 A	AM								Ir	ntersectio	on PHF:	0.97
Study A	Area PHV:		0	358	0		0	0	0		39	0	0		0	0	0
	PHF:		0.00	0.86	0.00		0.00	0.00	0.00		0.75	0.00	0.00		0.00	0.00	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.87
4:30 PM	4:45 PM	1		101		0				5	57						
4:45 PM	5:00 PM	0	_	104	-	0	_	-	-	2	50	-	-	_	-	-	_
5:00 PM	5:15 PM	0	_	141	_	o	_	_	_	7	78	_	_	_	_	_	_
5:15 PM	5:30 PM	0	-	135	_	0	-	-	_	2	63	_	_	_		_	-
5:30 PM	5:45 PM	0	-	108	-	0	-	-	-	0	66	-	-	-	-	-	-
5:45 PM	6:00 PM	0	-	106	-	0	-	-	-	1	45	-	-	-	-	-	-
6:00 PM	6:15 PM	0	-	70	-	0	-	-	-	2	29	-	-	-	-	-	-
6:15 PM	6:30 PM	0	-	47	-	0	-	-	-	1	16	-	-	-	-	-	-
Interse	ction PHV:		0	488	0		0	0	0		257	0	0		0	0	0
	PHF:		0.00	0.87	0.00		0.00	0.00	0.00		0.82	0.00	0.00		0.00	0.00	0.00
	Interse	ction Pea	k Hour:	4:45 PN	1 - 5:45 F	PM								Ir	ntersectio	on PHF:	0.85
Study A	Area PHV:		0	481	0		0	0	0		248	0	0		0	0	0
	PHF:	<u></u>	0.00	0.85	0.00		0.00	0.00	0.00		0.79	0.00	0.00		0.00	0.00	0.00
	Stud	y Peak	Hour:	4:30 P	M - 5:3	O PM								Stud	dy Area	PHF:	0.83

Observations:

DeShazo Group, Inc.

Location: Guadalupe Street at 18th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March* 22, 2016 Weather Conditions: *Mild/Normal Conditions*

Project-ID #: 15206-21 Traffic Control: Unsignalized

Data Source: CJ Hensch Description: All-Way STOP Controlled

Time				ound o		_	outhbo			E		und or	ı	١	Vestbo		n
Cou			Jadaiu	pe Stre			ıadalu _l			Dodo	18tn (Street	_	Dodo		Street	
Begin	End	Peds	L	<u>T</u>	R	Peds	L	<u> </u>	R	Peds	L	<u>T</u>	R	Peds	L	<u>T</u>	R
7:00 AM	7:15 AM	0	-	-	-	0	-	87	5	1	-	-	-	0	4	2	-
7:15 AM	7:30 AM	3	-	-	-	0	-	147	4	14	-	-	-	2	6	5	-
7:30 AM	7:45 AM	1	-	-	-	1	-	160	5	7	-	-	-	3	5	3	-
7:45 AM	8:00 AM	2	-	-	-	2	-	214	5	9	-	-	-	2	9	5	-
8:00 AM	8:15 AM	2	-	-	-	3	-	231	10	12	-	-	-	4	12	4	-
8:15 AM	8:30 AM	1	-	-	-	3	-	247	8	7	-	-	-	2	11	4	-
8:30 AM	8:45 AM	1	-	-	-	3	-	250	7	11	-	-	-	5	9	5	-
8:45 AM	9:00 AM	4	-	-	-	3	-	257	3	9	-	-	-	8	10	1	-
Interse	ction PHV:		0	0	0		0	985	28		0	0	0		42	14	0
	PHF:		0.00	0.00	0.00		0.00	0.96	0.70		0.00	0.00	0.00		0.88	0.70	0.00
	Intersed	ction Pea	k Hour:	8:00 AN	1 - 9:00 A	AM				•				Ir	ntersectio	on PHF:	0.99
Study A	Area PHV:		0	0	0		0	942	30		0	0	0		41	18	0
	PHF:		0.00	0.00	0.00		0.00	0.94	0.75		0.00	0.00	0.00		0.85	0.90	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.95
													ı				1
4:30 PM	4:45 PM	3	-	-	-	4	-	255	6	30	-	-	-	7	12	25	-
4:45 PM	5:00 PM	2	-	-	-	1	-	228	7	18	-	-	-	7	15	25	-
5:00 PM	5:15 PM	5	-	-	-	3	-	233	12	24	-	-	-	9	14	41	-
5:15 PM	5:30 PM	5	-	-	-	3	-	217	14	9	-	-	-	9	16	46	-
5:30 PM	5:45 PM	5	-	-	-	3	-	195	8	20	-	-	-	1	17	42	-
5:45 PM	6:00 PM	2	-	-	-	5	-	274	11	24	-	-	-	4	12	26	-
6:00 PM	6:15 PM	4	-	-	-	6	-	244	6	20	-	-	-	7	12	13	-
6:15 PM	6:30 PM	7	-	-	-	0	-	204	9	17	-	-	-	6	17	14	-
Interse	ction PHV:		0	0	0		0	919	45		0	0	0		59	155	0
	PHF:		0.00	0.00	0.00		0.00	0.84	0.80		0.00	0.00	0.00		0.87	0.84	0.00
		ction Pea		5:00 PN		PM								Ir	ntersectio		0.91
Study A	Area PHV:		0	0	0		0	933	39		0	0	0		57	137	0
	PHF:		0.00	0.00	0.00		0.00	0.91	0.70		0.00	0.00	0.00		0.89	0.74	0.00
	Stud	y Peak	Hour:	4:30 P	PM - 5:3	O PM								Stu	dy Area	a PHF:	0.97

Observations:

DeShazo Group, Inc.

Location: Lavaca Street at 18th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016*Project-ID #: *15206-22*Weather Conditions: *Mild/Normal Conditions*Traffic Control: *Unsignalized*

Data Source: CJ Hensch

Description: Minor-Street STOP Controlled

Tim				ound o				ound o				ound o	n		Nestbo		n
Co			Lavaca	a Stree			Lavaca	Stree			18th	Street			18th 3	Street	
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R
7:00 AM	7:15 AM	2	1	100	-	0	-	-	-	0	-	-	-	3	-	5	3
7:15 AM	7:30 AM	3	5	116	-	0	-	-	-	2	-	-	-	6	-	5	5
7:30 AM	7:45 AM	4	4	120	-	5	-	-	-	2	-	-	-	9	-	4	2
7:45 AM	8:00 AM	4	8	140	-	2	-	-	-	8	-	-	-	3	-	4	4
8:00 AM	8:15 AM	1	8	128	-	3	-	-	-	3	-	-		4	-	8	5
8:15 AM	8:30 AM	4	12	117	-	4	-	-	-	4	-	-	-	10	-	3	5
8:30 AM	8:45 AM	0	4	126	-	9	-	-	-	10	-	-	-	4	-	7	8
8:45 AM	9:00 AM	2	7	106	-	3	-	-	-	4	-	-	-	13	-	8	8
Interse	ection PHV:		32	511	0		0	0	0		0	0	0		0	22	22
	PHF:		0.67	0.91	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.69	0.69
	Interse	ction Pea	ak Hour:	7:45 AN	1 - 8:45 A	AM								lr	ntersectio	on PHF:	0.94
Study	Area PHV:		32	511	0		0	0	0		0	0	0		0	22	22
	PHF:		0.67	0.91	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.69	0.69
	Stud	y Peak	Hour:	7:45 A	M - 8:4	15 AM								Stu	dy Area	PHF:	0.94
4:30 PM	4:45 PM	7	16	247							I			10		18	
4:30 PM 4:45 PM	4:45 PIVI 5:00 PM	7	20	247 247	-	0 3	-	-	-	9 11	-	-	-	12 6	-	18 19	8 8
5:00 PM	5:00 PM	3	33	203	-	1	_	-	-	10	_	-	-	8	_	19 24	0 11
5:00 PM	5:15 PM	4	33 44	203	-	2	_	-	-	6	_	-	-	9	_	24 18	1
5:30 PM	5:45 PM	0	37	164		4				7				9		20	3
5:45 PM	6:00 PM	1	23	215	_	2	_	_	_	11	_	_	_	15	_	17	8
6:00 PM	6:15 PM	10	15	212	_	6	_	_	_	13	_	_	_	17	_	11	8
6:15 PM	6:30 PM	3	18	190	-	0	-	_	-	4	_	-	-	11	-	12	8
	ection PHV:		113	900	0		0	0	0		0	0	0		0	79	28
1110101	PHF:		0.64	0.91	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.82	0.64
		ction Pea	ak Hour	4:30 PN		<u> </u>				<u> </u>				<u>Ir</u>	ntersectio		0.95
Study	Area PHV:		113	900	0	<u> </u>	0	0	0		0	0	0		0	79	28
	PHF:		0.64	0.91	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.82	0.64
	Stud	y Peak	Hour:	4:30 P	M - 5:3	30 PM								Stu	dy Area	a PHF:	0.95
		-													-		

Observations:

DeShazo Group, Inc.

Location: Colorado Street at 18th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016* Weather Conditions: *Mild/Normal Conditions*

Project-ID #: 15206-23 Traffic Control: Unsignalized

Data Source: CJ Hensch Description: All-Way STOP Controlled

Time		I		ound o			outhbo					und or Street	ı	V	Vestbo	ound o Street	n
Cοι Begin	End	Peds	olorad L	lo Stre	et R	Peds	olorad L	o Stree	eτ R	Peds	18tn (Street T	R	Peds	L	Street T	R
7:00 AM	7:15 AM	5	3	3	IX.	6		42	2	5	_	-	IX	8	2	3	1
7:00 AM 7:15 AM	7:13 AM	7	2	3	-	3		43	3	5	_	_	-	6	6	J 1	3
7:30 AM	7:45 AM	8	2	5	_	11	-	47	3	12	-	_	_	6	5	2	5
7:45 AM	8:00 AM	5	2	8	_	13	-	46	5	4	_	_	_	14	3	3	0
8:00 AM	8:15 AM	2	3	6	-	2	-	58	3	0	-	-	-	1	6	3	1
8:15 AM	8:30 AM	4	0	2	-	7	-	45	7	3	-	-	-	3	6	0	0
8:30 AM	8:45 AM	1	7	7	-	10	-	46	4	2	-	-	-	2	5	4	2
8:45 AM	9:00 AM	4	2	4	-	5	-	40	7	1	-	-	-	2	1	4	0
Interse	ction PHV:		12	23	0		0	195	19		0	0	0		20	10	3
	PHF:		0.43	0.72	0.00		0.00	0.84	0.68		0.00	0.00	0.00		0.83	0.63	0.38
	Intersed	ction Pea	k Hour:	7:45 AN	1 - 8:45 A	\М								Ir	ntersectio	on PHF:	0.88
Study A	Area PHV:		12	23	0		0	195	19		0	0	0		20	10	3
	PHF:		0.43	0.72	0.00		0.00	0.84	0.68		0.00	0.00	0.00		0.83	0.63	0.38
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	88.0
4:00 DM	4.45 DM		-	20		40		00	40					40	44	40	•
4:30 PM 4:45 PM	4:45 PM 5:00 PM	7	7 4	30 16	-	10 10	-	23 11	10 4	5 3	-	-	-	10 9	14 10	16 20	6 6
5:00 PM	5:15 PM	7	11	21	-	7	_	14	5	1	_	-		8	8	22	4
5:15 PM	5:30 PM	1	7	19	-	4		15	5	3	_	-	-	2	7	12	4
5:30 PM	5:45 PM	2	11	27		3	-	20	7	1	-		-	2	8	12	5
5:45 PM	6:00 PM	0	6	11	-	3	-	11	8	3	-	-	-	1	10	7	1
6:00 PM	6:15 PM	4	5	14	-	9	-	12	5	2	-	-	-	9	5	8	8
6:15 PM	6:30 PM	1	3	9	-	3	-	8	9	2	-	-	-	3	3	7	14
Interse	ction PHV:		29	86	0		0	63	24		0	0	0		39	70	20
	PHF:		0.66	0.72	0.00		0.00	0.68	0.60		0.00	0.00	0.00		0.70	0.80	0.83
	Intersed	ction Pea	k Hour:	4:30 PN	Л - 5:30 F	PM								Ir	ntersectio	on PHF:	0.78
Study A	Area PHV:		29	86	0		0	63	24		0	0	0		39	70	20
	PHF:		0.66	0.72	0.00		0.00	0.68	0.60		0.00	0.00	0.00		0.70	0.80	0.83
	Stud	y Peak	Hour:	4:30 P	PM - 5:3	O PM								Stud	dy Area	PHF:	0.78

Observations:

DeShazo Group, Inc.

Location: Congress Avenue at 18th Street

City/State: **Austin, Texas**Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016*Project-ID #: 15206-24

Weather Conditions: *Mild/Normal Conditions*Traffic Control: *Unsignalized*

Data Source: CJ Hensch

Description: All-Way STOP Controlled

Time		N	orthbo	ound o	n	S	outhbo	ound o	n	E	Eastbo	und or)	V	Vestbo	und o	n
Cou	ınt	Co	ngres	s Aven	ue		ngres	s Aven	ue		18th 3	Street			18th \$	Street	
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R
7:00 AM	7:15 AM	1	4	13		0	-	14	7	4	-	-	-	2	0	5	3
7:15 AM	7:30 AM	12	8	17	-	1	-	13	13	7	-	-	-	9	4	4	0
7:30 AM	7:45 AM	2	17	18	-	3	-	19	17	9	-	-	-	4	2	5	0
7:45 AM	8:00 AM	8	9	16	-	1	-	19	23	10	-	-	-	1	1	6	1
8:00 AM	8:15 AM	0	3	16	-	0	-	13	12	9	-	-	-	1	0	3	1
8:15 AM	8:30 AM	4	15	10	-	2	-	19	12	8	-	-	-	0	5	4	2
8:30 AM	8:30 AM 4 15 10 - 2 - 19 12 8 - - - 0 5 8:45 AM 1 16 11 - 3 - 19 16 4 - - - 1 4 9:00 AM 12 9 10 - 1 - 9 9 9 - - - 2 3 Section PHV: PHF: 44 60 0												4	10	1		
8:45 AM	9:00 AM	12	9	10	-	1	-	9	9	9	-	-	-	1			
Interse	ection PHV:		44	60	0		0	70	64		0	0	0		8	18	4
	PHF:		0.65	0.83	0.00		0.00	0.92	0.70		0.00	0.00	0.00		0.40	0.75	0.50
	Intersed	ction Pea	k Hour:	7:30 AN	1 - 8:30 A	\M								In	ntersectio	on PHF:	0.86
Study A	Area PHV:		43	53	0		0	70	63		0	0	0		10	23	5
	PHF:		0.67	0.83	0.00		0.00	0.92	0.68		0.00	0.00	0.00		0.50	0.58	0.63
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.87
4:30 PM	4:45 PM	12	5	43	-	4	-	21	7	16	-	-	-	13	32	13	30
4:45 PM	5:00 PM	6	3	52	-	2	-	28	4	17	-	-	-	5	13	13	16
5:00 PM	5:15 PM	12	3	<i>54</i>	-	1	-	31	2	21	_						
5:15 PM	5:30 PM	1 1				_			_		_	-	-	10	25	14	36
E 00 D14	E 45 DM		2	47	-	3	-	27	2	11	-	- -	- -	2	7	10	26
5:30 PM	5:45 PM	3	1	60	-	3	-	24	2	11	<u>-</u> -	- -	- -	2	7	10	26 17
5:45 PM	6:00 PM	3 1		60 29	- - -	3 2	- -	24 15	2 5 6	11 18 8	- - -	- - -	- - -	2 8 5	7 8 9	10 11 4	26 17 2
5:45 PM 6:00 PM	6:00 PM 6:15 PM	3 1 1	1 5 1	60 29 32	- - -	3	- - -	24 15 19	2	11 18 8 17	- - - -	- - - -	- - - -	2	7 8 9 6	10 11 4 4	26 17 2 6
5:45 PM 6:00 PM 6:15 PM	6:00 PM 6:15 PM 6:30 PM	3 1	1 5 1 0	60 29 32 24	- - - -	3 2	- - - -	24 15 19 15	5 6 3 1	11 18 8	- - - -	- - - - -	- - - -	2 8 5	7 8 9 6 8	10 11 4 4 2	26 17 2 6 7
5:45 PM 6:00 PM 6:15 PM	6:00 PM 6:15 PM 6:30 PM ection PHV:	3 1 1	1 5 1 0	60 29 32 24		3 2	- - - - 0	24 15 19 15	5 6 3 1	11 18 8 17	- - - - -		- - - - - 0	2 8 5	7 8 9 6 8	10 11 4 4 2 50	26 17 2 6 7
5:45 PM 6:00 PM 6:15 PM	6:00 PM 6:15 PM 6:30 PM ection PHV: PHF:	3 1 1 1	1 5 1 0 13 0.65	60 29 32 24 196 0.91	0.00	3 2 5 1	- - - - 0 0.00	24 15 19 15	5 6 3 1	11 18 8 17	- - - - 0 0.00	- - - - - 0 0.00	- - - - - - 0 0.00	8 5 3 1	7 8 9 6 8 77 0.60	10 11 4 4 2 50 0.89	26 17 2 6 7 108 0.75
5:45 PM 6:00 PM 6:15 PM	6:00 PM 6:15 PM 6:30 PM ection PHV: PHF:	3 1 1	1 5 1 0 13 0.65	60 29 32 24 196 0.91 4:30 PM	0.00 1 - 5:30 F	3 2 5 1	0.00	24 15 19 15 107 0.86	5 6 3 1 15 0.54	11 18 8 17	0.00	0.00	0.00	8 5 3 1	7 8 9 6 8 77 0.60	10 11 4 4 2 50 0.89 on PHF:	26 17 2 6 7 108 0.75
5:45 PM 6:00 PM 6:15 PM	6:00 PM 6:15 PM 6:30 PM ection PHV: PHF: Intersect	3 1 1 1	1 5 1 0 13 0.65 k Hour:	60 29 32 24 196 0.91 4:30 PN	0.00 1 - 5:30 F	3 2 5 1	0.00	24 15 19 15 107 0.86	2 5 6 3 1 15 0.54	11 18 8 17	0.00	0.00	0.00	8 5 3 1	7 8 9 6 8 77 0.60 otersection	10 11 4 4 2 50 0.89 on PHF:	26 17 2 6 7 108 0.75 0.86
5:45 PM 6:00 PM 6:15 PM	6:00 PM 6:15 PM 6:30 PM ection PHV: PHF: Intersect Area PHV: PHF:	3 1 1 1	1 5 1 0 13 0.65 nk Hour: 13 0.65	60 29 32 24 196 0.91 4:30 PM 196 0.91	0.00 1 - 5:30 F	3 2 5 1	0.00	24 15 19 15 107 0.86	5 6 3 1 15 0.54	11 18 8 17	0.00	0.00	0.00	2 8 5 3 1	7 8 9 6 8 77 0.60	10 11 4 4 2 50 0.89 on PHF: 50 0.89	26 17 2 6 7 108 0.75 0.86 108 0.75

Observations:

DeShazo Group, Inc.

Location: Brazos Street at 18th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016* Weather Conditions: *Mild/Normal Conditions*

Project-ID #: 15206-25 Traffic Control: Unsignalized

Data Source: CJ Hensch Description: All-Way STOP Controlled

Time				ound o			outhbo Brazos			I		und or S <i>treet</i>	า	\	Nestbo	ound o Street	n
Begin	End	Peds	L	T	R	Peds	L	T	R	Peds	L	T	R	Peds	L	T	R
7:00 AM	7:15 AM	7	0	9	-	1	-	31	6	7	-	-	-	5	3	4	8
7:15 AM	7:30 AM	12	1	9	-	5	-	36	3	20	-	-	-	7	3	5	5
7:30 AM	7:45 AM	4	1	9	-	2	-	25	3	16	-	-	-	4	4	6	5
7:45 AM	8:00 AM	7	1	2	-	1	-	76	4	7	-	-	-	3	3	4	3
8:00 AM	8:15 AM	7	1	6	-	2	-	51	3	1	-	-	-	2	6	4	2
8:15 AM	8:30 AM	14	4	3	-	3	-	49	6	1	-	-	-	10	3	2	1
8:30 AM	8:45 AM	10	2	4	-	0	-	39	3	4	-	-	-	7	4	8	1
8:45 AM	9:00 AM	8	4	8	-	0	-	30	2	5	-	-	-	5	0	3	1
Interse	ection PHV:		8	15	0		0	215	16		0	0	0		16	18	7
	PHF:		0.50	0.63	0.00		0.00	0.71	0.67		0.00	0.00	0.00		0.67	0.56	0.58
	Intersed	ction Pea	k Hour:	7:45 AN	1 - 8:45 A	<u>4M</u>								Ir	ntersectio	on PHF:	0.79
Study A	Area PHV:		8	15	0		0	215	16		0	0	0		16	18	7
	PHF:		0.50	0.63	0.00		0.00	0.71	0.67		0.00	0.00	0.00		0.67	0.56	0.58
	Stud	y Peak	Hour:	7:45 A	M - 8:4	15 AM								Stud	dy Area	a PHF:	0.79
4:30 PM	4:45 PM	8	41	38		1		16	27	6				5	1	10	3
4:45 PM	5:00 PM	4	19	30	_	2	_	15	11	9	_	-	-	2	4	10	4
5:00 PM	5:15 PM	8	50	40	_	3	_	14	19	8	_	_	_	7	3	7	0
5:15 PM	5:30 PM	3	23	46	_	2	-	9	7	1	_	-	-	o	2	10	8
5:30 PM	5:45 PM	4	21	49	-	1	-	3	8	2	-	-	-	1	0	7	2
5:45 PM	6:00 PM	1	12	32	-	0	-	6	3	1	-	-	-	0	1	3	3
6:00 PM	6:15 PM	1	11	22	-	1	-	2	4	2	-	-	-	0	3	0	0
6:15 PM	6:30 PM	0	6	19	-	0	-	0	4	0	-	-	-	0	0	2	1
Interse	ection PHV:		133	154	0		0	54	64		0	0	0		10	37	15
	PHF:		0.67	0.84	0.00		0.00	0.84	0.59		0.00	0.00	0.00		0.63	0.93	0.47
	Intersed	ction Pea	k Hour:	4:30 PN	1 - 5:30 F	PM								Ir	ntersectio	on PHF:	0.86
Study A	Area PHV:		133	154	0		0	54	64		0	0	0		10	37	15
	PHF:		0.67	0.84	0.00		0.00	0.84	0.59		0.00	0.00	0.00		0.63	0.93	0.47
		v Peak													dy Area		

Observations:

DeShazo Group, Inc.

Location: San Jacinto Boulevard at 18th Street

City/State: Austin, Texas Data Collector(s): Camera

Day/Date: *Tuesday, March 22, 2016* Weather Conditions: *Mild/Normal Conditions*

Project-ID #: 15206-26 Traffic Control: Unsignalized

Data Source: CJ Hensch Description: All-Way STOP Controlled

Time		N	orthb	ound o	n	S	outhb	ound o	n			und or	ı	/	Vestbo		n
Cou			an Jaci	nto Bl			n Jaci	nto Bl			18th :	Street			18th 3	Street	
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R
7:00 AM	7:15 AM	3	-	-	-	1	-	104	6	12	-	-	-	1	24	9	-
7:15 AM	7:30 AM	19	-	-	-	7	-	114	2	9	-	-	-	6	41	12	-
7:30 AM	7:45 AM	4	-	-	-	1	-	122	5	4	-	-	-	3	28	12	-
7:45 AM	8:00 AM	12	-	-	-	3	-	126	2	9	•	-	-	0	41	7	-
8:00 AM	8:15 AM	8	-	-	•	12	-	137	5	4	-	-	-	2	36	8	
8:15 AM	8:30 AM	21	-	-	-	7	-	134	4	3	-	-	-	4	37	6	-
8:30 AM	8:45 AM	16	-	-	-	3	-	114	5	8	-	-	-	0	21	13	-
8:45 AM	9:00 AM	10	-	-	-	1	-	123	1	14	-	-	-	1	27	5	-
Interse	ction PHV:		0	0	0		0	519	16		0	0	0		142	33	0
	PHF:		0.00	0.00	0.00		0.00	0.95	0.80		0.00	0.00	0.00		0.87	0.69	0.00
	Intersed	ction Pea	ak Hour:	7:30 AN	1 - 8:30 A	NM								Ir	ntersectio	on PHF:	0.95
Study A	Area PHV:		0	0	0		0	511	16		0	0	0		135	34	0
	PHF:		0.00	0.00	0.00		0.00	0.93	0.80		0.00	0.00	0.00		0.82	0.65	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.94
	1		ı			1	ı		-				1				
4:30 PM	4:45 PM	11	-	-	-	2	-	119	6	4	-	-	-	6	16	9	-
4:45 PM	5:00 PM	5	-	-	-	6	-	127	3	14	-	-	-	2	8	14	-
5:00 PM	5:15 PM	10	-	-	-	9	-	115	0	9	-	-	-	10	27	7	-
5:15 PM	5:30 PM	1	-	-	-	0	-	126	3	5	-	-	-	2	17	14	-
5:30 PM	5:45 PM	3	-	-	-	2	-	120	1	9	-	-	-	7	15	8	-
5:45 PM	6:00 PM	3	-	-	-	4	-	113	3	9	-	-	-	2	10	6	-
6:00 PM	6:15 PM	1	-	-	-	0	-	94	0	4	-	-	-	7	9	1	-
6:15 PM	6:30 PM	2	-	-	-	1	-	106	3	6	-	-	-	3	11	2	-
Interse	ction PHV:		0	0	0		0	487	12		0	0	0		68	44	0
	PHF:		0.00	0.00	0.00		0.00	0.96	0.50		0.00	0.00	0.00		0.63	0.79	0.00
		ction Pea	ak Hour:	4:30 PN	1 - 5:30 F	PM								Ir	ntersectio	n PHF:	0.95
Study A	Area PHV:		0	0	0		0	487	12		0	0	0		68	44	0
	PHF:		0.00	0.00	0.00		0.00	0.96	0.50		0.00	0.00	0.00		0.63	0.79	0.00
I	Stud	y Peak	Hour:	4:30 P	M - 5:3	O PM								Stud	dy Area	PHF:	0.95

Observations:

DeShazo Group, Inc.

Location: Trinity Street at 18th Street

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March 22, 2016* Weather Conditions: *Mild/Normal Conditions*

Project-ID #: 15206-27 Traffic Control: Unsignalized

Data Source: CJ Hensch Description: Minor-Street STOP Controlled

Time				ound o			outhb					und or	1	V	Vestbo		n
Cou			Trinity	Street			Trinity	Street			18th :	Street			18th S	Street	
Begin	End	Peds	L	Т	R	Peds	L	T	R	Peds	L	T	R	Peds	L	T	R
7:00 AM	7:15 AM	0	31	43	-	0	-	-	-	2	-	-	-	-	-	-	-
7:15 AM	7:30 AM	1	55	50	-	0	-	-	-	0	-	-	-	-	-	-	-
7:30 AM	7:45 AM	0	43	62	-	4	-	-	-	1	-	-	-	-	-	-	-
7:45 AM	8:00 AM	0	54	58	-	0	-	-	-	2	•	-	-	-	-	-	-
8:00 AM	8:15 AM	0	44	64		0	-	-	-	3	•	-	-	-	-	-	-
8:15 AM	8:30 AM	0	44	45	-	2	-	-	-	0	-	-	-	-	-	-	-
8:30 AM	8:45 AM	0	34	49	-	5	-	-	-	4	-	-	-	-	-	-	-
8:45 AM	9:00 AM	1	29	73	-	9	-	-	-	7	-	-	-	-	-	-	-
Interse	ction PHV:		196	234	0		0	0	0		0	0	0		0	0	0
	PHF:		0.89	0.91	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
	Intersed	ction Pea	k Hour:	7:15 AN	1 - 8:15 A	\М								Ir	ntersectio	n PHF:	0.96
Study A	Area PHV:		176	216	0		0	0	0		0	0	0		0	0	0
	PHF:		0.81	0.84	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.88
4:30 PM	4:45 PM	1	25	132													
4:30 PW	5:00 PM	0	25 25	132	-	6 2	-	-	-	8 5	-	-	-	-	-	-	-
5:00 PM	5:00 PM	0	39	156	-	0	_	-	-	10	_	-	-	_	-	-	-
5:00 PM	5.15 PM	1	39 46	167	-	2	_	-	-	4	_	-	_ [_	-	-
5:30 PM	5:45 PM	0	25	155		2	_		-	3			-				
5:45 PM	6:00 PM	1	21	126	-	2	_	-	-	2	-	-			_	-	-
6:00 PM	6:15 PM	0	11	98	_	0	_	_	_	3	_	_	_]	_	_	_	_
6:15 PM	6:30 PM	0	9	55	-	3	-	-	-	4	-	-	-	-	-	-	-
	ction PHV:		135	616	0		0	0	0		0	0	0		0	0	0
	PHF:		0.73	0.92	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
	Intersed	ction Pea	k Hour:	4:45 PN	1 - 5:45 F	PM								<u> </u>	ntersectio	n PHF:	0.88
Study A	Area PHV:		135	593	0		0	0	0		0	0	0		0	0	0
	PHF:		0.73	0.89	0.00		0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00
	Stud	y Peak	Hour:	4:30 P	M - 5:3	0 PM								Stud	dy Area	PHF:	0.85

Observations:

DeShazo Group, Inc.

Location: Guadalupe Street at Martin Luther King Jr Boulevard

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: **Tuesday, March 22, 2016** Weather Conditions: **Mild/Normal Conditions**

Project-ID #: 15206-28 Traffic Control: Signalized

Data Source: CJ Hensch

Time	e of	I		ound o			outhb					und or			Nestbo		
Cou			uadalu	pe Stre			ıadalu	pe Stre			MLK J	r Blvd.			MLK J	r Blvd.	
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R
7:00 AM	7:15 AM	0	-	-	-	1	43	48	7	0	10	154	17	1	0	94	44
7:15 AM	7:30 AM	4	-	-	-	6	44	81	13	4	10	178	36	10	0	112	55
7:30 AM	7:45 AM	4	-	-	-	2	57	104	18	7	14	160	22	9	0	130	54
7:45 AM	8:00 AM	4	-	-	-	2	56	123	29	5	13	239	40	8	0	134	73
8:00 AM	8:15 AM	6	-	-	-	0	60	161	31	11	17	148	37	8	0	106	<i>7</i> 6
8:15 AM	8:30 AM	4	-	-	-	0	52	176	31	5	21	146	37	5	1	107	63
8:30 AM	8:45 AM	7	-	-	-	0	56	194	33	12	12	137	38	14	0	132	87
8:45 AM	9:00 AM	7	-	-	-	0	51	171	30	7	15	138	43	9	1	162	77
Interse	ection PHV:		0	0	0		224	654	124		63	670	152		1	479	299
	PHF:		0.00	0.00	0.00		0.93	0.84	0.94		0.75	0.70	0.95		0.25	0.89	0.86
	Intersed	ction Pea	ak Hour:	7:45 AN	1 - 8:45 A	AM								Ir	ntersectio	on PHF:	0.94
Study A	Area PHV:		0	0	0		224	654	124		63	670	152		1	479	299
	PHF:		0.00	0.00	0.00		0.93	0.84	0.94		0.75	0.70	0.95		0.25	0.89	0.86
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.94
			1												_		
4:30 PM	4:45 PM	5	-	-	-	12	48	147	62	26	34	75	24	8	0	206	168
4:45 PM	5:00 PM	3	-	-	-	13	41	150	54	21	37	115	15	12	0	231	173
5:00 PM	5:15 PM	3	-	-	-	5	51	162	60	31	39	90	26	10	3	257	137
5:15 PM	5:30 PM	11	-	-		10	30	136	43	18	33	58	30	14	1	238	118
5:30 PM	5:45 PM	10	-	-	-	9	39	116	37	24	31	119	26	9	2	244	135
5:45 PM	6:00 PM	11	-	-	-	10	78	162	46	40	46	101	36	16	0	197	148
6:00 PM	6:15 PM	7	-	-	-	3	83	151	47	33	34	111	36	12	1	176	122
6:15 PM	6:30 PM	14	-	-	-	9	65	123	34	27	21	117	34	10	0	180	116
Interse	ection PHV:		0	0	0		170	595	219		143	338	95 2.72		4	932	596
	PHF:		0.00	0.00	0.00		0.83	0.92	0.88		0.92	0.73	0.79		0.33	0.91	0.86
		ction Pea		4:30 PN		PM				·				<u>Ir</u>	ntersectio		0.94
Study A	Area PHV:		0	0	0		170	595	219		143	338	95		4	932	596
	PHF:	<u> </u>	0.00	0.00	0.00		0.83	0.92	0.88		0.92	0.73	0.79		0.33	0.91	0.86
	Stud	v Peak	Hour:	4:30 P	'IVI - 5:3	KO PM								Stu	dy Area	PHF.	0.94

Observations:

DeShazo Group, Inc.

Location: Lavaca Street at Marting Luther King Jr Boulevard

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: Tuesday, March 22, 2016 Weather Conditions: Mild/Normal Conditions

Project-ID #: 15206-29 Traffic Control: Signalized

Data Source: CJ Hensch

Time				ound o			outhbo			I	Eastbo				Vestbo		
Cou				Stree			Lavaca				MLK J				MLK J		
Begin	End	Peds	L	T	R	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R
7:00 AM	7:15 AM	2	58	-	47	-	-	-	-	-	-	191	-	5	-	108	-
7:15 AM	7:30 AM	1	63	-	52	-	-	-	-	-	-	217	-	9	-	135	-
7:30 AM	7:45 AM	1	75	-	52	-	-	-	-	-	-	224	-	13	-	156	-
7:45 AM	8:00 AM	6	73	-	65	-	-	-	-	-	-	289	-	14	-	175	-
8:00 AM	8:15 AM	1	80	-	66	-	-	-	-	-	-	217	-	12	-	166	-
8:15 AM	8:30 AM	1	61	-	41	-	-	-	-	-	-	198	-	12	-	154	-
8:30 AM	8:45 AM	3	95	-	38	-	-	-	-	-	-	193	-	9	-	170	-
8:45 AM	9:00 AM	5	72	-	38	-	-	-	-	-	-	191	-	19	-	193	-
Interse	ction PHV:		291	0	235		0	0	0		0	947	0		0	632	0
	PHF:		0.91	0.00	0.89		0.00	0.00	0.00		0.00	0.82	0.00		0.00	0.90	0.00
	Interse	ction Pea	ak Hour:	7:15 AN	1 - 8:15 A	NM								li	ntersectio	n PHF:	0.87
Study A	Area PHV:		309	0	210		0	0	0		0	897	0		0	665	0
	PHF:		0.81	0.00	0.80		0.00	0.00	0.00		0.00	0.78	0.00		0.00	0.95	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stu	dy Area	PHF:	0.86
4:30 PM	4:45 PM	7	179	-	50	-	_		-	_	-	121	- 1	24	_	285	-
4:45 PM	5:00 PM	8	181	_	87	_	_	_	_	_	_	148	_	23	_	287	_
5:00 PM	5:15 PM	14	161	_	49	_	_	_	_	_	_	131	_	32	_	309	_
5:15 PM	5:30 PM	9	163	-	43	-	_	-	-	_	-	88	-	17	_	272	-
5:30 PM	5:45 PM	13	131	-	42	-	-	-	-	-	-	151	-	16	-	268	-
5:45 PM	6:00 PM	20	193	-	74	-	-	-	-	-	-	192	-	32	-	237	-
6:00 PM	6:15 PM	16	142	-	66	-	-	-	-	-	-	210	-	24	-	205	-
6:15 PM	6:30 PM	12	135		65							187		19		227	
Interse	ction PHV:		684	0	229		0	0	0		0	488	0		0	1,153	0
	PHF:	0.66		0.00	0.00	0.00		0.00	0.82	0.00		0.00	0.93	0.00			
		ction Pea		4:30 PN		PM								lr	ntersectio		0.91
Study A	Area PHV:		684	0	229		0	0	0		0	488	0		0	1,153	0
	PHF:		0.94	0.00	0.66		0.00	0.00	0.00		0.00	0.82	0.00		0.00	0.93	0.00
	Stud	y Peak	Hour:	4:30 P	M - 5:3	O PM								Stu	dy Area	PHF:	0.91

Observations:

DeShazo Group, Inc.

Location: Colorado Street at Martin Luther King Jr Boulevard

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: Tuesday, March 22, 2016 Weather Conditions: Mild/Normal Conditions

Project-ID #: 15206-30 Traffic Control: Unsignalized

Data Source: CJ Hensch Description: Minor-Street STOP Controlled

Time				ound o			outhb					und o		'	Nestbo MLK J		
Begin	End	Peds	L	T	R	Peds	L	T	R	Peds	L	<u>г Біуа.</u> Т	R	Peds	L	T	R
7:00 AM	7:15 AM	2	0	-	5	-	-	-	-	1	-	212	23	0	36	124	-
7:15 AM	7:30 AM	1	0	-	4	-	-	-	-	0	-	235	21	0	35	147	-
7:30 AM	7:45 AM	1	0	-	2	-	-	-	-	0	-	242	15	2	44	189	-
7:45 AM	8:00 AM	3	0	-	4	-	•	-	-	0	•	300	26	0	35	182	-
8:00 AM	8:15 AM	0	0	-	6	-	-	-	-	0	-	239	21	0	40	190	-
8:15 AM	8:30 AM	1	0	-	3	-	-	-	-	0	-	204	22	0	32	155	-
8:30 AM	8:45 AM	2	0	-	7	-	-	-	-	0	-	197	19	0	31	191	-
8:45 AM	9:00 AM	1	0	-	3	-	-	-	-	1	-	195	18	0	27	207	-
Interse	ection PHV:		0	0	16		0	0	0		0	1,016	83		154	708	0
	PHF:		0.00	0.00	0.67		0.00	0.00	0.00		0.00	0.85	0.80		0.88	0.93	0.00
	Interse	ction Pea	ak Hour:	7:15 AN	1 - 8:15 A	AM .								lr	ntersectio	on PHF:	0.90
Study A	Area PHV:		0	0	20		0	0	0		0	940	88		138	718	0
	PHF:		0.00	0.00	0.71		0.00	0.00	0.00		0.00	0.78	0.85		0.86	0.94	0.00
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stu	dy Area	PHF:	0.87
4:30 PM	4:45 PM	2	2	-	35	-	-	-	-	0	-	149	4	0	16	291	-
4:45 PM	5:00 PM	6	0	-	26	-	-	-	-	1	-	197	7	5	4	285	-
5:00 PM	5:15 PM	8	0	-	23	-	-	-	-	0	-	153	9	0	3	304	-
5:15 PM	5:30 PM	1	0	-	27	-	•	-	-	0	-	103	12	0	8	291	-
5:30 PM	5:45 PM	3	0	-	21	-		-	-	0	-	154	14	0	11	254	-
5:45 PM	6:00 PM	6	0	-	19	-	-	-	-	1	-	255	10	0	7	228	-
6:00 PM	6:15 PM	13	1	-	20	-	-	-	-	6	-	249	5	0	10	196	-
6:15 PM	6:30 PM	8	0	-	24	-	-	-	-	4	-	233	7	1	9	210	-
Interse	ection PHV:		2	0	111		0	0	0		0	602	32		31	1,171	0
	PHF:		0.25	0.00	0.79		0.00	0.00	0.00		0.00	0.76	0.67		0.48	0.96	0.00
		ction Pea		4:30 PN		PM								li	ntersectio		0.94
Study A	Area PHV:		2	0	111		0	0	0		0	602	32		31	1,171	0
	PHF:	<u> </u>	0.25	0.00	0.79		0.00	0.00	0.00		0.00	0.76	0.67		0.48	0.96	0.00
I	Stud	y Peak	Hour:	4:30 P	'IVI - 5:3	IU PM								Stu	dy Area	PHF:	υ.94

Observations:

DeShazo Group, Inc.

Location: Congress Avenue at Martin Luther King Jr Boulevard

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: Tuesday, March 22, 2016 Weather Conditions: Mild/Normal Conditions

Project-ID #: 15206-26 Traffic Control: Signalized

Data Source: CJ Hensch

		N	orthb	ound o	n	S	outhbo	ound o	n	I	Eastbo	und or	1	\ \	Nestbo	und o	n							
Cou	ınt	Co	ngres	s Aven		Co	ngres	s Aven			MLK J	r Blvd.			MLK J	r Blvd.	R							
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	T	R	Peds	8 15 156 7 21 178 14 24 230 12 21 221 6 21 225 5 18 180 5 20 219 7 11 229 87 854 0.91 0.93 Intersection PHF: 0. 80 845									
7:00 AM	7:15 AM	2	3	-	13	-	-	-	-	0	-	212	6	8	15	156	-							
7:15 AM	7:30 AM	1	0	-	17	-	-	-	-	1	-	220	7	7	21	178	-							
7:30 AM	Court Peds L T R Peds R R R Peds R R Peds R R Peds R R Peds R R R Peds R R Peds R R Peds R R Peds R R R Peds R R Peds R R Peds R R Peds R R R Peds R R Peds R R Peds R R Peds R R R Peds R R Peds R R Peds R R Peds R R R Peds R R Peds R R Peds R R Peds R R R Peds R R Peds R R Peds R R Peds R R R Peds R R Peds R R Peds R R Peds R R R Peds R R Peds R R Peds R R Peds R R R Peds R Peds R R Peds R R Peds R Peds R R Peds R Peds R Peds R Peds R R Peds R Pe													-										
7:45 AM	8:00 AM	7	2	-	14	-	-	-	-	5	-	273	17	12	21	221	-							
8:00 AM	8:15 AM	1	Peds L T R Peds L T R Peds L T R Peds L T 2 3 - 13 - - - - 0 - 212 6 8 15 156 1 0 - 17 - - - 1 - 220 7 7 21 178 2 2 - 16 - - - - 3 - 236 13 14 24 230 7 2 - 14 - - - - 236 13 14 24 230 7 2 - 14 - - - - 273 17 12 21 221 221 221 225 3 5 - 8 - - - - - - -												225	-								
8:15 AM	8:30 AM	3	5	-	8	-	-	-	-	0	-	194	5	18	180	-								
8:30 AM	8:45 AM	3	2	-	10	-	-	-	-	5	-	188	15	5	20		-							
8:45 AM		2	1	-	9	-	-	-	-	8	-	193	9	7	229	-								
Interse	ection PHV:		7	0	58		0	0	0		0	984	43		87	854	0							
	PHF:		0.58	0.00	0.85		0.00	0.00	0.00		0.00	0.90	0.63		0.91	0.93	0.00							
	Intersed	ction Pea	k Hour:	7:15 AN	1 - 8:15 A	AM								Ir	ntersectio	on PHF:	0.93							
Study /	Area PHV:		12	0	43		0	0	0		0	910	50		80	845	0							
							0.00	0.00	0.00		0.00	0.83	0.74		0.95	0.94	0.00							
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.89							
																	1							
4:30 PM	_	_		-		-	-	-	-		-						-							
4:45 PM		_		-		-	-	-	-		-	_					-							
5:00 PM		_		-		-	-	-	-		-						-							
5:15 PM				-		-	-	-	-		-						-							
5:30 PM		-		-		-	-	-	-	20	-						-							
5:45 PM	6:00 PM	7	12	-	27	-	-	-	-	/	-	290	6	16	15	219	-							
6:00 PM	6:15 PM	12	13	-	26	-	-	-	-	6	-	262	15	30	9	192	-							
6:15 PM	6:30 PM	5	13	- 0	17	-	-	-	-	3	-	248	3	18	11	202	-							
Interse	Intersection PHV: 145				140 0.90		0	0	0		0	663	36		87	1,036	0							
							0.00	0.00	0.00		0.00	0.88	0.75		0.95	0.95	0.00							
		ction Pea		4:30 PN		PM				·				<u> </u>	ntersectio									
Study /	Area PHV:		145	0	140		0	0	0		0	663	36		87	1,036	0							
	PHF:	<u> </u>	0.81	0.00	0.90		0.00	0.00	0.00		0.00	0.88	0.75	<u> </u>	0.95	0.95	0.00							
	Stud	y Peak	Hour:	4:30 P	M - 5:3	80 PM								Stud	dy Area	<u> PHF:</u>	0.94							

Observations:

DeShazo Group, Inc.

Location: Brazos Street at Martin Luther King Jr Boulevard

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: *Tuesday, March* 22, 2016 Weather Conditions: *Mild/Normal Conditions*

Project-ID #: 15206-27 Traffic Control: Signalized

Data Source: CJ Hensch

Time				ound o			outhbo					und or			Vestbo		
Cou				Stree			Brazos				MLK J	r Blvd.			MLK J		
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds		Т	R	Peds	L	Т	R
7:00 AM	7:15 AM	6	2	0	1	6	9	0	7	0	32	149	44	4	32	150	28
7:15 AM	7:30 AM	1	1	0	3	8	6	0	8	0	19	179	48	4	35	208	31
7:30 AM	7:45 AM	6	3	0	6	8	0	0	9	0	46	154	42	7	30	227	25
7:45 AM	8:00 AM	7	1	0	4	7	10	0	2	0	43	215	51	1	41	251	33
8:00 AM	8:15 AM	2	1	0	5	12	12	1	2	1	35	190	23	3	34	230	37
8:15 AM	8:30 AM	4	1	0	2	5	8	0	3	0	25	155	25	2	28	214	31
8:30 AM	8:45 AM	2	2	0	2	3	10	0	3	0	29	145	19	6	25	216	29
8:45 AM	9:00 AM	6	5	1	3	5	5	1	9	1	34	154	14	6	17	242	47
Interse	ection PHV:		6	0	18		28	1	21		143	738	164		140	916	126
	PHF:		0.50	0.00	0.75		0.58	0.25	0.58		0.78	0.86	0.80		0.85	0.91	0.85
	Intersed	ction Pea	k Hour:	7:15 AN	1 - 8:15 A	AM				•				Ir	ntersectio	on PHF:	0.88
Study A	Area PHV:		5	0	13		40	1	10		132	705	118		128	911	130
	PHF:		0.63	0.00	0.65		0.83	0.25	0.83		0.77	0.82	0.58		0.78	0.91	0.88
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stu	dy Area	PHF:	0.84
4:30 PM	4:45 PM	-	7	0	24		27		54		12	215			4	224	12
4:30 PM 4:45 PM	4:45 PM 5:00 PM	7 2	7 5	•	34 40	9		5	54 58	1	24		6	3		224	15
1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	_	1			19	9		1		183	4	1	1	215	
5:00 PM	5:15 PM	4	10	6	38	19	26	8	58	0	30	153	1	6	4	198	54
5:15 PM	5:30 PM	5	4	15	37	22	20	2	64	0	18	151	0	4	5	199	45
5:30 PM	5:45 PM	'	3	19	29	13	39	1	41	0	18	191	2	0	1	211	38
5:45 PM	6:00 PM	5	4	11	30	4 1F	24	4	43	2	<i>35</i>	253	10	3	7	181	27
6:00 PM	6:15 PM	6	3	1	22	15	33	1	30	0	19	279	10	2	7	168	10
6:15 PM	6:30 PM	2	4	<u> </u>	17	8	14	I	27	2	7	238	18	2	8	183	13
Interse	ection PHV:		21	51	134		109	15	206		101	748	13		17	789	164
	PHF:		0.53	0.67	0.88		0.70	0.47	0.80		0.72	0.74	0.33		0.61	0.93	0.76
		ction Pea		5:00 PN		PM								Ir	ntersectio		0.94
Study A	Area PHV:		26	22	149		92	24	234		84	702	11		14	836	126
	PHF:		0.65	0.37	0.93		0.85	0.67	0.91		0.70	0.82	0.46		0.70	0.93	0.58
		_			PM - 5:3										dy Area		_

Observations:

DeShazo Group, Inc.

Location: San Jacinto Boulevard at Marting Luther King Jr Boulevard

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: Thursday, March 24, 2016 Weather Conditions: Mild/Normal Conditions

Project-ID #: 15206-28 Traffic Control: Signalized

Data Source: CJ Hensch

Time	of	T N	orthbo	ound o	n	S	outhbo	ound o	n			und or	ı		Vestbo										
Cou	ınt		n Jaci	nto Bl	∕d.	Sa	n Jaci	nto Bl			MLK J	r Blvd.			MLK J	r Blvd.									
Begin	End	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R	Peds	L	Т	R								
7:00 AM	7:15 AM	9	-	-	-	5	17	10	16	0	-	161	21	12	73	198	-								
7:15 AM	7:30 AM	9	-	-	-	10	2	9	19	4	-	120	32	2	73	241	-								
7:30 AM	7:45 AM	6	-	-	-	17	2	20	9	2	-	170	33	2	83	281	-								
7:45 AM	8:00 AM	11	-	-	-	13	13	18	16	2	-	176	38	4	87	287	-								
8:00 AM	8:15 AM	5	-	-	-	10	6	10	16	2	-	151	33	1	87	302	-								
8:15 AM	8:30 AM	17	-	-	-	11	4	9	9	3	-	143	43	3	68	260	-								
8:30 AM	8:45 AM	15	-	-	-	19	11	11	11	8	-	182	26	8	70	284	-								
8:45 AM	9:00 AM	13	-	-	-	14	13	16	19	2	-	169	33	2	78	310	-								
Interse	ction PHV:		0	0	0		25	57	50		0	640	147		325	1,130	0								
	PHF:		0.00	0.00	0.00		0.48	0.71	0.78		0.00	0.91	0.85		0.93	0.94	0.00								
	Intersed	ction Pea	k Hour:	7:30 AN	1 - 8:30 F	\ М								Ir	ntersectio	n PHF:	0.93								
Study A	Area PHV:		0	0	0		34	48	52		0	652	140		312	1,133	0								
	PHF:		0.00	0.00	0.00		0.65	0.67	0.81		0.00	0.90	0.81		0.90	0.94	0.00								
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.93								
4-20 DM	4:45 PM	20				45	40	49	20	44		260	_	-	70	243									
4:30 PM 4:45 PM	4:45 PM 5:00 PM	20 15	-	-	-	15 8	10 8	49 49	20 34	11 5	-	260 237	6 5	5 6	73 74	243 214	-								
5:00 PM	5:00 PM	20	_	-	-	14	12	49 43	34 44	7	•	194	3	3	73	256	-								
5:15 PM	5:30 PM	11		_		15	6	43 47	35	10	_	191	7	9	64	212	_								
5:30 PM	5:45 PM	15			_	18	8	52	30	11		255	5	15	87	208									
5:45 PM	6:00 PM	8	_	_	_	14	4	36	24	9	_	290	11	10	61	208	_								
6:00 PM	6:15 PM	4	-	_	-	10	4	43	22	3	_	350	21	2	59	231	_								
6:15 PM	6:30 PM	3	-	-	-	14	10	38	24	9	-	285	16	14	56	237									
Interse	ction PHV:		0	0	0		26	169	100		0	1,180	53		263	884	0								
	PHF:		0.00	0.00	0.00		0.65	0.81	0.83		0.00	0.84	0.63		0.76	0.93	0.00								
	Intersed	ction Pea	k Hour:	5:30 PN	1 - 6:30 F	PM								Ir	ntersectio	n P <u>HF</u> :	0.92								
Study A	Area PHV:		0	0	0		36	188	133		0	882	21		284	925	0								
	PHF:		0.00	0.00	0.00		0.75	0.96	0.76		0.00	0.85	0.75		0.96	0.90	0.00								
	Stud	y Peak	Hour:	4:30 P	M - 5:3	O PM								Stud	dy Area	PHF:	Study Peak Hour: 4:30 PM - 5:30 PM Study Area PHF: 0.93								

Observations:

DeShazo Group, Inc.

Location: Trinity Street at Matin Luther King Jr Boulevard

City/State: **Austin, Texas** Data Collector(s): **Camera**

Day/Date: Tuesday, March 22, 2016 Weather Conditions: Mild/Normal Conditions

Project-ID #: 15206-29 Traffic Control: Signalized

Data Source: CJ Hensch

Time				ound o				ound o			Eastbo <i>MLK J</i>				Nestbo MLK J		n
Begin	End	Peds	L	T	R	Peds	ırınıty	T	R	Peds	IVILK J	<u>г віvа.</u> Т	R	Peds	INILK J	<u>г віуа.</u> Т	R
7:00 AM	7:15 AM	8	8	15	20	7	-	<u> </u>		2	35	117		9	-	277	17
7:15 AM	7:30 AM	8	7	20	17	3	_	_	_	0	<i>32</i>	122	_	9	_	348	12
7:30 AM	7:45 AM	16	11	20	17	3	-	-	-	0	34	108	-	12	-	323	10
7:45 AM	8:00 AM	13	8	18	18	8	-	-	-	1	36	136	_	14	-	398	13
8:00 AM	8:15 AM	10	15	27	14	11	-	-	-	1	45	135	-	18	-	333	14
8:15 AM	8:30 AM	12	4	16	13	6	-	-	-	0	24	103	-	12	-	356	17
8:30 AM	8:45 AM	7	8	18	7	14	-	-	-	1	38	100	-	22	-	312	11
8:45 AM	9:00 AM	21	19	27	18	10	-	-	-	0	28	114	-	14	-	378	17
Interse	ection PHV:		41	85	66		0	0	0		147	501	0		0	1,402	49
	PHF:		0.68	0.79	0.92		0.00	0.00	0.00		0.82	0.92	0.00		0.00	0.88	0.88
	Intersed	ction Pea	k Hour:	7:15 AN	1 - 8:15 A	NM								<u> </u>	ntersectio	on PHF:	0.91
Study A	Area PHV:		35	79	52		0	0	0		143	474	0		0	1,399	55
	PHF:		0.58	0.73	0.72		0.00	0.00	0.00		0.79	0.87	0.00		0.00	0.88	0.81
	Stud	y Peak	Hour:	7:45 A	M - 8:4	5 AM								Stud	dy Area	PHF:	0.89
4.00 PM	4 45 014		40		4	45					40	0.10	1			200	40
4:30 PM 4:45 PM	4:45 PM 5:00 PM	22 15	19 15	64 66	47 43	15 13	-	-	-	7 5	18 20	246 211	-	30 27	-	262 271	18 12
5:00 PM	5:00 PM	20	28	81	43 45	21	-	-	-	8	20 20	252	-	37	_	260	4
5:00 PM	5.15 PM 5:30 PM	17	26	91	43 62	8	_		-	9	22	203		23	_	276	4 15
5:30 PM	5:45 PM	10	18	67	50	12				2	33	247		19		293	12
5:45 PM	6:00 PM	13	15	71	64	11	-	_	_	8	35	285	_	12	_	247	10
6:00 PM	6:15 PM	14	14	34	54	8	-	_	-	4	43	304	-	17	-	200	5
6:15 PM	6:30 PM	10	5	17	36	9	-	-	-	2	23	250	-	12	-	248	12
Interse	ection PHV:		87	310	221		0	0	0		110	987	0		0	1,076	41
	PHF:		0.78	0.85	0.86		0.00	0.00	0.00		0.79	0.87	0.00		0.00	0.92	0.68
	Interse	ction Pea	k Hour:	5:00 PN	1 - 6:00 F	PM								Ir	ntersectio	on PHF:	0.97
Study A	Area PHV:		88	302	197		0	0	0		80	912	0		0	1,069	49
	PHF:		0.79	0.83	0.79		0.00	0.00	0.00		0.91	0.90	0.00		0.00	0.97	0.68
	Stud	y Peak	Hour:	4:30 P	M - 5:3	O PM								Stud	dy Area	PHF:	0.97

Observations:

NB Colorado Street between 15th Street and 16th Street

Date Began: 7/21/2015

IAD COL	Diauo Stiet	et netween	13111 31166	t and roth	Street
TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	3	0	1	0	4
1:00	0	1	0	0	1
2:00	0	0	0	0	0
3:00	0	2	4	1	7
4:00	1	0	1	2	4
5:00	2	7	4	13	26
6:00	16	20	53	78	167
7:00	83	82	84	80	329
8:00	77	51	58	60	246
9:00	57	51	24	18	150
10:00	15	14	13	11	53
11:00	9	12	11	15	47
12:00	22	26	24	41	113
13:00	38	26	26	18	108
14:00	17	13	16	11	57
15:00	21	8	14	16	59
16:00	15	8	10	13	46
17:00	17	12	4	5	38
18:00	8	7	8	2	25
19:00	5	5	3	2	15
20:00	1	1	2	4	8
21:00	1	3	1	1	6
22:00	1	1	1	0	3
23:00	1	0	0	0	1

TOTAL: 1513

The A.M. peak hour from 7:00 to 8:00 is 329
The P.M. peak hour from 14:15 to 15:15 is 61

SB Colorado Street between 15th Street and 16th Street

Date Began: 7/21/2015

30 000	Jiauu Stiet	er nermeen	13111 31166	t allu lotti	Street
TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	1	4	1	0	6
1:00	1	1	1	0	3
2:00	1	0	0	0	1
3:00	0	1	3	1	5
4:00	0	1	0	1	2
5:00	0	5	1	3	9
6:00	2	2	4	7	15
7:00	10	13	11	14	48
8:00	10	11	16	20	57
9:00	20	15	12	17	64
10:00	23	14	13	17	67
11:00	25	26	31	29	111
12:00	37	32	25	22	116
13:00	41	21	29	38	129
14:00	21	26	32	38	117
15:00	47	35	41	81	204
16:00	114	83	123	91	411
17:00	104	73	61	65	303
18:00	40	49	38	18	145
19:00	18	12	13	9	52
20:00	12	8	1	3	24
21:00	5	7	8	8	28
22:00	3	6	2	5	16
23:00	5	2	2	0	9

TOTAL: 1942

The A.M. peak hour from 8:30 to 9:30 is 71
The P.M. peak hour from 16:00 to 17:00 is 411

NB Congress Avenue between 15th Street and 16th Street

Date Began: 7/21/2015

.10 00.16	,, coo Aven	ue netweel		et and roti	· Olicci
TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	2	3	0	0	5
1:00	1	3	2	1	7
2:00	0	1	0	0	1
3:00	0	0	2	0	2
4:00	0	1	4	5	10
5:00	2	3	5	9	19
6:00	12	39	41	64	156
7:00	80	72	73	71	296
8:00	57	59	65	39	220
9:00	50	30	25	25	130
10:00	22	20	14	23	79
11:00	20	26	33	13	92
12:00	28	22	38	31	119
13:00	37	32	38	31	138
14:00	27	17	20	19	83
15:00	17	17	15	17	66
16:00	12	16	13	16	57
17:00	18	16	21	8	63
18:00	16	4	5	4	29
19:00	5	5	3	2	15
20:00	2	4	3	4	13
21:00	3	4	5	4	16
22:00	0	2	0	2	4
23:00	3	0	0	0	3

TOTAL: 1623

The A.M. peak hour from 7:00 to 8:00 is 296
The P.M. peak hour from 14:30 to 15:30 is 73

SB Congress Avenue between 15th Street and 16th Street

Date Began: 7/21/2015

OD COIT	3B Congress Avenue between 15th Street and 16th Street									
TIME	0:00	0:15	0:30	0:45	TOTAL					
0:00	0	4	0	1	5					
1:00	0	3	2	0	5					
2:00	0	1	1	0	2					
3:00	0	0	1	1	2					
4:00	0	0	1	0	1					
5:00	1	0	1	1	3					
6:00	3	2	4	8	17					
7:00	5	10	13	16	44					
8:00	14	11	16	18	59					
9:00	14	11	9	7	41					
10:00	15	13	6	9	43					
11:00	15	15	28	37	95					
12:00	20	30	23	33	106					
13:00	24	21	18	20	83					
14:00	24	19	9	32	84					
15:00	30	21	36	43	130					
16:00	69	44	70	55	238					
17:00	99	54	35	37	225					
18:00	27	29	16	15	87					
19:00	10	13	9	5	37					
20:00	8	7	7	6	28					
21:00	8	5	7	4	24					
22:00	3	2	4	1	10					
23:00	2	3	2	1	8					

TOTAL: 1377

The A.M. peak hour from 8:30 to 9:30 is 59
The P.M. peak hour from 16:30 to 17:30 is 278

NB Congress Avenue between 18th Street and Martin Luther King Jr. Boulevard

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	0	1	1	1	3
1:00	0	0	0	2	2
2:00	0	2	0	0	2
3:00	0	0	0	0	0
4:00	0	0	2	0	2
5:00	2	0	1	0	3
6:00	1	3	5	10	19
7:00	15	18	23	17	73
8:00	7	13	13	11	44
9:00	6	10	10	10	36
10:00	14	5	8	9	36
11:00	16	29	19	20	84
12:00	22	13	22	22	79
13:00	23	22	12	9	66
14:00	15	14	17	22	68
15:00	19	11	18	12	60
16:00	32	35	61	50	178
17:00	65	50	56	29	200
18:00	31	15	10	11	67
19:00	8	9	7	5	29
20:00	5	3	3	4	15
21:00	7	7	1	4	19
22:00	1	0	1	2	4
23:00	2	2	1	6	11

TOTAL: 1100

The A.M. peak hour from 7:00 to 8:00 is 73
The P.M. peak hour from 16:30 to 17:30 is 226

SB Congress Avenue between 18th Street and Martin Luther King Jr. Boulevard

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	1	1	0	1	3
1:00	1	0	2	0	3
2:00	0	1	0	0	1
3:00	0	0	0	2	2
4:00	0	0	1	0	1
5:00	1	0	4	3	8
6:00	2	8	7	21	38
7:00	17	13	26	42	98
8:00	40	26	29	33	128
9:00	23	25	25	23	96
10:00	23	18	18	11	70
11:00	21	16	14	25	76
12:00	18	30	45	30	123
13:00	29	27	20	23	99
14:00	23	16	13	32	84
15:00	19	25	15	20	79
16:00	22	20	34	37	113
17:00	21	32	18	17	88
18:00	15	10	11	10	46
19:00	7	5	7	5	24
20:00	4	5	4	6	19
21:00	7	7	8	3	25
22:00	1	1	4	0	6
23:00	2	3	3	0	8

TOTAL: 1238

The A.M. peak hour from 7:45 to 8:45 is 137
The P.M. peak hour from 16:30 to 17:30 is 124

NB Lavaca Street between 15th Street and 16th Street

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	44	33	25	18	120
1:00	19	18	22	9	68
2:00	14	20	15	9	58
3:00	11	5	6	2	24
4:00	2	4	9	6	21
5:00	12	18	35	41	106
6:00	43	71	90	144	348
7:00	193	199	213	226	831
8:00	224	189	174	188	775
9:00	118	21	138	130	407
10:00	122	111	118	134	485
11:00	140	167	166	184	657
12:00	188	200	163	218	769
13:00	216	172	158	167	713
14:00	161	159	144	152	616
15:00	152	154	157	176	639
16:00	182	182	236	230	830
17:00	240	284	271	224	1019
18:00	238	188	134	154	714
19:00	144	106	112	119	481
20:00	82	121	96	120	419
21:00	92	93	112	102	399
22:00	88	86	78	62	314
23:00	70	58	40	75	243

TOTAL: 11056

The A.M. peak hour from 7:15 to 8:15 is 862
The P.M. peak hour from 16:45 to 17:45 is 1025

SB Guadalupe Street between 15th Street and 16th Street

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	42	38	26	24	130
1:00	24	17	15	18	74
2:00	15	17	13	13	58
3:00	6	4	10	6	26
4:00	10	7	7	8	32
5:00	13	11	14	28	66
6:00	26	52	62	84	224
7:00	90	93	160	168	511
8:00	198	186	240	239	863
9:00	242	182	175	141	740
10:00	148	145	126	128	547
11:00	154	156	194	178	682
12:00	188	180	200	200	768
13:00	213	182	181	162	738
14:00	174	165	183	199	721
15:00	210	184	208	236	838
16:00	255	307	297	280	1139
17:00	286	294	267	222	1069
18:00	236	208	232	188	864
19:00	183	138	128	130	579
20:00	138	106	108	92	444
21:00	96	103	106	102	407
22:00	78	112	82	77	349
23:00	82	70	64	66	282

TOTAL: 12151

The A.M. peak hour from 8:15 to 9:15 is 907
The P.M. peak hour from 16:15 to 17:15 is 1170

NB Trinity Street between 15th Street and 17th Street

Date Began: 7/21/2015

ND Tilling Street between 13th Street and 17th Street										
TIME	0:00	0:15	0:30	0:45	TOTAL					
0:00	7	4	2	2	15					
1:00	0	0	4	1	5					
2:00	3	2	2	1	8					
3:00	2	2	2	3	9					
4:00	2	2	4	10	18					
5:00	10	16	41	53	120					
6:00	32	50	52	70	204					
7:00	80	88	98	114	380					
8:00	100	105	84	90	379					
9:00	64	51	60	41	216					
10:00	52	41	39	34	166					
11:00	52	48	62	45	207					
12:00	48	39	56	38	181					
13:00	54	53	49	50	206					
14:00	44	37	38	37	156					
15:00	35	36	32	32	135					
16:00	72	49	77	93	291					
17:00	106	132	110	101	449					
18:00	78	48	38	26	190					
19:00	20	18	21	27	86					
20:00	24	26	10	14	74					
21:00	14	16	12	10	52					
22:00	14	8	10	13	45					
23:00	7	4	7	5	23					

TOTAL: 3615

The A.M. peak hour from 7:30 to 8:30 is 417
The P.M. peak hour from 17:00 to 18:00 is 449

NB Trinity Street between 18th Street and Martin Luther King Jr. Boulevard

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	6	4	2	4	16
1:00	0	0	2	1	3
2:00	3	2	2	1	8
3:00	2	2	2	0	6
4:00	4	0	4	3	11
5:00	8	9	32	31	80
6:00	22	31	32	52	137
7:00	46	49	54	57	206
8:00	69	62	54	66	251
9:00	47	42	58	37	184
10:00	50	38	32	33	153
11:00	54	48	66	54	222
12:00	54	59	62	40	215
13:00	60	52	51	44	207
14:00	42	38	39	32	151
15:00	35	38	46	36	155
16:00	88	60	88	81	317
17:00	102	73	64	90	329
18:00	82	44	37	27	190
19:00	23	20	24	28	95
20:00	29	30	13	12	84
21:00	11	18	9	10	48
22:00	20	10	11	15	56
23:00	9	3	7	8	27

TOTAL: 3151

The A.M. peak hour from 8:00 to 9:00 is 251
The P.M. peak hour from 16:30 to 17:30 is 344

SB San Jacinto Boulevard between 15th Street and 16th Street

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	7	5	4	3	19
1:00	4	4	4	3	15
2:00	2	0	2	5	9
3:00	1	0	1	0	2
4:00	1	1	6	3	11
5:00	7	4	6	16	33
6:00	10	14	28	34	86
7:00	46	34	49	62	191
8:00	60	65	84	108	317
9:00	88	65	46	43	242
10:00	52	34	51	67	204
11:00	70	89	114	96	369
12:00	118	78	83	92	371
13:00	94	92	90	56	332
14:00	67	64	79	68	278
15:00	106	110	179	137	532
16:00	219	187	287	206	899
17:00	270	205	189	181	845
18:00	160	107	74	58	399
19:00	58	52	39	50	199
20:00	32	40	24	24	120
21:00	26	24	19	15	84
22:00	18	19	10	13	60
23:00	15	11	6	4	36

TOTAL: 5653

The A.M. peak hour from 8:30 to 9:30 is 345
The P.M. peak hour from 16:30 to 17:30 is 968

SB San Jacinto Boulevard between 18th Street and Martin Luther King Jr Boulevard

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	1	3	2	3	9
1:00	2	2	1	3	8
2:00	4	1	2	2	9
3:00	1	0	0	3	4
4:00	3	1	12	10	26
5:00	12	14	26	36	88
6:00	32	53	92	120	297
7:00	101	116	144	146	507
8:00	130	122	110	154	516
9:00	121	104	55	55	335
10:00	54	36	48	60	198
11:00	46	56	59	70	231
12:00	86	72	94	110	362
13:00	89	100	66	54	309
14:00	51	51	54	40	196
15:00	70	72	71	76	289
16:00	76	86	93	117	372
17:00	86	110	104	112	412
18:00	90	70	36	40	236
19:00	40	41	24	40	145
20:00	26	26	22	20	94
21:00	22	20	25	11	78
22:00	16	14	14	12	56
23:00	18	7	6	5	36

TOTAL: 4813

The A.M. peak hour from 7:30 to 8:30 is 542
The P.M. peak hour from 16:45 to 17:45 is 417

EB 15th Street between Colorado Street and Congress Avenue

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	38	34	21	20	113
1:00	15	13	9	13	50
2:00	6	10	5	7	28
3:00	6	4	8	4	22
4:00	6	10	10	22	48
5:00	17	30	32	58	137
6:00	81	128	188	287	684
7:00	264	355	320	388	1327
8:00	296	332	314	298	1240
9:00	271	264	230	194	959
10:00	174	182	176	200	732
11:00	188	224	244	226	882
12:00	260	244	235	282	1021
13:00	256	271	246	286	1059
14:00	211	242	238	242	933
15:00	272	224	251	276	1023
16:00	374	326	366	358	1424
17:00	378	298	407	356	1439
18:00	334	292	229	202	1057
19:00	181	174	133	160	648
20:00	126	124	108	128	486
21:00	95	104	129	118	446
22:00	93	102	56	70	321
23:00	55	36	40	44	175

TOTAL: 16254

The A.M. peak hour from 7:15 to 8:15 is 1359
The P.M. peak hour from 16:45 to 17:45 is 1441

WB 15th Street between Colorado Street and Congress Avenue

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	19	30	20	14	83
1:00	24	9	11	7	51
2:00	8	13	12	7	40
3:00	10	8	6	6	30
4:00	5	12	12	20	49
5:00	22	37	46	62	167
6:00	68	94	120	206	488
7:00	186	223	251	295	955
8:00	276	246	276	286	1084
9:00	268	202	197	220	887
10:00	162	164	169	158	653
11:00	148	178	238	252	816
12:00	242	218	209	260	929
13:00	234	226	205	190	855
14:00	183	206	186	236	811
15:00	218	230	270	238	956
16:00	332	252	300	289	1173
17:00	331	260	260	256	1107
18:00	210	224	183	158	775
19:00	140	120	138	100	498
20:00	90	80	60	66	296
21:00	59	75	69	62	265
22:00	55	49	51	43	198
23:00	40	26	22	24	112

TOTAL: 13278

The A.M. peak hour from 7:45 to 8:45 is 1093
The P.M. peak hour from 16:30 to 17:30 is 1180

WB 15th Street between Congress Avenue and Brazos Street

Date Began: 7/21/2015

VVD 15til 5			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and Draze	os Street
TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	19	28	20	15	82
1:00	24	12	10	17	63
2:00	16	12	11	7	46
3:00	12	7	6	7	32
4:00	4	12	13	24	53
5:00	21	35	48	64	168
6:00	71	104	129	212	516
7:00	201	226	268	304	999
8:00	300	254	290	290	1134
9:00	282	215	203	220	920
10:00	175	161	178	155	669
11:00	163	184	242	241	830
12:00	245	213	220	240	918
13:00	242	223	214	182	861
14:00	188	198	181	232	799
15:00	212	220	261	215	908
16:00	315	250	296	274	1135
17:00	342	220	245	223	1030
18:00	191	204	178	149	722
19:00	131	126	133	98	488
20:00	87	80	62	70	299
21:00	58	86	63	66	273
22:00	58	48	52	44	202
23:00	40	26	20	24	110

TOTAL: 13257

The A.M. peak hour from 7:45 to 8:45 is 1148
The P.M. peak hour from 16:15 to 17:15 is 1162

WB 16th Street between Colorado Street and Congress Avenue

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	0	0	0	0	0
1:00	0	0	1	0	1
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	0	0	0
5:00	1	0	1	1	3
6:00	1	3	5	9	18
7:00	8	4	9	9	30
8:00	9	3	10	5	27
9:00	7	4	4	4	19
10:00	1	6	2	7	16
11:00	4	6	7	8	25
12:00	6	16	4	0	26
13:00	0	0	0	0	0
14:00	0	0	0	5	5
15:00	11	3	6	12	32
16:00	9	6	9	9	33
17:00	11	12	4	2	29
18:00	9	1	0	2	12
19:00	1	4	0	1	6
20:00	1	2	0	2	5
21:00	2	1	2	1	6
22:00	0	1	1	0	2
23:00	1	0	0	0	1

TOTAL: 296

The A.M. peak hour from 7:45 to 8:45 is 31
The P.M. peak hour from 16:30 to 17:30 is 41

WB 16th Street between Congress Avenue and San Jacinto Boulevard

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	0	0	0	0	0
1:00	0	0	0	0	0
2:00	0	0	0	0	0
3:00	0	0	0	0	0
4:00	0	0	2	0	2
5:00	0	0	0	3	3
6:00	3	2	5	4	14
7:00	5	6	5	9	25
8:00	4	10	6	3	23
9:00	7	2	3	3	15
10:00	3	7	4	7	21
11:00	9	8	11	12	40
12:00	7	14	17	11	49
13:00	12	3	13	2	30
14:00	4	5	6	5	20
15:00	11	6	19	17	53
16:00	21	15	26	13	75
17:00	35	23	11	11	80
18:00	11	9	5	2	27
19:00	1	4	0	2	7
20:00	0	2	1	2	5
21:00	0	0	3	0	3
22:00	2	1	0	0	3
23:00	1	0	0	0	1

TOTAL: 496

The A.M. peak hour from 7:45 to 8:45 is 29
The P.M. peak hour from 16:30 to 17:30 is 97

EB 17th Street between Brazos Street and San Jacinto Boulevard

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	2	0	0	2	4
1:00	0	0	1	0	1
2:00	0	0	0	1	1
3:00	0	0	0	0	0
4:00	1	2	2	2	7
5:00	1	6	3	9	19
6:00	4	15	16	28	63
7:00	32	35	29	35	131
8:00	37	32	36	18	123
9:00	26	18	26	15	85
10:00	25	22	13	23	83
11:00	25	25	28	31	109
12:00	33	24	28	28	113
13:00	36	35	32	22	125
14:00	15	16	19	24	74
15:00	19	30	32	16	97
16:00	39	29	53	39	160
17:00	57	48	27	26	158
18:00	19	3	7	7	36
19:00	10	9	7	2	28
20:00	2	5	1	2	10
21:00	6	4	3	4	17
22:00	2	2	1	1	6
23:00	5	0	0	0	5

TOTAL: 1455

The A.M. peak hour from 7:45 to 8:45 is 140
The P.M. peak hour from 16:30 to 17:30 is 197

EB 17th Street between Colorado Street and Congress Avenue

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	2	0	3	0	5
1:00	0	0	1	1	2
2:00	0	0	1	1	2
3:00	0	2	0	0	2
4:00	2	1	1	0	4
5:00	1	3	1	4	9
6:00	2	6	11	17	36
7:00	23	44	43	39	149
8:00	29	24	30	28	111
9:00	14	22	11	11	58
10:00	20	12	18	13	63
11:00	9	18	25	24	76
12:00	32	21	22	36	111
13:00	26	24	24	21	95
14:00	23	11	14	32	80
15:00	27	9	27	29	92
16:00	28	36	57	37	158
17:00	83	47	36	26	192
18:00	24	12	12	10	58
19:00	7	9	5	0	21
20:00	5	5	4	5	19
21:00	4	8	1	3	16
22:00	3	2	3	2	10
23:00	3	2	0	0	5

TOTAL: 1374

The A.M. peak hour from 7:15 to 8:15 is 155
The P.M. peak hour from 16:30 to 17:30 is 224

WB 18th Street between Brazos Street and San Jacinto Boulevard

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	0	0	0	1	1
1:00	0	0	0	0	0
2:00	1	1	0	0	2
3:00	0	0	0	0	0
4:00	1	1	0	1	3
5:00	1	4	2	4	11
6:00	7	1	7	7	22
7:00	11	9	6	13	39
8:00	13	13	12	11	49
9:00	16	7	14	10	47
10:00	11	8	6	14	39
11:00	4	11	13	6	34
12:00	10	8	20	9	47
13:00	9	16	8	10	43
14:00	15	6	9	7	37
15:00	4	8	13	15	40
16:00	21	7	13	16	57
17:00	9	11	17	7	44
18:00	8	4	1	4	17
19:00	4	2	4	5	15
20:00	4	2	2	0	8
21:00	5	3	3	3	14
22:00	1	1	5	0	7
23:00	1	2	0	0	3

TOTAL: 579

The A.M. peak hour from 8:15 to 9:15 is 52
The P.M. peak hour from 16:00 to 17:00 is 57

WB 18th Street between Colorado Street and Congress Avenue

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	0	1	0	0	1
1:00	0	0	0	0	0
2:00	1	1	0	0	2
3:00	0	2	0	0	2
4:00	0	2	0	0	2
5:00	0	3	1	1	5
6:00	1	2	4	10	17
7:00	13	14	11	19	57
8:00	11	13	12	13	49
9:00	14	7	11	20	52
10:00	13	10	15	10	48
11:00	11	16	17	24	68
12:00	24	24	31	26	105
13:00	27	23	22	28	100
14:00	31	21	24	20	96
15:00	26	17	27	39	109
16:00	48	34	37	31	150
17:00	39	28	18	8	93
18:00	20	18	18	10	66
19:00	3	4	1	5	13
20:00	3	4	3	3	13
21:00	11	5	4	4	24
22:00	1	0	2	1	4
23:00	1	0	2	6	9
				TOTAL:	1085

The A.M. peak hour from 7:00 to 8:00 is 57
The P.M. peak hour from 15:45 to 16:45 is 158

EB Martin Luther King Jr. Boulevard between Colorado Street and Congress Avenue

Date Began: 7/21/2015

1:00 28 16 14 15 73 2:00 23 25 13 12 73 3:00 11 7 7 7 32 4:00 11 2 5 4 22 5:00 9 8 28 34 79 6:00 49 47 89 91 276 7:00 133 157 159 180 629 8:00 172 139 165 152 628 9:00 137 156 134 122 549 10:00 124 115 114 116 469 11:00 133 111 121 144 509 12:00 166 139 181 136 622 13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00	TIME	0:00	0:15	0:30	0:45	TOTAL
2:00 23 25 13 12 73 3:00 11 7 7 7 32 4:00 11 2 5 4 22 5:00 9 8 28 34 79 6:00 49 47 89 91 276 7:00 133 157 159 180 629 8:00 172 139 165 152 628 9:00 137 156 134 122 549 10:00 124 115 114 116 469 11:00 133 111 121 144 509 12:00 166 139 181 136 622 13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00	0:00	45	48	40	21	154
3:00 11 7 7 7 32 4:00 11 2 5 4 22 5:00 9 8 28 34 79 6:00 49 47 89 91 276 7:00 133 157 159 180 629 8:00 172 139 165 152 628 9:00 137 156 134 122 549 10:00 124 115 114 116 469 11:00 133 111 121 144 509 12:00 166 139 181 136 622 13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00 152 132 159 126 569 <td< td=""><td>1:00</td><td>28</td><td>16</td><td>14</td><td>15</td><td>73</td></td<>	1:00	28	16	14	15	73
4:00 11 2 5 4 22 5:00 9 8 28 34 79 6:00 49 47 89 91 276 7:00 133 157 159 180 629 8:00 172 139 165 152 628 9:00 137 156 134 122 549 10:00 124 115 114 116 469 11:00 133 111 121 144 509 12:00 166 139 181 136 622 13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00 152 132 159 126 569 17:00 138 118 151 159 566	2:00	23	25	13	12	73
5:00 9 8 28 34 79 6:00 49 47 89 91 276 7:00 133 157 159 180 629 8:00 172 139 165 152 628 9:00 137 156 134 122 549 10:00 124 115 114 116 469 11:00 133 111 121 144 509 12:00 166 139 181 136 622 13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00 152 132 159 126 569 17:00 138 118 151 159 566 18:00 141 140 143 126 550	3:00	11	7	7	7	32
6:00 49 47 89 91 276 7:00 133 157 159 180 629 8:00 172 139 165 152 628 9:00 137 156 134 122 549 10:00 124 115 114 116 469 11:00 133 111 121 144 509 12:00 166 139 181 136 622 13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00 152 132 159 126 569 17:00 138 118 151 159 566 18:00 141 140 143 126 550 19:00 138 123 101 94 456 <	4:00	11	2	5	4	22
7:00 133 157 159 180 629 8:00 172 139 165 152 628 9:00 137 156 134 122 549 10:00 124 115 114 116 469 11:00 133 111 121 144 509 12:00 166 139 181 136 622 13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00 152 132 159 126 569 17:00 138 118 151 159 566 18:00 141 140 143 126 550 19:00 138 123 101 94 456 20:00 95 116 92 101 404	5:00	9	8	28	34	79
8:00 172 139 165 152 628 9:00 137 156 134 122 549 10:00 124 115 114 116 469 11:00 133 111 121 144 509 12:00 166 139 181 136 622 13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00 152 132 159 126 569 17:00 138 118 151 159 566 18:00 141 140 143 126 550 19:00 138 123 101 94 456 20:00 95 116 92 101 404 21:00 108 99 83 102 392	6:00	49	47	89	91	276
9:00 137 156 134 122 549 10:00 124 115 114 116 469 11:00 133 111 121 144 509 12:00 166 139 181 136 622 13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00 152 132 159 126 569 17:00 138 118 151 159 566 18:00 141 140 143 126 550 19:00 138 123 101 94 456 20:00 95 116 92 101 404 21:00 108 99 83 102 392 22:00 96 88 106 73 363 <	7:00	133	157	159	180	629
10:00 124 115 114 116 469 11:00 133 111 121 144 509 12:00 166 139 181 136 622 13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00 152 132 159 126 569 17:00 138 118 151 159 566 18:00 141 140 143 126 550 19:00 138 123 101 94 456 20:00 95 116 92 101 404 21:00 108 99 83 102 392 22:00 96 88 106 73 363	8:00	172	139	165	152	628
11:00 133 111 121 144 509 12:00 166 139 181 136 622 13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00 152 132 159 126 569 17:00 138 118 151 159 566 18:00 141 140 143 126 550 19:00 138 123 101 94 456 20:00 95 116 92 101 404 21:00 108 99 83 102 392 22:00 96 88 106 73 363	9:00	137	156	134	122	549
12:00 166 139 181 136 622 13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00 152 132 159 126 569 17:00 138 118 151 159 566 18:00 141 140 143 126 550 19:00 138 123 101 94 456 20:00 95 116 92 101 404 21:00 108 99 83 102 392 22:00 96 88 106 73 363	10:00	124	115	114	116	469
13:00 146 156 154 131 587 14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00 152 132 159 126 569 17:00 138 118 151 159 566 18:00 141 140 143 126 550 19:00 138 123 101 94 456 20:00 95 116 92 101 404 21:00 108 99 83 102 392 22:00 96 88 106 73 363	11:00	133	111	121	144	509
14:00 143 147 146 136 572 15:00 150 123 123 116 512 16:00 152 132 159 126 569 17:00 138 118 151 159 566 18:00 141 140 143 126 550 19:00 138 123 101 94 456 20:00 95 116 92 101 404 21:00 108 99 83 102 392 22:00 96 88 106 73 363	12:00	166	139	181	136	622
15:00 150 123 123 116 512 16:00 152 132 159 126 569 17:00 138 118 151 159 566 18:00 141 140 143 126 550 19:00 138 123 101 94 456 20:00 95 116 92 101 404 21:00 108 99 83 102 392 22:00 96 88 106 73 363	13:00	146	156	154	131	587
16:00 152 132 159 126 569 17:00 138 118 151 159 566 18:00 141 140 143 126 550 19:00 138 123 101 94 456 20:00 95 116 92 101 404 21:00 108 99 83 102 392 22:00 96 88 106 73 363	14:00	143	147	146	136	572
17:00 138 118 151 159 566 18:00 141 140 143 126 550 19:00 138 123 101 94 456 20:00 95 116 92 101 404 21:00 108 99 83 102 392 22:00 96 88 106 73 363	15:00	150	123	123	116	512
18:00 141 140 143 126 550 19:00 138 123 101 94 456 20:00 95 116 92 101 404 21:00 108 99 83 102 392 22:00 96 88 106 73 363	16:00	152	132	159	126	569
19:00 138 123 101 94 456 20:00 95 116 92 101 404 21:00 108 99 83 102 392 22:00 96 88 106 73 363	17:00	138	118	151	159	566
20:00 95 116 92 101 404 21:00 108 99 83 102 392 22:00 96 88 106 73 363	18:00	141	140	143	126	550
21:00 108 99 83 102 392 22:00 96 88 106 73 363	19:00	138	123	101	94	456
22:00 96 88 106 73 363	20:00	95	116	92	101	404
	21:00	108	99	83	102	392
23:00 77 74 48 57 256	22:00	96	88	106	73	363
	23:00	77	74	48	57	256

TOTAL: 9342

The A.M. peak hour from 7:15 to 8:15 is 668
The P.M. peak hour from 17:30 to 18:30 is 591

WB Martin Luther King Jr. Boulevard between Colorado Street and Congress Avenue

Date Began: 7/21/2015

0:00 49 43 31 25 148 1:00 22 12 14 15 63 2:00 11 17 8 11 47 3:00 11 7 14 2 34 4:00 8 9 6 12 35 5:00 15 28 31 79 153 6:00 64 92 81 130 367 7:00 130 124 155 145 554 8:00 146 129 138 158 571 9:00 138 128 149 162 577 10:00 143 119 132 134 528 11:00 132 144 151 138 565 12:00 154 152 149 152 607 13:00 140 154 158 129 581 14:00	TIME	0:00	0:15	0:30	0:45	TOTAL
2:00 11 17 8 11 47 3:00 11 7 14 2 34 4:00 8 9 6 12 35 5:00 15 28 31 79 153 6:00 64 92 81 130 367 7:00 130 124 155 145 554 8:00 146 129 138 158 571 9:00 138 128 149 162 577 10:00 143 119 132 134 528 11:00 132 144 151 138 565 12:00 154 152 149 152 607 13:00 140 154 158 129 581 14:00 159 137 133 156 585 15:00 123 136 145 154 58 16	0:00	49	43	31	25	148
3:00 11 7 14 2 34 4:00 8 9 6 12 35 5:00 15 28 31 79 153 6:00 64 92 81 130 367 7:00 130 124 155 145 554 8:00 146 129 138 158 571 9:00 138 128 149 162 577 10:00 143 119 132 134 528 11:00 132 144 151 138 565 12:00 154 152 149 152 607 13:00 140 154 158 129 581 14:00 159 137 133 156 585 15:00 123 136 145 154 558 16:00 183 183 174 188 728	1:00	22	12	14	15	63
4:00 8 9 6 12 35 5:00 15 28 31 79 153 6:00 64 92 81 130 367 7:00 130 124 155 145 554 8:00 146 129 138 158 571 9:00 138 128 149 162 577 10:00 143 119 132 134 528 11:00 132 144 151 138 565 12:00 154 152 149 152 607 13:00 140 154 158 129 581 14:00 159 137 133 156 585 15:00 123 136 145 154 558 16:00 183 183 174 188 728 17:00 149 151 179 193 672 <tr< td=""><td>2:00</td><td>11</td><td>17</td><td>8</td><td>11</td><td>47</td></tr<>	2:00	11	17	8	11	47
5:00 15 28 31 79 153 6:00 64 92 81 130 367 7:00 130 124 155 145 554 8:00 146 129 138 158 571 9:00 138 128 149 162 577 10:00 143 119 132 134 528 11:00 132 144 151 138 565 12:00 154 152 149 152 607 13:00 140 154 158 129 581 14:00 159 137 133 156 585 15:00 123 136 145 154 558 16:00 183 183 174 188 728 17:00 149 151 179 193 672 18:00 144 142 142 120 548 <td>3:00</td> <td>11</td> <td>7</td> <td>14</td> <td>2</td> <td>34</td>	3:00	11	7	14	2	34
6:00 64 92 81 130 367 7:00 130 124 155 145 554 8:00 146 129 138 158 571 9:00 138 128 149 162 577 10:00 143 119 132 134 528 11:00 132 144 151 138 565 12:00 154 152 149 152 607 13:00 140 154 158 129 581 14:00 159 137 133 156 585 15:00 123 136 145 154 558 16:00 183 183 174 188 728 17:00 149 151 179 193 672 18:00 144 142 142 120 548 19:00 113 130 90 109 442	4:00	8	9	6	12	35
7:00 130 124 155 145 554 8:00 146 129 138 158 571 9:00 138 128 149 162 577 10:00 143 119 132 134 528 11:00 132 144 151 138 565 12:00 154 152 149 152 607 13:00 140 154 158 129 581 14:00 159 137 133 156 585 15:00 123 136 145 154 558 16:00 183 183 174 188 728 17:00 149 151 179 193 672 18:00 144 142 142 120 548 19:00 113 130 90 109 442 20:00 93 101 94 68 356	5:00	15	28	31	79	153
8:00 146 129 138 158 571 9:00 138 128 149 162 577 10:00 143 119 132 134 528 11:00 132 144 151 138 565 12:00 154 152 149 152 607 13:00 140 154 158 129 581 14:00 159 137 133 156 585 15:00 123 136 145 154 558 16:00 183 183 174 188 728 17:00 149 151 179 193 672 18:00 144 142 142 120 548 19:00 113 130 90 109 442 20:00 93 101 94 68 356 21:00 105 103 106 102 416	6:00	64	92	81	130	367
9:00 138 128 149 162 577 10:00 143 119 132 134 528 11:00 132 144 151 138 565 12:00 154 152 149 152 607 13:00 140 154 158 129 581 14:00 159 137 133 156 585 15:00 123 136 145 154 558 16:00 183 183 174 188 728 17:00 149 151 179 193 672 18:00 144 142 142 120 548 19:00 113 130 90 109 442 20:00 93 101 94 68 356 21:00 105 103 106 102 416 22:00 95 92 70 70 327 <	7:00	130	124	155	145	554
10:00 143 119 132 134 528 11:00 132 144 151 138 565 12:00 154 152 149 152 607 13:00 140 154 158 129 581 14:00 159 137 133 156 585 15:00 123 136 145 154 558 16:00 183 183 174 188 728 17:00 149 151 179 193 672 18:00 144 142 142 120 548 19:00 113 130 90 109 442 20:00 93 101 94 68 356 21:00 105 103 106 102 416 22:00 95 92 70 70 327	8:00	146	129	138	158	571
11:00 132 144 151 138 565 12:00 154 152 149 152 607 13:00 140 154 158 129 581 14:00 159 137 133 156 585 15:00 123 136 145 154 558 16:00 183 183 174 188 728 17:00 149 151 179 193 672 18:00 144 142 142 120 548 19:00 113 130 90 109 442 20:00 93 101 94 68 356 21:00 105 103 106 102 416 22:00 95 92 70 70 327	9:00	138	128	149	162	577
12:00 154 152 149 152 607 13:00 140 154 158 129 581 14:00 159 137 133 156 585 15:00 123 136 145 154 558 16:00 183 183 174 188 728 17:00 149 151 179 193 672 18:00 144 142 142 120 548 19:00 113 130 90 109 442 20:00 93 101 94 68 356 21:00 105 103 106 102 416 22:00 95 92 70 70 327	10:00	143	119	132	134	528
13:00 140 154 158 129 581 14:00 159 137 133 156 585 15:00 123 136 145 154 558 16:00 183 183 174 188 728 17:00 149 151 179 193 672 18:00 144 142 142 120 548 19:00 113 130 90 109 442 20:00 93 101 94 68 356 21:00 105 103 106 102 416 22:00 95 92 70 70 327	11:00	132	144	151	138	565
14:00 159 137 133 156 585 15:00 123 136 145 154 558 16:00 183 183 174 188 728 17:00 149 151 179 193 672 18:00 144 142 142 120 548 19:00 113 130 90 109 442 20:00 93 101 94 68 356 21:00 105 103 106 102 416 22:00 95 92 70 70 327	12:00	154	152	149	152	607
15:00 123 136 145 154 558 16:00 183 183 174 188 728 17:00 149 151 179 193 672 18:00 144 142 142 120 548 19:00 113 130 90 109 442 20:00 93 101 94 68 356 21:00 105 103 106 102 416 22:00 95 92 70 70 327	13:00	140	154	158	129	581
16:00 183 183 174 188 728 17:00 149 151 179 193 672 18:00 144 142 142 120 548 19:00 113 130 90 109 442 20:00 93 101 94 68 356 21:00 105 103 106 102 416 22:00 95 92 70 70 327	14:00	159	137	133	156	585
17:00 149 151 179 193 672 18:00 144 142 142 120 548 19:00 113 130 90 109 442 20:00 93 101 94 68 356 21:00 105 103 106 102 416 22:00 95 92 70 70 327	15:00	123	136	145	154	558
18:00 144 142 142 120 548 19:00 113 130 90 109 442 20:00 93 101 94 68 356 21:00 105 103 106 102 416 22:00 95 92 70 70 327	16:00	183	183	174	188	728
19:00 113 130 90 109 442 20:00 93 101 94 68 356 21:00 105 103 106 102 416 22:00 95 92 70 70 327	17:00	149	151	179	193	672
20:00 93 101 94 68 356 21:00 105 103 106 102 416 22:00 95 92 70 70 327	18:00	144	142	142	120	548
21:00 105 103 106 102 416 22:00 95 92 70 70 327	19:00	113	130	90	109	442
22:00 95 92 70 70 327	20:00	93	101	94	68	356
	21:00	105	103	106	102	416
23:00 48 44 32 68 192	22:00	95	92	70	70	327
	23:00	48	44	32	68	192

TOTAL: 9654

The A.M. peak hour from 9:15 to 10:15 is 582 The P.M. peak hour from 16:00 to 17:00 is 728

EB Martin Luther King Jr. Boulevard between Congress Avenue and Brazos Street

Date Began: 7/21/2015

TIME	0:00	0:15	0:30	0:45	TOTAL
0:00	41	50	47	21	159
1:00	28	14	13	16	71
2:00	23	25	12	12	72
3:00	12	7	8	6	33
4:00	11	2	6	4	23
5:00	9	9	24	40	82
6:00	50	54	78	95	277
7:00	136	139	145	147	567
8:00	139	123	144	134	540
9:00	111	123	110	94	438
10:00	112	102	97	129	440
11:00	120	112	113	130	475
12:00	133	103	133	122	491
13:00	141	116	136	133	526
14:00	133	134	138	116	521
15:00	132	110	139	117	498
16:00	137	127	119	101	484
17:00	107	86	154	143	490
18:00	162	138	132	125	557
19:00	128	125	98	103	454
20:00	100	107	83	95	385
21:00	111	94	82	103	390
22:00	99	86	85	77	347
23:00	81	73	49	62	265

TOTAL: 8585

The A.M. peak hour from 7:15 to 8:15 is 570
The P.M. peak hour from 17:30 to 18:30 is 597

WB Martin Luther King Jr. Boulevard between Congress Avenue and Brazos Street

Date Began: 7/21/2015

0:00 1:00 2:00 3:00 4:00 5:00	44 23	40 13	29	24	137
2:00 3:00 4:00		12			137
3:00 4:00	4.4	13	15	10	61
4:00	11	13	10	9	43
	10	7	13	3	33
5:00	8	9	9	12	38
	14	27	36	76	153
6:00	62	95	95	131	383
7:00	139	92	132	126	489
8:00	156	117	145	146	564
9:00	145	117	128	133	523
10:00	119	115	133	125	492
11:00	116	138	120	127	501
12:00	122	128	142	133	525
13:00	112	134	144	137	527
14:00	139	107	119	118	483
15:00	120	113	132	138	503
16:00	165	160	99	128	552
17:00	130	118	133	162	543
18:00	145	124	121	103	493
19:00	106	108	84	109	407
20:00	87	85	75	61	308
21:00	85	89	99	78	351
22:00	82	75	58	59	274
23:00	49	36	36	56	177

TOTAL: 8560

The A.M. peak hour from 8:00 to 9:00 is 564
The P.M. peak hour from 15:30 to 16:30 is 595

Appendix C.

Trip Generation Summary - 2020_Phase 1 Average Weekday Driveway Volumes

Project: 15206 Open Date: 9/29/2016
Alternative: Texas Capital Complex Master Plan 2018 Analysis 9/29/2016

	Avera	age Daily	Trips		l Peak H nt Street			/I Peak H ent Street	
ITE Land Use	Enter	_Exit_	_Total_	Enter	_Exit_	_Total_	Enter	_Exit_	_Total_
710 General Office Building 1025 Gross Floor Area 1000 SF	3849	3849	7698	1083	148	1231	208	1018	1226
Unadjusted Driveway Volume	3849	3849	7698	1083	148	1231	208	1018	1226
Unadjusted Pass-By Trips	0	0	0	0	0	0	0	0	0
Internal Capture Trips	0	0	0	0	0	0	0	0	0
Adjusted Driveway Volume	3849	3849	7698	1083	148	1231	208	1018	1226
Adjusted Pass-By Trips	0	0	0	0	0	0	0	0	0
Adjusted Volume Added to Adjacent Streets	3849	3849	7698	1083	148	1231	208	1018	1226

Total AM Peak Hour Internal Capture = 0 Percent

Total PM Peak Hour Internal Capture = 0 Percent

Trip Generation Summary - 2022_Phase 2 Average Weekday Driveway Volumes

Project: 15206 Open Date: 9/29/2016
Alternative: Texas Capital Complex Master Plan 2018 Analysis 9/29/2016

	Aver	age Daily	Trips		l Peak H nt Street			1 Peak H ent Street	
ITE Land Use	Enter_	_Exit_	_Total_	<u>Enter</u>	_Exit_	_Total_	_Enter_	_Exit_	_Total_
710 General Office Building 525 Gross Floor Area 1000 SF	2315	2314	4629	634	87	721	113	553	666
Unadjusted Driveway Volume	2315	2314	4629	634	87	721	113	553	666
Unadjusted Pass-By Trips	0	0	0	0	0	0	0	0	0
Internal Capture Trips	0	0	0	0	0	0	0	0	0
Adjusted Driveway Volume	2315	2314	4629	634	87	721	113	553	666
Adjusted Pass-By Trips	0	0	0	0	0	0	0	0	0
Adjusted Volume Added to Adjacent Streets	2315	2314	4629	634	87	721	113	553	666

Total AM Peak Hour Internal Capture = 0 Percent

Total PM Peak Hour Internal Capture = 0 Percent

Trip Generation Summary - 2024_Phase 3 Average Weekday Driveway Volumes

Project: 15206 Open Date: 9/29/2016
Alternative: Texas Capital Complex Master Plan 2018 Analysis 9/29/2016

	Avera	age Daily	Trips		l Peak H nt Street			l Peak H nt Street	
ITE Land Use	Enter_	_Exit_	_Total_	Enter	_Exit_	_Total_	<u>Enter</u>	_Exit_	_Total_
710 General Office Building 530 Gross Floor Area 1000 SF	2332	2331	4663	640	87	727	114	558	672
Unadjusted Driveway Volume	2332	2331	4663	640	87	727	114	558	672
Unadjusted Pass-By Trips	0	0	0	0	0	0	0	0	0
Internal Capture Trips	0	0	0	0	0	0	0	0	0
Adjusted Driveway Volume	2332	2331	4663	640	87	727	114	558	672
Adjusted Pass-By Trips	0	0	0	0	0	0	0	0	0
Adjusted Volume Added to Adjacent Streets	2332	2331	4663	640	87	727	114	558	672

Total AM Peak Hour Internal Capture = 0 Percent

Total PM Peak Hour Internal Capture = 0 Percent

Land Use: 710 General Office Building

Description

A general office building houses multiple tenants; it is a location where affairs of businesses, commercial or industrial organizations, or professional persons or firms are conducted. An office building or buildings may contain a mixture of tenants including professional services, insurance companies, investment brokers and tenant services, such as a bank or savings and loan institution, a restaurant or cafeteria and service retail facilities. Corporate headquarters building (Land Use 714), single tenant office building (Land Use 715), office park (Land Use 750), research and development center (Land Use 760) and business park (Land Use 770) are related uses.

If information is known about individual buildings, it is suggested that the general office building category be used rather than office parks when estimating trip generation for one or more office buildings in a single development. The office park category is more general and should be used when a breakdown of individual or different uses is not known. If the general office building category is used and if additional buildings, such as banks, restaurants, or retail stores, are included in the development, the development should be treated as a multiuse project. On the other hand, if the office park category is used, internal trips are already reflected in the data and do not need to be considered.

When the buildings are interrelated (defined by shared parking facilities or the ability to easily walk between buildings) or house one tenant, it is suggested that the total area or employment of all the buildings be used for calculating the trip generation. When the individual buildings are isolated and not related to one another, it is suggested that trip generation be calculated for each building separately and then summed.

Additional Data

Average weekday transit trip ends—

Transit service was either nonexistent or negligible at the majority of the sites surveyed in this land use. Users may wish to modify trip generation rates presented in this land use to reflect the presence of public transit, carpools and other transportation demand management (TDM) strategies. Information has not been analyzed to document the impacts of TDM measures on the total trip generation of a site. See the ITE *Trip Generation Handbook*, Second Edition for additional information on this topic.

The average building occupancy varied considerably within the studies for which occupancy data were provided. For buildings with occupancy rates reported, the average occupied gross leasable area was 88 percent.

Some of the regression curves plotted for this land use may produce illogical trip-end estimates for small office buildings. When the proposed site size is significantly smaller than the average-sized facility published in this report, caution should be used when applying these statistics. For more information, please refer to Chapter 3, "Guidelines for Estimating Trip Generation," of the ITE *Trip Generation Handbook*, Second Edition.

In some regions, peaking may occur earlier or later and may last somewhat longer than the traditional 7:00 a.m. to 9:00 a.m. and 4:00 p.m. to 6:00 p.m. peak period time frames.

The sites were surveyed between the 1960s and the 2000s throughout the United States.

Trip Characteristics

The trip generation for the A.M. and P.M. peak hours of the generator typically coincided with the peak hours of the adjacent street traffic; therefore, only one A.M. peak hour and one P.M. peak hour, which represent both the peak hour of the generator and the peak hour of the adjacent street traffic, are shown for general office buildings.

Source Numbers

2, 5, 20, 21, 51, 53, 54, 72, 88, 89, 92, 95, 98, 100, 159, 161, 172, 175, 178, 183, 184, 185, 189, 193, 207, 212, 217, 247, 253, 257, 260, 262, 279, 295, 297, 298, 300, 301, 302, 303, 304, 321, 322, 323, 324, 327, 404, 407, 408, 418, 419, 423, 562, 734

General Office Building (710)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area

On a: Weekday, A.M. Peak Hour

Number of Studies: 218 Average 1000 Sq. Feet GFA: 222

Directional Distribution: 88% entering, 12% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
1.56	0.60 - 5.98	1.40

Data Plot and Equation

General Office Building (710)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area

On a: Weekday,

P.M. Peak Hour

Number of Studies: 236 Average 1000 Sq. Feet GFA: 215

Directional Distribution: 17% entering, 83% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
1.49	0.49 - 6.39	1.37

Data Plot and Equation

General Office Building

(710)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area

On a: Weekday

Number of Studies: 79 Average 1000 Sq. Feet GFA: 197

Directional Distribution: 50% entering, 50% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
11.03	3.58 - 28.80	6.15

Data Plot and Equation

Phase 1 - Traffic Assignment - Inbound

EXHIBIT

TIA for TFC Capital Complex in Austin, Texas

PROJECT #15206

Phase 1 - Traffic Assignment - Outbound

EXHIBIT

TIA for TFC Capital Complex in Austin, Texas

PROJECT #15206

Phase 2 - Traffic Assignment - Inbound

EXHIBIT

TIA for TFC Capital Complex in Austin, Texas

PROJECT #15206

PROJECT #15206

TIA for TFC Capital Complex in Austin, Texas

Phase 3 - Traffic Assignment - Inbound

EXHIBIT

TIA for TFC Capital Complex in Austin, Texas

PROJECT #15206

Phase 3 - Traffic Assignment - Outbound

EXHIBIT

TIA for TFC Capital Complex in Austin, Texas

PROJECT #15206

Appendix D.

1: Martin Luther King Jr. Blvd & Guadalupe ST TIA for Texas Capital Complex Master Plan 2018 Update

	•	-	•	•	—	•	4	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	∱ β			^	7				ሻ	^	7
Traffic Volume (vph)	63	670	152	0	479	299	0	0	0	224	654	124
Future Volume (vph)	63	670	152	0	479	299	0	0	0	224	654	124
Confl. Peds. (#/hr)	26		18	18		26				27		18
Confl. Bikes (#/hr)			1			1						12
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	67	713	162	0	510	318	0	0	0	238	696	132
Shared Lane Traffic (%)												
Lane Group Flow (vph)	67	875	0	0	510	318	0	0	0	238	696	132
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases						6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase												
Minimum Initial (s)	10.0	5.0			15.0	5.0				5.0	15.0	15.0
Minimum Split (s)	15.0	32.0			34.0	10.0				10.0	34.0	34.0
Total Split (s)	18.0	75.0			57.0	45.0				45.0	45.0	45.0
Total Split (%)	15.0%	62.5%			47.5%	37.5%				37.5%	37.5%	37.5%
Yellow Time (s)	4.0	4.0			4.0	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag				Lead							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max	None				None	Max	Max
Act Effct Green (s)	12.4	70.0			55.6	95.6				40.0	40.0	40.0
Actuated g/C Ratio	0.10	0.58			0.46	0.80				0.33	0.33	0.33
v/c Ratio	0.37	0.44			0.31	0.25				0.40	0.59	0.23
Control Delay	56.0	14.1			37.1	4.3				33.4	35.7	11.0
Queue Delay	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Delay	56.0	14.1			37.1	4.4				33.4	35.7	11.0
LOS	E	В			D	Α				С	D	В
Approach Delay		17.1			24.6						32.1	
Approach LOS		В			С						С	
Queue Length 50th (ft)	49	180			195	72				141	234	20
Queue Length 95th (ft)	96	226			270	116				216	298	66
Internal Link Dist (ft)		228			45			159			210	
Turn Bay Length (ft)	160									130		120
Base Capacity (vph)	191	2009			1639	1271				590	1179	568
Starvation Cap Reductn	0	0			0	137				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.35	0.44			0.31	0.28				0.40	0.59	0.23
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120)											

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 85

09/29/2016

MS

Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe ST TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Splits and Phases: 1: Martin Luther King Jr. Blvd & Guadalupe ST

09/29/2016 Synchro 9 Report MS Page 2

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

	-	•	1	•	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			^	ሻሻ	7
Traffic Volume (vph)	897	0	0	665	309	210
Future Volume (vph)	897	0	0	665	309	210
Confl. Peds. (#/hr)						10
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	1043	0	0	773	359	244
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1043	0	0	773	359	244
Turn Type	NA			NA	Prot	Perm
Protected Phases	2			6	8	
Permitted Phases	-					3
Detector Phase	2			6	8	3
Switch Phase				- 0	- 0	
Minimum Initial (s)	10.0			5.0	10.0	10.0
Minimum Split (s)	30.0			10.0	30.0	30.0
Total Split (s)	87.0			87.0	33.0	33.0
Total Split (%)	72.5%			72.5%	27.5%	27.5%
Yellow Time (s)	4.0			4.0	4.0	4.0
All-Red Time (s)	1.0			1.0	1.0	1.0
	0.0				0.0	0.0
Lost Time Adjust (s)				0.0		
Total Lost Time (s)	5.0			5.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?	0.11					
Recall Mode	C-Max			None	Max	Max
Act Effct Green (s)	82.0			82.0	28.0	28.0
Actuated g/C Ratio	0.68			0.68	0.23	0.23
v/c Ratio	0.43			0.32	0.45	0.52
Control Delay	7.9			6.9	43.5	25.7
Queue Delay	0.1			0.0	0.0	0.0
Total Delay	8.0			6.9	43.5	25.7
LOS	Α			Α	D	С
Approach Delay	8.0			6.9	36.3	
Approach LOS	Α			Α	D	
Queue Length 50th (ft)	121			65	92	43
Queue Length 95th (ft)	133			64	149	126
Internal Link Dist (ft)	272			277	337	
Turn Bay Length (ft)						
Base Capacity (vph)	2418			2418	801	471
Starvation Cap Reductn	464			0	0	0
Spillback Cap Reductn	0			0	0	0
Storage Cap Reductn	0			0	0	0
Reduced v/c Ratio	0.53			0.32	0.45	0.52
	0.53			0.32	0.40	0.52
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12	0					
Offset: 0 (0%), Referenced		EBT, Star	t of Gree	en		
Natural Cycle: 60						
Control Type: Actuated-Co	ordinated					
Some of type. Actualeurec	oramated					

 09/29/2016
 Synchro 9 Report

 MS
 Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Maximum v/c Ratio: 0.52
Intersection Signal Delay: 14.7 Intersection LOS: B
Intersection Capacity Utilization 54.0% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

→ Ø2 (R)	r [™] Ø3
87 s	33 s
← Ø6	↑ Ø8
87 s	33 s

 09/29/2016
 Synchro 9 Report

 MS
 Page 4

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

	-	•	•	—	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ 1>	20.1	*	^	ሻሻ	7
Traffic Volume (vph)	910	50	80	845	12	43
Future Volume (vph)	910	50	80	845	12	43
Confl. Peds. (#/hr)	,10	6	6	0.13	1	13
Confl. Bikes (#/hr)		1	- 0			
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	1022	56	90	949	13	48
Shared Lane Traffic (%)	1022	30	,0	717	10	10
Lane Group Flow (vph)	1078	0	90	949	13	48
Turn Type	NA	U	pm+pt	NA	Prot	Perm
Protected Phases	2		риттри 1	6	4	r ciiii
Permitted Phases	2		6	U	4	4
Detector Phase	2		1	6	4	4
Switch Phase			'	0	4	4
Minimum Initial (s)	15.0		1.0	5.0	15.0	15.0
	34.0		6.0	29.0	34.0	34.0
Minimum Split (s)					34.0	
Total Split (s)	69.0		15.0	84.0		36.0
Total Split (%)	57.5%		12.5%	70.0%	30.0%	30.0%
Yellow Time (s)	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0		5.0	5.0	5.0	5.0
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max	Max	Max
Act Effct Green (s)	64.0		79.0	79.0	31.0	31.0
Actuated g/C Ratio	0.53		0.66	0.66	0.26	0.26
v/c Ratio	0.58		0.26	0.41	0.01	0.11
Control Delay	13.2		12.5	9.7	33.2	10.2
Queue Delay	0.0		0.0	0.4	0.0	0.0
Total Delay	13.2		12.5	10.1	33.2	10.2
LOS	В		В	В	С	В
Approach Delay	13.2			10.3	15.1	
Approach LOS	В			В	В	
Queue Length 50th (ft)	271		26	264	4	0
Queue Length 95th (ft)	358		50	329	11	30
Internal Link Dist (ft)	366			377	331	
Turn Bay Length (ft)			115		120	
Base Capacity (vph)	1872		345	2329	886	444
Starvation Cap Reductn	0		0	807	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.58		0.26	0.62	0.01	0.11
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12	0					
Officet: 21 (100/) Deferen		2.FDT a	nd 4.MD	TI Ctort	of Croop	

 09/29/2016
 Synchro 9 Report

 MS
 Page 5

Offset: 21 (18%), Referenced to phase 2:EBT and 6:WBTL, Start of Green

Natural Cycle: 75

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.58		
Intersection Signal Delay: 11.9	Intersection LOS: B	
Intersection Capacity Utilization 56.2%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 5: N. Congress Ave & Martin Luther King Jr. Blvd

 09/29/2016
 Synchro 9 Report

 MS
 Page 6

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

	•	-	•	•	—	•	1	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	↑ ↑		٦	^	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	132	705	118	128	911	130	5	0	13	40	1	10
Future Volume (vph)	132	705	118	128	911	130	5	0	13	40	1	10
Confl. Peds. (#/hr)	17		8	8		17	22		7	7		22
Confl. Bikes (#/hr)			3			3						1
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	157	839	140	152	1085	155	6	0	15	48	1	12
Shared Lane Traffic (%)												
Lane Group Flow (vph)	157	979	0	152	1085	155	0	6	15	0	49	12
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	1.0	10.0		1.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	6.0	22.0		6.0	28.0	28.0	22.0	22.0	22.0	28.0	28.0	28.0
Total Split (s)	20.0	70.0		20.0	70.0	70.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	16.7%	58.3%		16.7%	58.3%	58.3%	25.0%	25.0%	25.0%	25.0%	25.0%	25.0%
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	80.1	71.2		79.9	71.1	71.1		25.0	25.0		25.0	25.0
Actuated g/C Ratio	0.67	0.59		0.67	0.59	0.59		0.21	0.21		0.21	0.21
v/c Ratio	0.45	0.48		0.39	0.52	0.17		0.02	0.04		0.17	0.03
Control Delay	18.2	8.8		11.0	16.5	5.6		38.2	0.2		40.9	0.2
Queue Delay	0.0	0.1		0.0	0.2	0.0		0.0	0.0		0.0	0.0
Total Delay	18.2	8.9		11.0	16.7	5.6		38.2	0.2		40.9	0.2
LOS	В	Α		В	В	Α		D	Α		D	Α
Approach Delay		10.2			14.8			11.1			32.9	
Approach LOS		В			В			В			С	
Queue Length 50th (ft)	39	86		33	295	16		4	0		31	0
Queue Length 95th (ft)	93	124		42	344	23		15	0		62	0
Internal Link Dist (ft)		377			273			337			212	
Turn Bay Length (ft)	160			100		100			100			
Base Capacity (vph)	433	2051		473	2096	912		272	371		290	365
Starvation Cap Reductn	0	293		0	329	0		0	0		0	0
Spillback Cap Reductn	0	79		0	0	0		0	1		0	0
Storage Cap Reductn	0	0		0	0	0		0	0		0	0
Reduced v/c Ratio	0.36	0.56		0.32	0.61	0.17		0.02	0.04		0.17	0.03

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 65

09/29/2016

MS

Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.52

Intersection Signal Delay: 13.2 Intersection Capacity Utilization 71.0% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service C

Splits and Phases: 6: Brazos St & Martin Luther King Jr. Blvd

09/29/2016 Synchro 9 Report MS Page 8

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

	•	-	•	•	←	•	4	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† 1>		*	^					*	^	7
Traffic Volume (vph)	0	652	140	312	1133	0	0	0	0	34	48	52
Future Volume (vph)	0	652	140	312	1133	0	0	0	0	34	48	52
Confl. Peds. (#/hr)			50	50						7		45
Confl. Bikes (#/hr)			2									27
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	701	151	335	1218	0	0	0	0	37	52	56
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	852	0	335	1218	0	0	0	0	37	52	56
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		19	6						4	
Permitted Phases				6						4		4
Detector Phase		2		19	6					4	4	4
Switch Phase												
Minimum Initial (s)		5.0			10.0					10.0	10.0	10.0
Minimum Split (s)		30.0			30.0					28.0	28.0	28.0
Total Split (s)		62.0			92.0					28.0	28.0	28.0
Total Split (%)		51.7%			76.7%					23.3%	23.3%	23.3%
Yellow Time (s)		4.0			4.0					4.0	4.0	4.0
All-Red Time (s)		1.0			1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0					0.0	0.0	0.0
Total Lost Time (s)		5.0			5.0					5.0	5.0	5.0
Lead/Lag		Lag			0.0					0.0	0.0	0.0
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Max
Act Effct Green (s)		57.0		87.0	87.0					23.0	23.0	23.0
Actuated g/C Ratio		0.48		0.72	0.72					0.19	0.19	0.19
v/c Ratio		0.52		0.63	0.47					0.11	0.08	0.16
Control Delay		21.7		16.5	10.2					41.2	40.3	0.9
Queue Delay		0.2		14.4	1.3					0.0	0.0	0.0
Total Delay		21.9		30.9	11.5					41.2	40.3	0.9
LOS		С		С	В					D	D	А
Approach Delay		21.9		-	15.7					=	25.3	
Approach LOS		С			В						С	
Queue Length 50th (ft)		201		96	186					24	17	0
Queue Length 95th (ft)		273		168	280					55	35	1
Internal Link Dist (ft)		273		100	321			343		00	244	
Turn Bay Length (ft)		2,0		120	OL.			0.0		100		100
Base Capacity (vph)		1627		528	2565					335	678	358
Starvation Cap Reductn		207		174	1060					0	0	0
Spillback Cap Reductn		0		0	293					0	0	8
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.60		0.95	0.81					0.11	0.08	0.16
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Off1 0 (00/) D-f1	L 0.	EDT	/ W/DTI	CI-I-E	^							

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 80

Synchro 9 Report Page 9 09/29/2016

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Lane Group	Ø1	Ø9
LaneConfigurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	9
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	5.0
Minimum Split (s)	6.0	10.0
Total Split (s)	15.0	15.0
Total Split (%)	13%	13%
Yellow Time (s)	4.0	4.0
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Internation Comments		
Intersection Summary		

Synchro 9 Report Page 10 09/29/2016 MS

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions Timing Plan: AM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.63 Intersection Signal Delay: 18.3 Intersection Capacity Utilization 78.5% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service D

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd

09/29/2016 Synchro 9 Report MS Page 11

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions Timing Plan: AM

	۶	-	\rightarrow	•	←	•	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^			† }		ሻ	ર્ન	7			
Traffic Volume (vph)	143	474	0	0	1399	55	35	79	52	0	0	0
Future Volume (vph)	143	474	0	0	1399	55	35	79	52	0	0	0
Confl. Peds. (#/hr)			33			55	32		26			
Confl. Bikes (#/hr)						4			4			
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	161	533	0	0	1572	62	39	89	58	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	161	533	0	0	1634	0	35	93	58	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	6.0	26.0			6.0		26.0	26.0	26.0			
Total Split (s)	15.0	94.0			79.0		26.0	26.0	26.0			
Total Split (%)	12.5%	78.3%			65.8%		21.7%	21.7%	21.7%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	89.0	89.0			75.0		21.0	21.0	21.0			
Actuated g/C Ratio	0.74	0.74			0.62		0.18	0.18	0.18			
v/c Ratio	0.72	0.20			0.74		0.13	0.30	0.19			
Control Delay	35.5	0.8			17.3		39.3	41.8	10.9			
Queue Delay	0.0	0.3			2.3		0.0	0.0	0.0			
Total Delay	35.5	1.0			19.5		39.3	41.8	10.9			
LOS	D	A			В		D	D	В			
Approach Delay	=	9.0			19.5		=	31.7	=			
Approach LOS		A			В			C				
Queue Length 50th (ft)	29	2			654		25	75	5			
Queue Length 95th (ft)	#92	2			726		m48	m125	m23			
Internal Link Dist (ft)	1172	321			685		11110	350	11123		106	
Turn Bay Length (ft)	120	OL.			000			000			100	
Base Capacity (vph)	237	2624			2194		278	308	313			
Starvation Cap Reductn	0	1363			406		0	0	0			
Spillback Cap Reductn	0	0			0		0	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.68	0.42			0.91		0.13	0.30	0.19			
	5.50	0.12			0.71		55	0.00	J,			

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 27 (23%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 80

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.74 Intersection Signal Delay: 17.5 Intersection Capacity Utilization 78.5% Intersection LOS: B ICU Level of Service D Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd

Ø2 (R) ▼ 1 Ø4 Ø6 (R)

09/29/2016 Synchro 9 Report Page 13 MS

18: Guadalupe St & E. 17th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

TIA IOI TEXAS CAPIL	•		_	r 1a11 2	+	Juaie •	4	*	<i>></i>	<u></u>	I	1
		→	*	₹			7		•	*	*	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7								41∱	
Traffic Volume (vph)	0	37	132	0	0	0	0	0	0	37	913	0
Future Volume (vph)	0	37	132	0	0	0	0	0	0	37	913	0
Confl. Peds. (#/hr)			17							42		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)		0										
Adj. Flow (vph)	0	40	143	0	0	0	0	0	0	40	992	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	40	143	0	0	0	0	0	0	0	1032	0
Turn Type		NA	Perm							Perm	NA	
Protected Phases		4 12									2 10	
Permitted Phases			4 12							2 10		
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Act Effct Green (s)		54.0	54.0								42.0	
Actuated g/C Ratio		0.45	0.45								0.35	
v/c Ratio		0.05	0.19								0.80	
Control Delay		9.5	5.1								23.3	
Queue Delay		0.0	0.0								0.0	
Total Delay		9.5	5.1								23.3	
LOS		Α	Α								С	
Approach Delay		6.0									23.3	
Approach LOS		Α									С	
Queue Length 50th (ft)		8	12								208	
Queue Length 95th (ft)		18	31								260	
Internal Link Dist (ft)		177			244			271			262	
Turn Bay Length (ft)												
Base Capacity (vph)		754	741								1286	
Starvation Cap Reductn		0	0								0	
Spillback Cap Reductn		0	0								0	
Storage Cap Reductn		0	0								0	
Reduced v/c Ratio		0.05	0.19								0.80	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced t	o phase 2:	SBTL. St	art of Gre	en								
Natural Cycle: 85												
Control Type: Pretimed												
Maximum v/c Ratio: 0.80												
Intersection Signal Delay: 20).7			Ir	ntersection	LOS: C						
Intersection Capacity Utilizat					CU Level		Α					

09/29/2016 Synchro 9 Report MS Page 14

18: Guadalupe St & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Minimum Split (s)	21.0	21.0	21.0	21.0
Total Split (s)	26.0	43.0	28.0	23.0
Total Split (%)	22%	36%	23%	19%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	2.0	2.0	2.0	2.0
Total Lost Time (s)				
Lead/Lag	Lead	Lag		
Lead-Lag Optimize?	Yes	Yes		
Act Effct Green (s)	163	163		
Actuated g/C Ratio v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

 09/29/2016
 Synchro 9 Report

 MS
 Page 15

18: Guadalupe St & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Analysis Period (min) 15

TIA for Texas Capital Complex Master Plan 2018 Update

₹	▼		_	7	- 1		-	¥	4
BR ۱	NBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
					4111				
0	0	0	0	0	522	138	0	0	(
0	0	0	0	0	522	138	0	0	
					OLL.	31			
.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.8
.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
0	0	0	0	0	629	166	0	0	
					OL,	100			
0	0	0	0	0	795	0	0	0	
0	U	U	U	U	NA	U	U	U	
					2 10				
					2 10				
					2 10				
					2 10				
					84.3				
					0.70				
					52				
		319			272			254	
					4718				
					0				
					0				
					0				
					0.17				
Green									
	Green	Green				319 272 4718 0 0 0 0 0.17	3.8 0.0 3.8 A 3.8 A 29 52 319 272 4718 0 0 0	3.8 0.0 3.8 A 3.8 A 29 52 319 272 4718 0 0 0 0	3.8 0.0 3.8 A 3.8 A 3.8 A 29 52 319 272 254 4718 0 0 0 0 0.17

 09/29/2016
 Synchro 9 Report

 MS
 Page 17

19: Lavaca St & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update Existing Conditions
Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations			210	212
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	26.0	28.0	23.0	23.0
Total Split (s)	38.0	29.0	27.0	26.0
Total Split (%)	32%	24%	23%	22%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

19: Lavaca St & E. 17th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.22

Intersection Signal Delay: 4.6 Intersection LOS: A

Intersection Capacity Utilization 39.2% ICU Level of Service A

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 19: Lavaca St & E. 17th St

29 s	38	9	26 s	27 s	
<u>♣</u> ø4		†ø₂ (R)	♣ _{Ø12}	↑ _{Ø10}	
opino ana mases.	7. Lavaca St	OC E. ITHI ST			

 09/29/2016
 Synchro 9 Report

 MS
 Page 19

28: Lavaca St & E. 16th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

	•	→	\rightarrow	•	←	4	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					î,			4111				
Traffic Volume (vph)	0	0	0	0	25	13	213	636	0	0	0	0
Future Volume (vph)	0	0	0	0	25	13	213	636	0	0	0	0
Confl. Peds. (#/hr)						10	55					
Confl. Bikes (#/hr)						2						
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Parking (#/hr)					0							
Adj. Flow (vph)	0	0	0	0	30	15	254	757	0	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	45	0	0	1011	0	0	0	0
Turn Type					NA		Perm	NA				
Protected Phases					4 12			2 10				
Permitted Phases							2 10					
Detector Phase					4 12		2 10	2 10				
Switch Phase								,				
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)					13.3			91.3				
Actuated g/C Ratio					0.11			0.76				
v/c Ratio					0.24			0.22				
Control Delay					21.1			6.6				
Queue Delay					0.0			0.1				
Total Delay					21.1			6.7				
LOS					C			Α.				
Approach Delay					21.1			6.7				
Approach LOS					C			Α.				
Queue Length 50th (ft)					12			129				
Queue Length 95th (ft)					m31			114				
Internal Link Dist (ft)		233			336			281			272	
Turn Bay Length (ft)		233			330			201			212	
Base Capacity (vph)					597			4724				
Starvation Cap Reductn					0			1878				
Spillback Cap Reductin					0			0				
Storage Cap Reductin					0			0				
Reduced v/c Ratio					0.08			0.36				
					0.00			0.30				
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120		NDTI C										
Offset: 0 (0%), Referenced t	o phase 2:	NBTL, Sta	art of Gre	en								

28: Lavaca St & E. 16th St TIA for Texas Capital Complex Master Plan 2018 Update Existing Conditions
Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Protected Phases Permitted Phases	2	4	10	12
Detector Phase				
Switch Phase	45.0	1.0	Г.С	Г.С
Minimum Initial (s)	15.0	1.0	5.0	5.0
Minimum Split (s)	28.0	6.0	21.0	23.0
Total Split (s)	42.0	32.0	21.0	25.0
Total Split (%)	35%	27%	18%	21%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	1.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

09/29/2016 Synchro 9 Report Page 21 MS

28: Lavaca St & E. 16th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

Natural Cycle: 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.24

Intersection Signal Delay: 7.3 Intersection Capacity Utilization 25.0% ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: A ICU Level of Service A

Splits and Phases: 28: Lavaca St & E. 16th St **▼** Ø12 **√**1 ø2 (R)

09/29/2016 Synchro 9 Report Page 22 MS

34: Guadalupe St & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

	•	-	•	•	•	•	1	Ť	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
ane Configurations		ተተ _ጉ		ሻ	^ ^						ተተቡ	
Fraffic Volume (vph)	0	1429	305	187	910	0	0	0	0	97	636	5
-uture Volume (vph)	0	1429	305	187	910	0	0	0	0	97	636	5
Confl. Peds. (#/hr)			30	30						28		3
Confl. Bikes (#/hr)						1						1
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.9
Adj. Flow (vph)	0	1458	311	191	929	0	0	0	0	99	649	5
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1769	0	191	929	0	0	0	0	0	748	5
Turn Type		NA		pm+pt	NA					Perm	NA	Peri
Protected Phases		2		13	6						4	
Permitted Phases				6						4		
Detector Phase		2		13	6					4	4	
Switch Phase												
Minimum Initial (s)		10.0			5.0					5.0	5.0	5.
Minimum Split (s)		25.0			25.0					32.0	32.0	32
Total Split (s)		56.0			84.0					36.0	36.0	36
Total Split (%)		46.7%			70.0%					30.0%	30.0%	30.0
Yellow Time (s)		4.0			4.0					4.0	4.0	4.
All-Red Time (s)		1.0			1.0					1.0	1.0	1.
Lost Time Adjust (s)		0.0			0.0					1.0	0.0	0
Total Lost Time (s)		5.0			5.0						5.0	5.
Lead/Lag		Lag			3.0						5.0	J.
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Ma
Act Effct Green (s)		51.2		79.0	79.0					IVIGA	31.0	31.
Actuated g/C Ratio		0.43		0.66	0.66						0.26	0.2
v/c Ratio		0.43		0.59	0.28						0.58	0.2
Control Delay		34.2		29.8	3.6						35.6	3.
		0.0		8.7	0.1						0.0	0.
Queue Delay		34.2		38.5	3.7						35.6	3.
Total Delay LOS		34.2 C		30.5 D	3.7 A						33.0 D	٥.
		34.2		U	9.6						33.6	
Approach Delay Approach LOS		34.2 C			9.0 A						33.0 C	
- 11		431		02	32						136	
Queue Length 50th (ft)		431		82 165	37						184	
Queue Length 95th (ft)				100	240			197			285	m
Internal Link Dist (ft)		262		Ε0.	240			197			285	10
Turn Bay Length (ft)		2117		50	2247						1200	10
Base Capacity (vph)		2116		327	3347						1298	46
Starvation Cap Reductn		0		100	970						0	
Spillback Cap Reductn		0		0	0						0	
Storage Cap Reductn		0		0	0						0	
Reduced v/c Ratio		0.84		0.84	0.39						0.58	0.1
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Synchro 9 Report Page 23 09/29/2016

34: Guadalupe St & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	8.0	5.0
Minimum Split (s)	13.0	10.0
Total Split (s)	14.0	14.0
Total Split (%)	12%	12%
Yellow Time (s)	4.0	4.0
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Synchro 9 Report Page 24 09/29/2016 MS

34: Guadalupe St & W. 15th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.84 Intersection Signal Delay: 26.6 Intersection Capacity Utilization 80.2% Intersection LOS: C ICU Level of Service D Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 34: Guadalupe St & W. 15th St

09/29/2016 Synchro 9 Report MS Page 25

35: Lavaca St & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions Timing Plan: AM

	•	→	\rightarrow	•	←	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations	ħ.	ተተተ			ተተኈ			नांकि				
Traffic Volume (vph)	114	1342	0	0	984	122	123	582	149	0	0	-
Future Volume (vph)	114	1342	0	0	984	122	123	582	149	0	0	-
Confl. Peds. (#/hr)	35					35	16		44			
Confl. Bikes (#/hr)									10			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.9
Adj. Flow (vph)	121	1428	0	0	1047	130	131	619	159	0	0	-
Shared Lane Traffic (%)												
Lane Group Flow (vph)	121	1428	0	0	1177	0	0	909	0	0	0	-
Turn Type	pm+pt	NA			NA		Perm	NA				
Protected Phases	5	2			6			4				
Permitted Phases	2						4					
Detector Phase	5	2			6		4	4				
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0				
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0				
Total Split (s)	19.0	79.0			60.0		41.0	41.0				
Total Split (%)	15.8%	65.8%			50.0%		34.2%	34.2%				
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0				
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0				
Lost Time Adjust (s)	0.0	0.0			0.0			0.0				
Total Lost Time (s)	5.0	5.0			5.0			6.0				
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max				
Act Effct Green (s)	74.0	74.0			60.1			35.0				
Actuated g/C Ratio	0.62	0.62			0.50			0.29				
v/c Ratio	0.41	0.46			0.47			0.50				
Control Delay	13.7	2.2			13.6			34.5				
Queue Delay	0.0	0.2			0.1			0.0				
Total Delay	13.7	2.4			13.7			34.5				
LOS	В	Α			В			С				
Approach Delay		3.3			13.7			34.5				
Approach LOS		Α			В			С				
Queue Length 50th (ft)	7	32			64			161				
Queue Length 95th (ft)	m20	38			152			195				
Internal Link Dist (ft)		240			335			116			281	
Turn Bay Length (ft)	50											
Base Capacity (vph)	356	3135			2499			1809				
Starvation Cap Reductn	0	811			243			0				
Spillback Cap Reductn	0	0			0			0				
Storage Cap Reductn	0	0			0			0				
Reduced v/c Ratio	0.34	0.61			0.52			0.50				
Intersection Summary												

Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 70

35: Lavaca St & W. 15th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.50 Intersection Signal Delay: 14.5 Intersection Capacity Utilization 80.2% Intersection LOS: B ICU Level of Service D Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 35: Lavaca St & W. 15th St

09/29/2016 Synchro 9 Report MS Page 27

36: Colorado St & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

	•	→	•	•	←	•	4	†	~	>	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተ _ጉ		ሻ	ተተ _ጉ			4			ર્ન	7
Traffic Volume (vph)	177	1299	49	67	1044	131	1	20	20	5	18	19
Future Volume (vph)	177	1299	49	67	1044	131	1	20	20	5	18	19
Confl. Peds. (#/hr)	6		77	77		6	4		32	32		4
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	188	1382	52	71	1111	139	1	21	21	5	19	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	188	1434	0	71	1250	0	0	43	0	0	24	20
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		8
Detector Phase	5	2		1	6		4	4		8	8	8
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	10.0	22.0		10.0	30.0		32.0	32.0		32.0	32.0	32.0
Total Split (s)	15.0	72.0		15.0	72.0		33.0	33.0		33.0	33.0	33.0
Total Split (%)	12.5%	60.0%		12.5%	60.0%		27.5%	27.5%		27.5%	27.5%	27.5%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	Max
Act Effct Green (s)	79.9	72.1		74.8	67.7			28.0			28.0	28.0
Actuated g/C Ratio	0.67	0.60		0.62	0.56			0.23			0.23	0.23
v/c Ratio	0.60	0.48		0.28	0.44			0.10			0.06	0.05
Control Delay	24.9	5.1		11.7	7.0			22.9			36.3	0.2
Queue Delay	0.0	0.1		0.0	0.0			0.0			0.0	0.0
Total Delay	24.9	5.2		11.7	7.0			22.9			36.3	0.2
LOS	С	Α		В	Α			С			D	Α
Approach Delay		7.5			7.3			22.9			19.9	
Approach LOS		Α			Α			С			В	
Queue Length 50th (ft)	32	79		9	56			13			15	0
Queue Length 95th (ft)	102	90		38	63			44			38	0
Internal Link Dist (ft)		335			362			155			280	
Turn Bay Length (ft)	90			90								100
Base Capacity (vph)	324	3010		295	2823			410			415	412
Starvation Cap Reductn	0	434		0	154			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.58	0.56		0.24	0.47			0.10			0.06	0.05

Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 75 Control Type: Actuated-Coordinated

36: Colorado St & W. 15th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

Maximum v/c Ratio: 0.60 Intersection Signal Delay: 7.8
Intersection Capacity Utilization 80.7%
Analysis Period (min) 15 Intersection LOS: A ICU Level of Service D

Splits and Phases: 36: Colorado St & W. 15th St

ÿ1	₽ Ø2 (R)	™ ø4
15 s	72 s	33 s
	Ø6 (R)	\$ Ø8
15 e	77 e	22 e

09/29/2016 Synchro 9 Report Page 29 MS

37: N. Congress Ave & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

	•	-	•	•	—	•	4	†	/	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተ ተ ጉ		ሻ	ተተ _ጉ			f)			4	7
Traffic Volume (vph)	169	1130	26	17	1245	80	0	0	1	22	4	32
Future Volume (vph)	169	1130	26	17	1245	80	0	0	1	22	4	32
Confl. Peds. (#/hr)	1		28	28		1	12		19	19		12
Confl. Bikes (#/hr)									12			8
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	172	1153	27	17	1270	82	0	0	1	22	4	33
Shared Lane Traffic (%)												
Lane Group Flow (vph)	172	1180	0	17	1352	0	0	1	0	0	26	33
Turn Type	pm+pt	NA		pm+pt	NA			NA		Perm	NA	Perm
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6						8		8
Detector Phase	5	2		1	6			4		8	8	8
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	5.0
Minimum Split (s)	10.0	25.0		10.0	25.0			33.0		33.0	33.0	33.0
Total Split (s)	20.0	75.0		10.0	65.0			35.0		35.0	35.0	35.0
Total Split (%)	16.7%	62.5%		8.3%	54.2%			29.2%		29.2%	29.2%	29.2%
Yellow Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0			1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	Max			Max		Max	Max	Max
Act Effct Green (s)	76.0	76.0		64.4	64.4			30.0			30.0	30.0
Actuated g/C Ratio	0.63	0.63		0.54	0.54			0.25			0.25	0.25
v/c Ratio	0.61	0.37		0.06	0.50			0.00			0.07	0.07
Control Delay	30.4	1.3		1.9	3.0			0.0			35.1	0.3
Queue Delay	0.0	0.1		0.0	0.1			0.0			0.0	0.0
Total Delay	30.4	1.3		1.9	3.1			0.0			35.1	0.3
LOS	C	A		A	A			A			D	A
Approach Delay		5.0		,,	3.1			,,			15.6	,,
Approach LOS		A			A						В	
Queue Length 50th (ft)	38	4		1	53			0			15	0
Queue Length 95th (ft)	100	17		m5	123			0			40	0
Internal Link Dist (ft)	100	362		1110	356			125			278	U
Turn Bay Length (ft)	60	302		100	330			120			270	130
Base Capacity (vph)	340	3208		280	2705			490			381	464
Starvation Cap Reductn	0	505		0	253			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductin	0	0		0	0			0			0	0
Reduced v/c Ratio	0.51	0.44		0.06	0.55			0.00			0.07	0.07
NEUUCEU WC RAIIU	0.01	U.44		0.00	0.55			0.00			0.07	0.07

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green
Natural Cycle: 70

09/29/2016 Synchro 9 Report Page 30 MS

37: N. Congress Ave & W. 15th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 4.3 Intersection Capacity Utilization 71.0% Intersection LOS: A ICU Level of Service C Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 37: N. Congress Ave & W. 15th St

09/29/2016 Synchro 9 Report MS Page 31

38: Brazos St & W. 15th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

	•	-	\rightarrow	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻ	^		ሻ	^		ሻ	ĥ			4	
Traffic Volume (vph)	74	1046	45	25	1345	78	4	2	7	2	0	
Future Volume (vph)	74	1046	45	25	1345	78	4	2	7	2	0	
Confl. Peds. (#/hr)	1		9	9		1	9		4	4		(
Confl. Bikes (#/hr)						1						10
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.9
Adj. Flow (vph)	76	1078	46	26	1387	80	4	2	7	2	0	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	76	1124	0	26	1467	0	4	9	0	0	6	(
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	5	2		1	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0		32.0	32.0	
Total Split (s)	15.0	78.0		10.0	73.0		32.0	32.0		32.0	32.0	
Total Split (%)	12.5%	65.0%		8.3%	60.8%		26.7%	26.7%		26.7%	26.7%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0		5.0	5.0			5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	
Act Effct Green (s)	77.0	77.0		72.6	72.6		27.0	27.0			27.0	
Actuated g/C Ratio	0.64	0.64		0.60	0.60		0.22	0.22			0.22	
v/c Ratio	0.32	0.35		0.08	0.48		0.01	0.02			0.01	
Control Delay	15.8	10.0		4.5	4.2		36.5	23.1			0.0	
Queue Delay	0.0	0.1		0.0	0.1		0.0	0.0			0.0	
Total Delay	15.8	10.1		4.5	4.2		36.5	23.1			0.0	
LOS	В	В		Α	Α		D	С			Α	
Approach Delay		10.5			4.2			27.2				
Approach LOS		В			Α			С				
Queue Length 50th (ft)	20	104		4	80		2	1			0	
Queue Length 95th (ft)	50	135		m9	86		12	15			m0	
Internal Link Dist (ft)		356			297			199			273	
Turn Bay Length (ft)	100			40			40					
Base Capacity (vph)	270	3240		325	3054		312	370			441	
Starvation Cap Reductn	0	581		0	359		0	0			0	
Spillback Cap Reductn	0	0		0	0		0	0			0	
Storage Cap Reductn	0	0		0	0		0	0			0	
Reduced v/c Ratio	0.28	0.42		0.08	0.54		0.01	0.02			0.01	

Intersection Summary

Cycle Length: 120

Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 65

MS

38: Brazos St & W. 15th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.48

Intersection Signal Delay: 7.1 Intersection LOS: A

Intersection Capacity Utilization 66.9% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 38: Brazos St & W. 15th St

 09/29/2016
 Synchro 9 Report

 MS
 Page 33

39: San Jacinto Blvd & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

EBL			-			•	•	•		•	-
	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
	^		ሻ	ተተተ						41434	
0	655	330	151	1421	0	0	0	0	35	159	3
0	655	330	151	1421	0	0	0	0	35	159	3
		21	21						9		
0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.9
0	662	333	153	1435	0	0	0	0	35	161	3
0	995	0	153	1435	0	0	0	0	0	229	
	NA		pm+pt	NA					Perm	NA	
	2		1	6						4	
			6						4		
	2		1	6					4	4	
	10.0		3.0	10.0					7.0	7.0	
	68.0		20.0	88.0					32.0	32.0	
									1.0		
				0.0						0.0	
				C-Max					Max	Max	
									WIGA		
			16							_	
			21				125				
	271		70	202			123			212	
	3803			2517						1124	
			_							_	
	-			-							
	0.40		0.33	0.50						0.20	
	EDT :	/ M/DT:	CI	0							
phase 2:	EBT and	6:WBTL,	Start of (Green							
	0 0.99 0	0 655 0.99 0.99 0 662 0 995 NA 2 2 10.0 28.0 68.0 56.7% 4.0 1.0 0.0 5.0 Lag Yes C-Max 69.0 0.58 0.35 1.5 0.1 1.6 A 1.6 A 0 0 297 2803 596 0 0.45	0 655 330 21 0.99 0.99 0.99 0 662 333 0 995 0 NA 2 2 10.0 28.0 68.0 56.7% 4.0 1.0 0.0 5.0 Lag Yes C-Max 69.0 0.58 0.35 1.5 0.1 1.6 A 1.6 A 1.6 A 0 0 297 2803 596 0 0 0.45	0 655 330 151 21 21 0.99 0.99 0.99 0.99 0 662 333 153 0 995 0 153 NA pm+pt 2 1 6 2 1 10.0 3.0 28.0 8.0 68.0 20.0 56.7% 16.7% 4.0 4.0 1.0 1.0 0.0 0.0 5.0 5.0 Lag Lead Yes Yes C-Max None 69.0 83.0 0.58 0.69 0.35 0.39 1.5 6.4 0.1 0.0 1.6 6.4 A A A 1.6 A A	0 655 330 151 1421 21 21 0.99 0.99 0.99 0.99 0.99 0 662 333 153 1435 0 995 0 153 1435 NA pm+pt NA 2 1 6 2 1 6 2 1 6 10.0 3.0 10.0 28.0 8.0 28.0 68.0 20.0 88.0 56.7% 16.7% 73.3% 4.0 4.0 4.0 4.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0	0 655 330 151 1421 0 21 21 0.99 0.99 0.99 0.99 0.99 0.99 0 662 333 153 1435 0 0 995 0 153 1435 0 NA pm+pt NA 2 1 6 6 2 1 6 2 1 6 10.0 3.0 10.0 28.0 8.0 28.0 88.0 28.0 68.0 20.0 88.0 56.7% 16.7% 73.3% 4.0 4.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	0 655 330 151 1421 0 0 21 21 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0 662 333 153 1435 0 0 0 995 0 153 1435 0 0 NA pm+pt NA 2 1 6 2 1 1 6 10.0 3.0 10.0 28.0 8.0 28.0 68.0 28.0 68.0 20.0 88.0 56.7% 16.7% 73.3% 4.0 4.0 4.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 5.0 5.0 5.0 5.0 Lag Lead Yes Yes C-Max None C-Max 69.0 83.0 83.0 0.58 0.58 0.69 0.69 0.35 0.39 0.41 1.5 6.4 3.7 0.1 0.0 0.1 1.6 6.4 3.8 A A A A 1.6 4.0 A A 0 16 56 0 27 56 297 282 70 2803 460 3517 596 0 630 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 655 330 151 1421 0 0 0 0 21 21 21 21 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99	0 655 330 151 1421 0 0 0 0 0 0 0 0 0 0 99 0.99 0.99 0.99	0 655 330 151 1421 0 0 0 0 35 21 21 0 9 0.99 0.99 0.99 0.99 0.99 0.99 0.99	0 655 330 151 1421 0 0 0 0 0 35 159 21 21 21 9 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.

39: San Jacinto Blvd & W. 15th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

Maximum v/c Ratio: 0.41 Intersection Signal Delay: 5.8
Intersection Capacity Utilization 74.4%
Analysis Period (min) 15 Intersection LOS: A ICU Level of Service D

Splits and Phases: 39: San Jacinto Blvd & W. 15th St

09/29/2016 Synchro 9 Report Page 35 MS

40: Trinity St & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions Timing Plan: AM

	•	-	\rightarrow	•	←	•	4	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተተ			ተተ _ጉ		7	†	7			
Traffic Volume (vph)	84	655	0	0	1524	237	56	126	9	0	0	0
Future Volume (vph)	84	655	0	0	1524	237	56	126	9	0	0	0
Confl. Peds. (#/hr)	1					1	3		6			
Confl. Bikes (#/hr)									2			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	87	675	0	0	1571	244	58	130	9	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	87	675	0	0	1815	0	58	130	9	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		32.0	32.0	32.0			
Total Split (s)	20.0	86.0			66.0		34.0	34.0	34.0			
Total Split (%)	16.7%	71.7%			55.0%		28.3%	28.3%	28.3%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	81.0	81.0			68.2		29.0	29.0	29.0			
Actuated g/C Ratio	0.68	0.68			0.57		0.24	0.24	0.24			
v/c Ratio	0.45	0.20			0.64		0.14	0.29	0.02			
Control Delay	29.9	4.4			7.3		36.8	39.2	0.1			
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0			
Total Delay	29.9	4.4			7.3		36.8	39.2	0.1			
LOS	C	A			A		D	D	A			
Approach Delay	Ū	7.3			7.3			36.7	,,			
Approach LOS		A			A			D				
Queue Length 50th (ft)	25	30			71		35	83	0			
Queue Length 95th (ft)	75	37			150		72	140	0			
Internal Link Dist (ft)	7.0	282			654		12	149	U		621	
Turn Bay Length (ft)	100	202			001			117			021	
Base Capacity (vph)	291	3432			2841		426	450	422			
Starvation Cap Reductn	0	0			0		0	0	0			
Spillback Cap Reductn	0	0			0		0	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.30	0.20			0.64		0.14	0.29	0.02			
Intersection Summary												

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 70

40: Trinity St & W. 15th St

Existing Conditions Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.64 Intersection Signal Delay: 9.4 Intersection Capacity Utilization 74.4% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service D

Splits and Phases: 40: Trinity St & W. 15th St

09/29/2016 Synchro 9 Report MS Page 37

80: Red River St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

	۶	-	•	•	—	•	1	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^		7	^	7	ሻ	f a		7	^	7
Traffic Volume (vph)	131	422	42	63	1404	117	28	136	28	51	262	203
Future Volume (vph)	131	422	42	63	1404	117	28	136	28	51	262	203
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	142	459	46	68	1526	127	30	148	30	55	285	221
Shared Lane Traffic (%)												
Lane Group Flow (vph)	142	505	0	68	1526	127	30	178	0	55	285	221
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6		6	8			4		4
Detector Phase	5	2		1	6	6	3	8		7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	10.0	23.0		10.0	23.0	23.0	10.0	23.0		10.0	23.0	23.0
Total Split (s)	15.0	63.0		15.0	63.0	63.0	12.0	30.0		12.0	30.0	30.0
Total Split (%)	12.5%	52.5%		12.5%	52.5%	52.5%	10.0%	25.0%		10.0%	25.0%	25.0%
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	None
Act Effct Green (s)	82.3	73.8		76.0	68.9	68.9	22.1	16.6		23.2	19.0	19.0
Actuated g/C Ratio	0.69	0.62		0.63	0.57	0.57	0.18	0.14		0.19	0.16	0.16
v/c Ratio	0.64	0.23		0.11	0.75	0.13	0.14	0.69		0.28	0.51	0.51
Control Delay	43.2	13.6		7.6	24.6	6.3	42.5	64.3		38.0	49.2	9.9
Queue Delay	0.0	0.0		0.0	1.3	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	43.2	13.6		7.6	25.9	6.3	42.6	64.3		38.0	49.2	9.9
LOS	D	В		Α	С	Α	D	Е		D	D	Α
Approach Delay		20.1			23.7			61.1			32.6	
Approach LOS		С			С			Е			С	
Queue Length 50th (ft)	78	98		13	463	18	20	134		34	110	0
Queue Length 95th (ft)	144	105		m37	590	m48	m36	m207		65	147	67
Internal Link Dist (ft)		685			494			855			561	
Turn Bay Length (ft)	100			120			140			150		
Base Capacity (vph)	239	2149		645	2031	954	218	384		200	743	507
Starvation Cap Reductn	0	0		0	287	0	0	0		0	0	0
Spillback Cap Reductn	0	0		0	54	0	9	0		0	0	7
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.59	0.23		0.11	0.88	0.13	0.14	0.46		0.28	0.38	0.44

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 80 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.75

80: Red River St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Intersection Signal Delay: 27.0 Intersection Capacity Utilization 75.8% Intersection LOS: C ICU Level of Service D Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 80: Red River St & Martin Luther King Jr. Blvd

ÿ1	→ Ø2 (R)	↑ ø3	 Ø4
15 s	63 s	12 s	30 s
≯ ø5	◆ Ø6 (R)	Ø7	↑ ø8
4.5	co -	40	20 -

09/29/2016 Synchro 9 Report MS Page 39

81: I-35 SB Frontage Rd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

	۶	→	•	•	←	•	4	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		^	7	ሻ	^						414	71
Traffic Volume (vph)	0	285	170	448	773	0	0	0	0	55	570	75
Future Volume (vph)	0	285	170	448	773	0	0	0	0	55	570	75
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9
Adj. Flow (vph)	0	310	185	487	840	0	0	0	0	60	620	82
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	310	185	487	840	0	0	0	0	0	680	82
Turn Type		NA	Perm	pm+pt	NA					Perm	NA	Perr
Protected Phases		2		1	2 1						4 12	
Permitted Phases			2	2 1						4 12		4 1
Detector Phase		2	2	1	2 1					4 12	4 12	4 1
Switch Phase												
Minimum Initial (s)		5.0	5.0	5.0								
Minimum Split (s)		24.0	24.0	24.0								
Total Split (s)		25.0	25.0	47.0								
Total Split (%)		20.8%	20.8%	39.2%								
Yellow Time (s)		4.0	4.0	4.0								
All-Red Time (s)		2.0	2.0	2.0								
Lost Time Adjust (s)		0.0	0.0	0.0								
Total Lost Time (s)		6.0	6.0	6.0								
Lead/Lag		Lead	Lead	Lag								
Lead-Lag Optimize?		Yes	Yes	Yes								
Recall Mode		C-Max	C-Max	Min								
Act Effct Green (s)		19.0	19.0	60.1	66.1						41.9	41.
Actuated g/C Ratio		0.16	0.16	0.50	0.55						0.35	0.3
v/c Ratio		0.55	0.45	0.66	0.43						0.55	0.7
Control Delay		53.6	22.1	6.0	1.5						33.6	27.
Queue Delay		0.0	0.0	1.5	0.5						0.0	0.
Total Delay		53.6	22.1	7.6	2.0						33.6	27.
LOS		D	С	Α	Α						С	(
Approach Delay		41.8			4.0						30.0	
Approach LOS		D			Α						С	
Queue Length 50th (ft)		104	48	2	0						222	22
Queue Length 95th (ft)		138	94	1	0						283	30
Internal Link Dist (ft)		494			371			1344			366	
Turn Bay Length (ft)												
Base Capacity (vph)		560	411	737	1950						1230	113
Starvation Cap Reductn		0	0	112	630						0	
Spillback Cap Reductn		0	0	0	176						0	1
Storage Cap Reductn		0	0	0	0						0	
Reduced v/c Ratio		0.55	0.45	0.78	0.64						0.55	0.7
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120		EDWD 1										
Offset: 0 (0%), Referenced t	o pnase 2:	FRMR'	SIALL OF G	een								

Oilser: 0 (0%), Referenced Natural Cycle: 100

MS

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.79

81: I-35 SB Frontage Rd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Lane Group	Ø4	Ø5	Ø6	Ø8	Ø12	Ø16
Lare Configurations						
Traffic Volume (vph)						
Future Volume (vph)						
Peak Hour Factor						
Adj. Flow (vph)						
Shared Lane Traffic (%)						
Lane Group Flow (vph)						
Turn Type						
Protected Phases	4	5	6	8	12	16
Permitted Phases						
Detector Phase						
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	24.0	11.0	24.0	24.0	11.0	11.0
Total Split (s)	36.0	49.0	35.0	24.0	12.0	12.0
Total Split (%)	30%	41%	29%	20%	10%	10%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	2.0	2.0	2.0	2.0	2.0	2.0
Total Lost Time (s)						
Lead/Lag	Lag	Lag	Lead	Lag	Lead	Lead
	Yes	Yes	Yes	Yes	Yes	Yes
Lead-Lag Optimize? Recall Mode			None			None
	None	Min	none	Max	None	ivone
Act Effet Green (s)						
Actuated g/C Ratio						
v/c Ratio						
Control Delay						
Queue Delay						
Total Delay						
LOS						
Approach Delay						
Approach LOS						
Queue Length 50th (ft)						
Queue Length 95th (ft)						
Internal Link Dist (ft)						
Turn Bay Length (ft)						
Base Capacity (vph)						
Starvation Cap Reductn						
Spillback Cap Reductn						
Storage Cap Reductn						
Reduced v/c Ratio						
Intersection Summary						

09/29/2016 Synchro 9 Report Page 41 MS

81: I-35 SB Frontage Rd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Intersection Signal Delay: 21.4 Intersection Capacity Utilization 67.7% Analysis Period (min) 15 Intersection LOS: C ICU Level of Service C

Splits and Phases: 81: I-35 SB Frontage Rd & Martin Luther King Jr. Blvd
#81 #81 #81 #81 #81 Ø1

09/29/2016 Synchro 9 Report Page 42 MS

	۶	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	414			ተተተ	7	7	414	7			
Traffic Volume (vph)	168	173	0	0	875	98	367	145	169	0	0	0
Future Volume (vph)	168	173	0	0	875	98	367	145	169	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	183	188	0	0	951	107	399	158	184	0	0	0
Shared Lane Traffic (%)	48%						50%					
Lane Group Flow (vph)	95	276	0	0	951	107	199	358	184	0	0	0
Turn Type	pm+pt	NA			NA	Perm	Perm	NA	Perm			
Protected Phases	5	56			6			8 16				
Permitted Phases	5 6					6	8 16		8 16			
Detector Phase	5	56			6	6	8 16	8 16	8 16			
Switch Phase												
Minimum Initial (s)	5.0				5.0	5.0						
Minimum Split (s)	11.0				24.0	24.0						
Total Split (s)	49.0				35.0	35.0						
Total Split (%)	40.8%				29.2%	29.2%						
Yellow Time (s)	4.0				4.0	4.0						
All-Red Time (s)	2.0				2.0	2.0						
Lost Time Adjust (s)	0.0				0.0	0.0						
Total Lost Time (s)	6.0				6.0	6.0						
Lead/Lag	Lag				Lead	Lead						
Lead-Lag Optimize?	Yes				Yes	Yes						
Recall Mode	Min				None	None						
Act Effct Green (s)	70.2	70.2			28.4	28.4	31.8	31.8	31.8			
Actuated g/C Ratio	0.58	0.58			0.24	0.24	0.26	0.26	0.26			
v/c Ratio	0.15	0.17			0.79	0.21	0.47	0.41	0.33			
Control Delay	0.8	0.8			48.5	0.9	39.1	36.1	10.4			
Queue Delay	0.0	0.0			0.1	0.0	0.0	0.0	0.0			
Total Delay	0.8	0.8			48.6	0.9	39.1	36.1	10.4			
LOS	A	A			D	Α	D	D	В			
Approach Delay		0.8			43.8			30.5				
Approach LOS		A			D			С				
Queue Length 50th (ft)	1	1			253	0	96	87	17			
Queue Length 95th (ft)	0	0			305	0	169	137	78			
Internal Link Dist (ft)		371			326		,	707			346	
Turn Bay Length (ft)		371			320	180		, , ,			5-10	
Base Capacity (vph)	633	1675			1228	527	427	875	560			
Starvation Cap Reductn	0	0			0	0	0	0/3	0			
Spillback Cap Reductn	0	0			16	0	0	0	0			
Storage Cap Reductn	0	0			0	0	0	0	0			
Reduced v/c Ratio	0.15	0.16			0.78	0.20	0.47	0.41	0.33			
Intersection Summary												
Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120												

Intersection Summary
Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBWB, Start of Green
Natural Cycle: 100
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.79

00/20/2017	Complete O Desert
09/29/2016	Synchro 9 Report
MS	Page 43

Lane Group	Ø1	Ø2	Ø4	Ø8	Ø12	Ø16
Lane Configurations						
Traffic Volume (vph)						
Future Volume (vph)						
Peak Hour Factor						
Adj. Flow (vph)						
Shared Lane Traffic (%)						
Lane Group Flow (vph)						
Turn Type						
Protected Phases	1	2	4	8	12	16
Permitted Phases				U	12	10
Detector Phase						
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	24.0	24.0	24.0	24.0	11.0	11.0
	47.0	25.0	36.0	24.0	12.0	11.0
Total Split (s)	39%				10%	10%
Total Split (%)		21%	30%	20%		
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)						
Total Lost Time (s)						
Lead/Lag	Lag	Lead	Lag	Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	Min	C-Max	None	Max	None	None
Act Effct Green (s)						
Actuated g/C Ratio						
v/c Ratio						
Control Delay						
Queue Delay						
Total Delay						
LOS						
Approach Delay						
Approach LOS						
Queue Length 50th (ft)						
Queue Length 95th (ft)						
Internal Link Dist (ft)						
Turn Bay Length (ft)						
Base Capacity (vph)						
Starvation Cap Reductn						
Spillback Cap Reductn						
Storage Cap Reductn						
Reduced v/c Ratio						
Intersection Summary						

82: I-35 NB Frontage Rd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions Timing Plan: AM

Intersection Signal Delay: 31.9 Intersection Capacity Utilization 67.7% Intersection LOS: C ICU Level of Service C Analysis Period (min) 15

Splits and Phases: 82: I-35 NB Frontage Rd & Martin Luther King Jr. Blvd

#81

#81

#81

#81

#81 #81 **7**∅1 #82 Ø6

09/29/2016 Synchro 9 Report MS Page 45

83: Red River St & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions Timing Plan: AM

	•	-	\rightarrow	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	ተተተ		ሻ	^			4		Ţ	f)	
Traffic Volume (vph)	142	541	82	250	2022	37	11	58	122	30	41	227
Future Volume (vph)	142	541	82	250	2022	37	11	58	122	30	41	227
Peak Hour Factor	0.92	0.92	0.92	0.92	0.96	0.92	0.92	0.92	0.92	0.92	0.92	0.96
Adj. Flow (vph)	154	588	89	272	2106	40	12	63	133	33	45	236
Shared Lane Traffic (%)												
Lane Group Flow (vph)	154	677	0	272	2146	0	0	208	0	33	281	(
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		
Minimum Split (s)	10.0	23.0		10.0	23.0		23.0	23.0		23.0	23.0	
Total Split (s)	20.0	70.0		20.0	70.0		30.0	30.0		30.0	30.0	
Total Split (%)	16.7%	58.3%		16.7%	58.3%		25.0%	25.0%		25.0%	25.0%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Act Effct Green (s)	80.0	65.0		80.0	65.0			25.0		25.0	25.0	
Actuated g/C Ratio	0.67	0.54		0.67	0.54			0.21		0.21	0.21	
v/c Ratio	0.54	0.25		0.46	0.78			0.56		0.20	0.57	
Control Delay	41.8	6.4		7.4	25.8			35.1		71.0	46.3	
Queue Delay	0.0	0.0		0.0	1.1			0.0		0.0	0.0	
Total Delay	41.8	6.4		7.4	26.9			35.1		71.0	46.3	
LOS	D	Α		Α	С			D		Е	D	
Approach Delay		12.9			24.7			35.1			48.9	
Approach LOS		В			С			D			D	
Queue Length 50th (ft)	69	52		45	589			98		25	160	
Queue Length 95th (ft)	139	65		m54	641			180		61	232	
Internal Link Dist (ft)		654			629			269			433	
Turn Bay Length (ft)	70			55								
Base Capacity (vph)	283	2716		585	2748			369		163	496	
Starvation Cap Reductn	0	0		0	339			0		0	0	
Spillback Cap Reductn	0	0		0	0			0		0	0	
Storage Cap Reductn	0	0		0	0			0		0	0	
Reduced v/c Ratio	0.54	0.25		0.46	0.89			0.56		0.20	0.57	

Intersection Summary

Cycle Length: 120

Offise: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 65

Control Type: Pretimed
Maximum v/c Ratio: 0.78
Intersection Signal Delay: 24.7

Intersection LOS: C Intersection Capacity Utilization 80.7% ICU Level of Service D

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

83: Red River St & W. 15th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

 09/29/2016
 Synchro 9 Report

 MS
 Page 47

84: I-35 SB Frontage Rd & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

	۶	→	•	•	←	•	4	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		^	7		414						ተተቡ	7
Traffic Volume (vph)	0	351	261	4	908	0	0	0	0	0	1260	1152
Future Volume (vph)	0	351	261	4	908	0	0	0	0	0	1260	115
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.98	0.98	0.98	0.96	0.96	0.96
Adj. Flow (vph)	0	382	284	4	987	0	0	0	0	0	1313	1200
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	382	284	0	991	0	0	0	0	0	1313	1200
Turn Type		NA	Perm	pm+pt	NA						NA	Free
Protected Phases		2		1	2 1						4 12	
Permitted Phases			2	21						4 12		Free
Detector Phase		2	2	1	2 1					4 12	4 12	
Switch Phase												
Minimum Initial (s)		5.0	5.0	5.0								
Minimum Split (s)		23.0	23.0	10.0								
Total Split (s)		32.0	32.0	23.0								
Total Split (%)		26.7%	26.7%	19.2%								
Yellow Time (s)		4.0	4.0	4.0								
All-Red Time (s)		1.0	1.0	1.0								
Lost Time Adjust (s)		0.0	0.0	1.0								
Total Lost Time (s)		5.0	5.0									
Lead/Lag		Lead	Lead	Lag								
Lead-Lag Optimize?		Yes	Yes	Yes								
Recall Mode		C-Max	C-Max	None								
Act Effct Green (s)		28.7	28.7	NOTIC	50.3						54.7	120.0
Actuated g/C Ratio		0.24	0.24		0.42						0.46	1.00
v/c Ratio		0.45	0.48		0.42						0.40	0.76
Control Delay		50.8	16.3		17.9						22.7	4.9
Queue Delay		0.0	0.0		5.4						0.0	0.2
Total Delay		50.8	16.3		23.3						22.7	5.1
LOS		D D	10.3 B		23.3 C						22.1 C	J.
Approach Delay		36.1	Б		23.3						14.3	,
		30.1 D			23.3 C						14.3 B	
Approach LOS Queue Length 50th (ft)		127	40		380						231	94
		168	100		494						250	209
Queue Length 95th (ft)			100		163			271				205
Internal Link Dist (ft)		629			103			2/1			1344	
Turn Bay Length (ft)		04/	F0.4		144/						224/	150
Base Capacity (vph)		846	594 0		1446 388						2346 0	158
Starvation Cap Reductn		0										(
Spillback Cap Reductn		2	0		0						0	4′
Storage Cap Reductn		0	0								0	
Reduced v/c Ratio		0.45	0.48		0.94						0.56	0.78
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced t	o phase 2	EBWB,	Start of G	een								
Natural Cycle: 70												
Control Type: Actuated-Coo	rdinated											
Maximum v/c Ratio: 0.76												

84: I-35 SB Frontage Rd & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Lane Group	Ø4	Ø5	Ø8	Ø12	Ø16
LaneConfigurations					
Traffic Volume (vph)					
Future Volume (vph)					
Peak Hour Factor					
Adj. Flow (vph)					
Shared Lane Traffic (%)					
Lane Group Flow (vph)					
Turn Type					
Protected Phases	4	5	8	12	16
Permitted Phases					
Detector Phase					
Switch Phase					
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	23.0	23.0	23.0	10.0	10.0
Total Split (s)	55.0	77.0	33.0	10.0	10.0
Total Split (%)	46%	64%	28%	8%	8%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)					
Total Lost Time (s)					
Lead/Lag	Lag	Lag		Lead	Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes
Recall Mode	None	Min	None	None	None
Act Effct Green (s)					
Actuated g/C Ratio					
v/c Ratio					
Control Delay					
Queue Delay					
Total Delay					
LOS					
Approach Delay					
Approach LOS					
Queue Length 50th (ft)					
Queue Length 95th (ft)					
Internal Link Dist (ft)					
Turn Bay Length (ft)					
Base Capacity (vph)					
Starvation Cap Reductn					
Spillback Cap Reductn					
Storage Cap Reductn					
Reduced v/c Ratio					
Intersection Summary					

Synchro 9 Report Page 49 09/29/2016 MS

84: I-35 SB Frontage Rd & W. 15th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

Intersection Signal Delay: 19.9 Intersection Capacity Utilization 78.2% Analysis Period (min) 15

Intersection LOS: B
ICU Level of Service D

Synchro 9 Report Page 50 09/29/2016 MS

85: I-35 NB Frontage Rd & W. 15th St

Natural Cycle: 70
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.76

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

	•	•	4	†	ļ	4						
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	Ø1	Ø2	Ø4	Ø8	Ø12	Ø16
Lane Configurations	ሻሻ		ሻ	ተተቡ								
Traffic Volume (vph)	339	0	833	498	0	0						
Future Volume (vph)	339	0	833	498	0	0						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92						
Adj. Flow (vph)	368	0	905	541	0	0						
Shared Lane Traffic (%)			50%									
Lane Group Flow (vph)	368	0	452	994	0	0						
Turn Type	Prot		Perm	NA								
Protected Phases	5			8 16			1	2	4	8	12	16
Permitted Phases			8 16									
Detector Phase	5		8 16	8 16								
Switch Phase												
Minimum Initial (s)	5.0						5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	23.0						10.0	23.0	23.0	23.0	10.0	10.0
Total Split (s)	77.0						23.0	32.0	55.0	33.0	10.0	10.0
Total Split (%)	64.2%						19%	27%	46%	28%	8%	8%
Yellow Time (s)	4.0						4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0						1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0											
Total Lost Time (s)	5.0											
Lead/Lag	Lag						Lag	Lead	Lag		Lead	Lead
Lead-Lag Optimize?	Yes						Yes	Yes	Yes		Yes	Yes
Recall Mode	Min						None	C-Max	None	None	None	None
Act Effct Green (s)	58.6		51.4	51.4								
Actuated g/C Ratio	0.49		0.43	0.43								
v/c Ratio	0.22		0.69	0.49								
Control Delay	5.3		36.0	26.6								
Queue Delay	0.3		42.8	0.1								
Total Delay	5.7		78.7	26.7								
LOS	Α		Е	С								
Approach Delay	5.7			43.0								
Approach LOS	Α			D								
Queue Length 50th (ft)	0		324	212								
Queue Length 95th (ft)	0		#554	283								
Internal Link Dist (ft)	163			243	696							
Turn Bay Length (ft)												
Base Capacity (vph)	2059		651	2012								
Starvation Cap Reductn	1128		0	0								
Spillback Cap Reductn	0		228	234								
Storage Cap Reductn	0		0	0								
Reduced v/c Ratio	0.40		1.07	0.56								
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced	to phase 2:	EBWB, S	tart of Gr	een								
Matural Cycle: 70												

09/29/2016 Synchro 9 Report Page 51 MS

85: I-35 NB Frontage Rd & W. 15th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

Intersection Signal Delay: 35.4 Inte Intersection Capacity Utilization 41.1% ICU Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Intersection LOS: D ICU Level of Service A

09/29/2016 Synchro 9 Report Page 52 MS

11: Colorado St & W. 18th St

Existing Conditions
Timing Plan: AM

TIA for Texas Capital Complex Master Plan 2018 Update

ntersection	
ntersection Delay, s/veh	8.3
ntersection LOS	Α

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations							4				ર્ન	
Traffic Vol, veh/h	0	0	0	0	0	20	10	3	0	12	23	0
Future Vol, veh/h	0	0	0	0	0	20	10	3	0	12	23	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	23	11	3	0	14	26	0
Number of Lanes	0	0	0	0	0	0	1	0	0	0	1	0

Approach	WB	NB
Opposing Approach		SB
Opposing Lanes	0	1
Conflicting Approach Left	NB	
Conflicting Lanes Left	1	0
Conflicting Approach Right	SB	WB
Conflicting Lanes Right	1	1
HCM Control Delay	7.8	7.5
HCM LOS	Α	A

Lane	NBLn1	WBLn1	SBLn1	ı
Vol Left, %	34%	61%	0%	ó
Vol Thru, %	66%	30%	91%	ó
Vol Right, %	0%	9%	9%	Ď
Sign Control	Stop	Stop	Stop)
Traffic Vol by Lane	35	33	214	1
LT Vol	12	20	0)
Through Vol	23	10	195	5
RT Vol	0	3	19	9
Lane Flow Rate	40	38	243	3
Geometry Grp	1	1	1	l
Degree of Util (X)	0.047	0.048	0.269	9
Departure Headway (Hd)	4.251	4.61	3.975	5
Convergence, Y/N	Yes	Yes	Yes	ŝ
Cap	832	782	900)
Service Time	2.327	2.61	2.015	5
HCM Lane V/C Ratio	0.048	0.049	0.27	7
HCM Control Delay	7.5	7.8	8.5	5
HCM Lane LOS	Α	Α	Α	١
HCM 95th-tile Q	0.1	0.2	1.1	l

 09/29/2016
 Synchro 9 Report

 MS
 Page 1

11: Colorado St & W. 18th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Intersection
Intersection Delay, s/veh
Intersection LOS

Movement	SBU	SBL	SBT	SBR
Lane Configurations			ĵ»	
Traffic Vol, veh/h	0	0	195	19
Future Vol, veh/h	0	0	195	19
Peak Hour Factor	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	222	22
Number of Lanes	0	0	1	0
Approach			SB	
Opposing Approach			NB	
Opposing Lanes			1	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right				
Conflicting Lanes Right			0	
HCM Control Delay			8.5	
HCM LOS			Α	

12: N. Congress Ave & W. 18th St TIA for Texas Capital Complex Master Plan 2018 Update

Intersection

MS

Existing Conditions
Timing Plan: AM

Intersection			
Intersection Delay, s/veh	7.7		
Intersection LOS	Α		

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations							4				ર્ન	
Traffic Vol, veh/h	0	0	0	0	0	10	23	5	0	43	53	0
Future Vol, veh/h	0	0	0	0	0	10	23	5	0	43	53	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	11	26	6	0	49	61	0
Number of Lanes	0	0	0	0	0	0	1	0	0	0	1	0

Approach	WB	NB
Opposing Approach		SB
Opposing Lanes	0	1
Conflicting Approach Left	NB	
Conflicting Lanes Left	1	0
Conflicting Approach Right	SB	WB
Conflicting Lanes Right	1	1
HCM Control Delay	7.7	7.9
HCM LOS	A	A

Lane	NBLn1	WBLn1	SBLn1	
Vol Left, %	45%	26%	0%	
Vol Thru, %	55%	61%	53%	
Vol Right, %	0%	13%	47%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	96	38	133	
LT Vol	43	10	0	
Through Vol	53	23	70	
RT Vol	0	5	63	
Lane Flow Rate	110	44	153	
Geometry Grp	1	1	1	
Degree of Util (X)	0.129	0.054	0.162	
Departure Headway (Hd)	4.216	4.462	3.81	
Convergence, Y/N	Yes	Yes	Yes	
Cap	845	808	934	
Service Time	2.269	2.462	1.866	
HCM Lane V/C Ratio	0.13	0.054	0.164	
HCM Control Delay	7.9	7.7	7.6	
HCM Lane LOS	Α	Α	Α	
HCM 95th-tile Q	0.4	0.2	0.6	

09/29/2016	Synchro 9 Report
MS	Page 4

Synchro 9 Report Page 3 09/29/2016

Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	0	70	63
Future Vol, veh/h	0	0	70	63
Peak Hour Factor	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	80	72
Number of Lanes	0	0	1	0
Approach			SB	
Opposing Approach			NB	
Opposing Lanes			1	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right				
Conflicting Lanes Right			0	
HCM Control Delay			7.6	
HCM LOS			Α	

14: Brazos St & W. 18th St TIA for Texas Capital Complex Master Plan 2018 Update

Intersection
Intersection Delay, s/veh
Intersection LOS

Existing Conditions
Timing Plan: AM

Intersection	
Intersection Delay, s/veh	8.7
Intersection LOS	А

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations							4				ર્ન	
Traffic Vol, veh/h	0	0	0	0	0	16	18	7	0	8	15	0
Future Vol, veh/h	0	0	0	0	0	16	18	7	0	8	15	0
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	20	23	9	0	10	19	0
Number of Lanes	0	0	0	0	0	0	1	0	0	0	1	0

Approach	WB	NB
Opposing Approach		SB
Opposing Lanes	0	1
Conflicting Approach Left	NB	
Conflicting Lanes Left	1	0
Conflicting Approach Right	SB	WB
Conflicting Lanes Right	1	1
HCM Control Delay	7.9	7.6
HCM LOS	A	A

Lane	NBLn1	WBLn1	SBLn1	
Vol Left, %	35%	39%	0%	5
Vol Thru, %	65%	44%	93%	,
Vol Right, %	0%	17%	7%	5
Sign Control	Stop	Stop	Stop)
Traffic Vol by Lane	23	41	231	
LT Vol	8	16	0)
Through Vol	15	18	215	5
RT Vol	0	7	16)
Lane Flow Rate	29	52	292)
Geometry Grp	1	1	1	
Degree of Util (X)	0.035	0.066	0.325	5
Departure Headway (Hd)	4.316	4.605	4.005	5
Convergence, Y/N	Yes	Yes	Yes	5
Cap	816	783	892	2
Service Time	2.414	2.605	2.053	3
HCM Lane V/C Ratio	0.036	0.066	0.327	7
HCM Control Delay	7.6	7.9	9)
HCM Lane LOS	Α	Α	Α	١
HCM 95th-tile Q	0.1	0.2	1.4	1

Movement	SBU	SBL	SBT	SBR	
Lane Configurations			î»		
Traffic Vol, veh/h	0	0	215	16	
Future Vol, veh/h	0	0	215	16	
Peak Hour Factor	0.79	0.79	0.79	0.79	
Heavy Vehicles, %	2	2	2	2	
Mvmt Flow	0	0	272	20	
Number of Lanes	0	0	1	0	
Approach			SB		
Opposing Approach			NB		
Opposing Lanes			1		
Conflicting Approach Left			WB		
Conflicting Lanes Left			1		
Conflicting Approach Right					
Conflicting Lanes Right			0		
HCM Control Delay			9		
HCM LOS			Α		

 09/29/2016
 Synchro 9 Report

 MS
 Page 5

Intersection	
Intersection Delay, s/veh	8.9
Intersection LOS	Α

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4								ĵ»	
Traffic Vol, veh/h	0	10	74	98	0	0	0	0	0	0	27	25
Future Vol, veh/h	0	10	74	98	0	0	0	0	0	0	27	25
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	11	84	111	0	0	0	0	0	0	31	28
Number of Lanes	0	0	1	0	0	0	0	0	0	0	1	0

EB	NB
	SB
0	1
SB	EB
1	1
NB	
1	0
8.7	7.7
Α	A
	0 SB 1 NB

Lane	NBLn1	EBLn1	SBLn1
Vol Left, %	0%	5%	3%
Vol Thru, %	52%	41%	97%
Vol Right, %	48%	54%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	52	182	208
LT Vol	0	10	6
Through Vol	27	74	202
RT Vol	25	98	0
Lane Flow Rate	59	207	236
Geometry Grp	1	1	1
Degree of Util (X)	0.072	0.247	0.294
Departure Headway (Hd)	4.378	4.3	4.472
Convergence, Y/N	Yes	Yes	Yes
Cap	818	836	804
Service Time	2.406	2.321	2.495
HCM Lane V/C Ratio	0.072	0.248	0.294
HCM Control Delay	7.7	8.7	9.4
HCM Lane LOS	Α	Α	Α
HCM 95th-tile O	0.2	1	1.2

 09/29/2016
 Synchro 9 Report

 MS
 Page 7

20: Colorado St & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update Existing Conditions
Timing Plan: AM

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			Ą	
Traffic Vol, veh/h	0	6	202	0
Future Vol, veh/h	0	6	202	0
Peak Hour Factor	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	7	230	0
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left				
Conflicting Lanes Left		0		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		9.4		
HCM LOS		Α		

22: N. Congress Ave & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

ntersection	
ntersection Delay, s/veh	8.6
ntersection LOS	Α

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4								ĵ.	
Traffic Vol, veh/h	0	14	80	14	0	0	0	0	0	0	79	159
Future Vol, veh/h	0	14	80	14	0	0	0	0	0	0	79	159
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	16	94	16	0	0	0	0	0	0	93	187
Number of Lanes	0	0	1	0	0	0	0	0	0	0	1	0
Approach		EB									NB	
Opposing Approach											SB	

EB	NB
	SB
0	1
SB	EB
1	1
NB	
1	0
8.6	8.7
Α	A
	0 SB 1 NB

Lane	NBLn1	EBLn1	SBLn1	
Vol Left, %	0%	13%	20%	
Vol Thru, %	33%	74%	80%	
Vol Right, %	67%	13%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	238	108	87	
LT Vol	0	14	17	
Through Vol	79	80	70	
RT Vol	159	14	0	
Lane Flow Rate	280	127	102	
Geometry Grp	1	1	1	
Degree of Util (X)	0.308	0.165	0.13	
Departure Headway (Hd)	3.961	4.684	4.557	
Convergence, Y/N	Yes	Yes	Yes	
Cap	910	766	788	
Service Time	1.974	2.71	2.577	
HCM Lane V/C Ratio	0.308	0.166	0.129	
HCM Control Delay	8.7	8.6	8.3	
HCM Lane LOS	Α	Α	Α	
HCM 95th-tile Q	1.3	0.6	0.4	

 09/29/2016
 Synchro 9 Report

 MS
 Page 9

22: N. Congress Ave & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: AM

Intersection					
Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Lane Configurations			ર્ન		
Traffic Vol, veh/h	0	17	70	0	
Future Vol, veh/h	0	17	70	0	
Peak Hour Factor	0.85	0.85	0.85	0.85	
Heavy Vehicles, %	2	2	2	2	
Mvmt Flow	0	20	82	0	
Number of Lanes	0	0	1	0	
Approach		SB			
Opposing Approach		NB			
Opposing Lanes		1			

Approach	SB
Opposing Approach	NB
Opposing Lanes	1
Conflicting Approach Left	
Conflicting Lanes Left	0
Conflicting Approach Right	EB
Conflicting Lanes Right	1
HCM Control Delay	8.3
HCM LOS	А

Intersection							
Int Delay, s/veh 1.	.1						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	↑ 1}		٦	^	¥		
Traffic Vol, veh/h	940	88	138	718	0	20	
Future Vol, veh/h	940	88	138	718	0	20	
Conflicting Peds, #/hr	0	1	1	0	0	5	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None	-	None	-	None	
Storage Length	-	-	40		0	-	
Veh in Median Storage, #	0	-		0	0	-	
Grade, %	0	-		0	0	-	
Peak Hour Factor	87	87	87	87	87	87	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	1080	101	159	825	0	23	
Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	1183	0	1862	597	
Stage 1		-			1132		
Stage 2					730		
Critical Hdwy		_	4.14		6.84	6.94	
Critical Hdwy Stg 1		-			5.84	-	
Critical Hdwy Stg 2			_		5.84		
Follow-up Hdwy			2.22		3.52	3.32	
Pot Cap-1 Maneuver			586		65	446	
Stage 1			-		270	-	
Stage 2					438		
Platoon blocked, %					100		
Mov Cap-1 Maneuver			583		47	443	
Mov Cap-2 Maneuver			-		47	-	
Stage 1					270		
Stage 2					319		
Stage 2					517		
Approach	EB		WB		NB		
HCM Control Delay, s	0		2.2		13.6		
HCM LOS					В		
Minor Lane/Major Mvmt	NBLn1 EBT	EBR WBI	L WBT				
Capacity (veh/h)	443 -	- 583					
HCM Lane V/C Ratio	0.052 -	- 0.272					
HCM Control Delay (s)	13.6 -	- 13.5					
HCM Lane LOS	В -		3 -				
Lanc LOO	-		-				

Intersection	1.1											
Int Delay, s/veh	1.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations			7		ની						ħβ	
Traffic Vol, veh/h	0	0	7	41	18	0	0	0	0	0	942	3
Future Vol, veh/h	0	0	7	41	18	0	0	0	0	0	942	3
Conflicting Peds, #/hr	0	0	0	12	0	0	0	0	0	0	0	3
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Fre
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	Non
Storage Length	-	-	0	-	-	-	-	-	-	-	-	
Veh in Median Storage, #	-	0	-	-	0	-	-	-	-	-	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	7	43	19	0	0	0	0	0	992	3
Major/Minor	Minor2			Minor1						Major2		
Conflicting Flow All	-	-	559	508	1058	-				Widjorz	-	
Stage 1			559	0	0					-		
Stage 2		-		508	1058					-		
Critical Hdwy			6.94	7.54	6.54					-		
Critical Hdwy Stg 1			0.94	7.04	0.54							
Critical Hdwy Stg 2			-	6.54	5.54					-		
Follow-up Hdwy			3.32	3.52	4.02							
Pot Cap-1 Maneuver	0	0	472	448	223	0				0		
	0	0	4/2	440	223	0				0	- 1	
Stage 1 Stage 2	0	0	-	516	300	0				0		
Platoon blocked, %	U	U	-	310	300	U				U		
		-	456	441	216							
Mov Cap-1 Maneuver			400	441	216							
Mov Cap-2 Maneuver	-	-	-	441		-				-		
Stage 1	-	-	-	-	290	-				-	-	
Stage 2		-	-	508	290	-				-	-	
Approach	EB			WB						SB		
HCM Control Delay, s	13			18.2						0		
HCM LOS	В			С								
Minor Lane/Major Mvmt	EBLn1V	MRI n1	SBT	SBR								
Capacity (veh/h)	456	335	301	JUIN								
HCM Lane V/C Ratio	0.016											
	13	18.2	-	-								
HCM Lang LOS	13 B	18.2 C										
HCM Lane LOS	_	0.7	-	-								
HCM 95th %tile Q(veh)	0	0.7	-	-								

Intersection												
	1.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ĵ.		ሻ	ተተተ				
Traffic Vol, veh/h	0	0	0	0	22	22	32	511	0	0	0	0
Future Vol, veh/h	0	0	0	0	22	22	32	511	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	27	16	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	0	-	-	-	-	
Veh in Median Storage, #		-	-	-	0	-	-	0	-	-	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	23	23	34	544	0	0	0	0
Major/Minor				Minor1			Major1					
Conflicting Flow All					628	299	16	0	-			
Stage 1				-	612	-	-	-	-			
Stage 2				-	16	-	-	-	-			
Critical Hdwy				-	6.54	7.14	5.34	-	-			
Critical Hdwy Stg 1				-	5.54	-	-	-	-			
Critical Hdwy Stg 2				-	-	-	-	-	-			
Follow-up Hdwy				-	4.02	3.92	3.12	-	-			
Pot Cap-1 Maneuver				0	398	595	1135	-	0			
Stage 1				0	482	-	-	-	0			
Stage 2				0	-	-	-	-	0			
Platoon blocked, %								-				
Mov Cap-1 Maneuver				-	0	595	1135	-	-			
Mov Cap-2 Maneuver				-	0	-	-	-	-			
Stage 1				-	0	-	-	-	-			
Stage 2				-	0	-		-	-			
Approach				WB			NB					
HCM Control Delay, s				11.6			0.5					
HCM LOS				В								
Minor Lane/Major Mvmt	NBL	NBTV	VBLn1									
Capacity (veh/h)	1135	-	595									
HCM Lane V/C Ratio	0.03	-	0.079									
HCM Control Delay (s)	8.3	-	11.6									
HCM Lane LOS	Α	-	В									
	0.1											

Intersection							
	4.8						
Movement	EBL	EBT		WBT	WBR	SBL	SBR
Lane Configurations		4				*	
Traffic Vol, veh/h	127	111		0	0	23	0
Future Vol, veh/h	127	111		0	0	23	0
Conflicting Peds, #/hr	19	0		0	0	38	0
Sign Control	Free	Free		Free	Free	Stop	Stop
RT Channelized	riee -	None		riee	None	310p	None
		None -			NONE -	0	None
Storage Length Veh in Median Storage, #	-	0		-		0	
Grade, %	-	0		0		0	
				-			
Peak Hour Factor	88	88		88	88	88	88
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	144	126		0	0	26	0
Major/Minor	Major1					Minor2	
Conflicting Flow All	19	0				472	-
Stage 1		-				19	-
Stage 2						453	-
Critical Hdwy	4.12	-				6.42	-
Critical Hdwy Stg 1						-	-
Critical Hdwy Stg 2	-					5.42	-
Follow-up Hdwy	2.218					3.518	-
Pot Cap-1 Maneuver	1597					551	0
Stage 1	-					-	0
Stage 2						640	0
Platoon blocked, %							
Mov Cap-1 Maneuver	1597					480	-
Mov Cap-2 Maneuver	-					480	
Stage 1						.00	-
Stage 2						567	_
Slage 2						307	
Annroach	EB					SB	
Approach HCM Control Delay, s	EB					12.9	
HCM Control Delay, S HCM LOS	4					12.9 B	
IICIVI LUS						В	
Minor Lane/Major Mvmt	EBL	EBT	SBLn1				
Capacity (veh/h)	1597	-	480				
HCM Lane V/C Ratio	0.09	-	0.054				
HCM Control Delay (s)	7.5	0	12.9				
HCM Lane LOS	Α	Α	В				
HCM 95th %tile Q(veh)	0.3	-	0.2				

Intersection	0.5											
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑	7								41₽	
Traffic Vol, veh/h	0	17	127	0	0	0	0	0	0	44	468	0
Future Vol, veh/h	0	17	127	0	0	0	0	0	0	44	468	0
Conflicting Peds, #/hr	0	0	21	0	0	0	0	0	0	4	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free						
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	40	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	-	-	-	-	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	18	138	0	0	0	0	0	0	48	509	0
Major/Minor	Minor2									Major2		
Conflicting Flow All	-	608	275							4	0	0
Stage 1		604	-							-	-	-
Stage 2		4	-									
Critical Hdwy		6.54	6.94							4.14		
Critical Hdwy Stg 1		5.54	-							-		
Critical Hdwy Stg 2		-	-							-		
Follow-up Hdwy		4.02	3.32							2.22		
Pot Cap-1 Maneuver	0	409	722							1616		0
Stage 1	0	486	-							-		0
Stage 2	0	-	-							-		0
Platoon blocked, %	-											-
Mov Cap-1 Maneuver		0	722							1616		
Mov Cap-2 Maneuver		0	-							-		
Stage 1		0	_									
Stage 2		0										
Stage 2		Ū										
Approach	EB									SB		
HCM Control Delay, s										0.7		
HCM LOS												
Minor Lane/Major Mvmt	EBLn1 E	EBLn2	SBL	SBT								
Capacity (veh/h)	-	722	1616									
HCM Lane V/C Ratio		0.191	0.03									
HCM Control Delay (s)		11.2	7.3	0.1								
HCM Lane LOS		В	Α.5	Α								
HCM 95th %tile Q(veh)		0.7	0.1	-								
HOW FOR FORME Q(VEII)		0.7	0.1									

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	75			^		
Traffic Vol, veh/h	39	0	0	358	0	0
Future Vol, veh/h	39	0	0	358	0	0
Conflicting Peds, #/hr	3	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length	0			-		-
Veh in Median Storage, #	0	-		0		-
Grade, %	0			0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	45	0	0	411	0	0
Major/Minor	Minor2		Major1			
Conflicting Flow All	168	-	-	0		
Stage 1	0	-	-	-		
Stage 2	168			-		
Critical Hdwy	5.74	-		-		
Critical Hdwy Stg 1	-	-		-		
Critical Hdwy Stg 2	6.04	-		-		
Follow-up Hdwy	3.82			-		
Pot Cap-1 Maneuver	787	0	0	-		
Stage 1	-	0	0	-		
Stage 2	776	0	0	-		
Platoon blocked, %				-		
Mov Cap-1 Maneuver	787	-	-	-		
Mov Cap-2 Maneuver	787	-	-	-		
Stage 1	-	-	-	-		
Stage 2	776	-	-	-		
Approach	EB		NB			
HCM Control Delay, s	9.9		0			
HCM LOS	А					
Minor Lane/Major Mvmt	NBT EBLn					
Capacity (veh/h)	- 78					
HCM Lane V/C Ratio	- 0.05					
HCM Control Delay (s)	- 9.					
HCM Lane LOS		Ą				
HCM 95th %tile Q(veh)	- 0.	2				

Synchro 9 Report Page 5 11/17/2016

Synchro 9 Report Page 6 11/17/2016

27: Guadalupe St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection													
Int Delay, s/veh	1.1												
Movement		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations						ર્ન						^	7
Traffic Vol, veh/h		0	0	0	76	8	0	0	0	0	0	1023	21
Future Vol, veh/h		0	0	0	76	8	0	0	0	0	0	1023	21
Conflicting Peds, #/hr		0	0	0	19	0	0	0	0	0	0	0	23
Sign Control		Free	Free	Free	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	-	None	-	-	None	-	-	None	-	-	None
Storage Length		-	-	-	-	-	-	-	-	-	-	-	0
Veh in Median Storage, #	ŧ	-	-	-	-	0	-	-	-	-	-	0	-
Grade, %		-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor		92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %		2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow		0	0	0	83	9	0	0	0	0	0	1112	23

Major/Minor	Minor1			Major2		
Conflicting Flow All	575	1135	-	-	-	0
Stage 1	0	0	-	-	-	-
Stage 2	575	1135	-	-	-	-
Critical Hdwy	6.84	6.54	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	5.84	5.54	-	-	-	-
Follow-up Hdwy	3.52	4.02	-		-	-
Pot Cap-1 Maneuver	448	201	0	0	-	-
Stage 1	-	-	0	0	-	-
Stage 2	526	275	0	0	-	-
Platoon blocked, %					-	-
Mov Cap-1 Maneuver	448	0	-	-	-	-
Mov Cap-2 Maneuver	448	0	-	-	-	-
Stage 1		0	-	-	-	-
Stage 2	526	0	-		-	-
Approach	WB			SB		
HCM Control Delay, s	15.1			0		
HCM LOS	С					

Minor Lane/Major Mvmt	WBLn1	SBT	SBR
Capacity (veh/h)	448	-	-
HCM Lane V/C Ratio	0.204	-	-
HCM Control Delay (s)	15.1	-	-
HCM Lane LOS	С	-	-
HCM 95th %tile O(veh)	0.8	-	-

Synchro 9 Report Page 7 11/17/2016

29: Colorado St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update Existing Conditions
Timing Plan: AM

Intersection													
Int Delay, s/veh	1.5												
Movement	EBL	EBT	EBR	W	BL.	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations						4			ની			ĵ»	
Traffic Vol, veh/h	0	0	0		7	11	12	30	261	0	0	44	2
Future Vol, veh/h	0	0	0		7	11	12	30	261	0	0	44	2
Conflicting Peds, #/hr	0	0	0		0	0	14	3	0	0	0	0	
Sign Control	Free	Free	Free	S	top	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	Non
Storage Length	-	-	-		-	-	-	-	-	-	-	-	
Veh in Median Storage, #	-	-	-		-	0	-	-	0	-	-	0	
Grade, %	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	79	79	79		79	79	79	79	79	79	79	79	7
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	0		9	14	15	38	330	0	0	56	3
Major/Minor				Min	or1			Major1			Major2		
Conflicting Flow All					178	498	344	92	0		iviajui z	-	
						498	344	92	U	-			
Stage 1				2	106	92				-		-	
Stage 2				,	72 .42	6.52	6.22	4.12	-	-		-	
Critical Hdwy					.42	5.52	0.22	4.12				-	
Critical Hdwy Stg 1 Critical Hdwy Stg 2					.42	5.52		-		-		-	
Follow-up Hdwy						4.018	3.318	2.218					
								1503					
Pot Cap-1 Maneuver					46	474	699	1503		0	0	-	
Stage 1					573 951	598	-	-	-	0	0	-	
Stage 2				,	151	819	-	-		U	U	-	
Platoon blocked, %					.00	^	(00	4500	-			-	
Mov Cap-1 Maneuver					29	0	690	1503	-	-		-	
Mov Cap-2 Maneuver					29	0	-	-	-	-		-	
Stage 1					552	0	-	-	-	-	-	-	
Stage 2				ç	951	0	-	-		-	-	-	
Approach				١	NB			NB			SB		
HCM Control Delay, s				1	1.2			0.8			0		
HCM LOS					В								
		LIDT		0DT 0									
Minor Lane/Major Mvmt	NBL		WBLn1		BR								
Capacity (veh/h)	1503	-	620	-	-								
HCM Lane V/C Ratio	0.025		0.061	-	-								
HCM Control Delay (s)	7.5	0	11.2	-	-								
HCM Lane LOS	Α	Α	В	-	-								
HCM 95th %tile Q(veh)	0.1	-	0.2	-	-								

Synchro 9 Report Page 8 11/17/2016

Intersection														
Int Delay, s/veh	0.8													
Movement		EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations							4			र्स			ĵ,	
Traffic Vol, veh/h		0	0	0		2	7	6	15	253	0	0	45	16
Future Vol, veh/h		0	0	0		2	7	6	15	253	0	0	45	16
Conflicting Peds, #/hr		0	0	0		10	0	10	11	0	0	0	0	11
Sign Control		Free	Free	Free		Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	-	None		-	-	None	-	-	None	-	-	None
Storage Length		-	-	-		-	-	-	-	-	-	-	-	-
Veh in Median Storage, #		-	-	-		-	0	-	-	0	-	-	0	-
Grade, %		-	0	-		-	0	-	-	0	-	-	0	-
Peak Hour Factor		92	92	92		92	92	92	92	92	92	92	92	92
Heavy Vehicles, %		2	2	2		2	2	2	2	2	2	2	2	2
Mvmt Flow		0	0	0		2	8	7	16	275	0	0	49	17
Major/Minor					1	∕linor1			Major1			Major2		
Conflicting Flow All						376	385	285	77	0	-	-	-	0
Stage 1						308	308	-	-	-	-	-	-	-
Stage 2						68	77	-	-	-	-	-	-	-
Critical Hdwy						6.42	6.52	6.22	4.12	-	-	-	-	-
Critical Hdwy Stg 1						5.42	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2						5.42	5.52	-	-	-	-	-	-	-
Follow-up Hdwy						3.518	4.018	3.318	2.218	-	-	-	-	-
Pot Cap-1 Maneuver						625	549	754	1522	-	0	0	-	-
Stage 1						745	660	-	-	-	0	0	-	-
Stage 2						955	831	-	-	-	0	0	-	-
Platoon blocked, %										-			-	-
Mov Cap-1 Maneuver						611	0	747	1508	-	-	-	-	-
Mov Cap-2 Maneuver						611	0	-	-	-	-	-	-	-
Stage 1						735	0	-	-	-	-	-	-	-
Stage 2						946	0	-	-	-	-		-	-
A						WD			ND			CD		
Approach						WB			NB 0.4			SB		
HCM Control Delay, s						10.2			0.4			0		
HCM LOS						В								
Minor Lane/Major Mvmt		NBL	NRT\	WBLn1	SBT	SBR								
Capacity (veh/h)		1508	-	708	-	-								
HCM Lane V/C Ratio		0.011		0.023										
HCM Control Delay (s)	,	7.4	0	10.2										
HCM Lane LOS		Α.4	A	10.2 B										
HCM 95th %tile Q(veh)		0	-	0.1										
voin voine Q(Ven)		J		0.1										

Intersection							
	1.2						
Movement		EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations					4	*	
Traffic Vol, veh/h		0	0	3	17	13	0
Future Vol. veh/h		0	0	3	17	13	0
Conflicting Peds, #/hr		0	0	24	0	0	0
Sign Control		Free	Free	Free	Free	Stop	Stop
RT Channelized		-	None	-	None	-	None
Storage Length			-		-	0	-
Veh in Median Storage, #		-	-	-	0	0	-
Grade, %		0	-	-	0	0	
Peak Hour Factor		83	83	83	83	83	83
Heavy Vehicles, %		2	2	2	2	2	2
Mymt Flow		0	0	4	20	16	0
		-					-
Major/Minor				Major2		Minor1	
Conflicting Flow All				24	0	52	-
Stage 1				-	-	24	-
Stage 2						28	
Critical Hdwy				4.12	-	6.42	-
Critical Hdwy Stg 1				-		-	-
Critical Hdwy Stg 2				-	-	5.42	-
Follow-up Hdwy				2.218	-	3.518	
Pot Cap-1 Maneuver				1591	-	957	0
Stage 1				-	-		0
Stage 2				-	-	995	0
Platoon blocked, %					-		
Mov Cap-1 Maneuver				1591	-	932	-
Mov Cap-2 Maneuver					-	932	-
Stage 1					-		-
Stage 2					-	992	
y .							
Approach				WB		NB	
HCM Control Delay, s				1.1		8.9	
HCM LOS						A	
Minor Lane/Major Mvmt	NBLn1	WBL	WBT				
Capacity (veh/h)	932	1591	-				
HCM Lane V/C Ratio		0.002	-				
HCM Control Delay (s)	8.9	7.3	0				
HCM Lane LOS	Α	Α	Α				
HCM 95th %tile Q(veh)	0.1	0	-				

 11/17/2016
 Synchro 9 Report

 MS
 Page 9

1: Martin Luther King Jr. Blvd & Guadalupe ST TIA for Texas Capital Complex Master Plan 2018 Update

	•	-	•	•	←	•	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† 1>			^	7				ሻ	^	7
Traffic Volume (vph)	143	338	95	4	932	596	0	0	0	170	595	219
Future Volume (vph)	143	338	95	4	932	596	0	0	0	170	595	219
Confl. Peds. (#/hr)	28		65	65		28				39		65
Confl. Bikes (#/hr)			1			6						3
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	152	360	101	4	991	634	0	0	0	181	633	233
Shared Lane Traffic (%)												
Lane Group Flow (vph)	152	461	0	0	995	634	0	0	0	181	633	233
Turn Type	Prot	NA		Perm	NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases				6		6				4		4
Detector Phase	5	2		6	6	7				7	4	4
Switch Phase												
Minimum Initial (s)	2.0	15.0		15.0	15.0	10.0				10.0	5.0	5.0
Minimum Split (s)	7.0	27.0		34.0	34.0	15.0				15.0	32.0	32.0
Total Split (s)	25.0	92.0		67.0	67.0	43.0				43.0	43.0	43.0
Total Split (%)	18.5%	68.1%		49.6%	49.6%	31.9%				31.9%	31.9%	31.9%
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag			Lead	Lead							
Lead-Lag Optimize?	Yes			Yes	Yes							
Recall Mode	None	C-Max		C-Max	C-Max	None				None	Max	Max
Act Effct Green (s)	20.0	87.0			62.0	100.0				38.0	38.0	38.0
Actuated g/C Ratio	0.15	0.64			0.46	0.74				0.28	0.28	0.28
v/c Ratio	0.58	0.21			0.64	0.54				0.36	0.64	0.46
Control Delay	63.4	9.5			22.3	1.7				41.4	45.9	17.4
Queue Delay	0.0	0.0			1.6	0.1				0.0	0.0	0.0
Total Delay	63.4	9.5			23.9	1.8				41.4	45.9	17.4
LOS	E	Α			С	Α				D	D	В
Approach Delay		22.9			15.3						38.8	
Approach LOS		С			В						D	
Queue Length 50th (ft)	126	76			280	10				127	256	55
Queue Length 95th (ft)	201	102			332	16				198	323	137
Internal Link Dist (ft)		228			45			159			210	
Turn Bay Length (ft)	160									130		120
Base Capacity (vph)	262	2152			1550	1184				498	996	505
Starvation Cap Reductn	0	0			360	71				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.58	0.21			0.84	0.57				0.36	0.64	0.46
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Langth: 125												

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 75

09/29/2016 Synchro 9 Report MS Page 1

1: Martin Luther King Jr. Blvd & Guadalupe ST TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Splits and Phases: 1: Martin Luther King Jr. Blvd & Guadalupe ST

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

	-	•	•	•	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			^	ሻሻ	7
Traffic Volume (vph)	488	0	0	1153	684	229
Future Volume (vph)	488	0	0	1153	684	229
Confl. Peds. (#/hr)		3			551	76
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	536	0.71	0.71	1267	752	252
Shared Lane Traffic (%)	550	J	U	1207	132	202
Lane Group Flow (vph)	536	0	0	1267	752	252
Turn Type	NA	U	U	NA	Prot	Perm
Protected Phases	2			6	8	reiiii
	2			Ü	0	3
Permitted Phases	2			,	0	
Detector Phase	2			6	8	3
Switch Phase	10.0			10.0	F. ^	F. ^
Minimum Initial (s)	10.0			10.0	5.0	5.0
Minimum Split (s)	30.0			15.0	10.0	10.0
Total Split (s)	86.0			86.0	49.0	49.0
Total Split (%)	63.7%			63.7%	36.3%	36.3%
Yellow Time (s)	4.0			4.0	4.0	4.0
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	5.0			5.0	5.0	5.0
Lead/Lag	2.0			2.0	2.0	2.0
Lead-Lag Optimize?						
Recall Mode	C-Max			None	Max	Max
Act Effct Green (s)	81.0			81.0	44.0	44.0
Actuated g/C Ratio	0.60			0.60	0.33	0.33
				0.60	0.33	
v/c Ratio	0.25					0.39
Control Delay	13.8			11.9	62.6	24.8
Queue Delay	0.0			0.1	0.0	0.0
Total Delay	13.8			12.0	62.6	24.8
LOS	В			В	Е	С
Approach Delay	13.8			12.0	53.1	
Approach LOS	В			В	D	
Queue Length 50th (ft)	112			203	355	123
Queue Length 95th (ft)	138			214	412	133
Internal Link Dist (ft)	272			277	337	
Turn Bay Length (ft)	212			2//	337	
Base Capacity (vph)	2123			2123	1118	644
Starvation Cap Reductn	0			112	0	044
Spillback Cap Reductn	0			27	0	0
Storage Cap Reductn	0			0	0	0
Reduced v/c Ratio	0.25			0.63	0.67	0.39
Intersection Summary						
Cycle Length: 135						
Actuated Cycle Length: 13	5					
Offset: 0 (0%), Referenced		FRT Star	t of Gree	n -		
Natural Cycle: 50	i to priase 2.1	LDT, Jlai	t of GIE	J11		
	P					
Control Type: Actuated-Co	ordinated					

 09/29/2016
 Synchro 9 Report

 MS
 Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Maximum v/c Ratio: 0.67
Intersection Signal Delay: 27.0 Intersection LOS: C
Intersection Capacity Utilization 59.7% ICU Level of Service B
Analysis Period (min) 15

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

-	\rightarrow	•	•	1	/
EBT	EBR	WBL	WBT	NBL	NBR
					7
663	36	87	1036	145	140
663	36	87	1036	145	140
	31	31		33	
	4				
0.94	0.94	0.94	0.94	0.94	0.94
705	38	93	1102	154	149
743	0	93	1102	154	149
NA			NA	Prot	Perm
2		1	6	4	
_		6			4
2		1	6	4	4
_			J		
15.0		3.0	15.0	15.0	15.0
					29.0
					29.0
					21.5%
					4.0
					1.0
					0.0
					5.0
			5.0	5.0	5.0
			C May	May	Max
					24.0
					0.18
					0.18
					9.9
					0.0
					9.9
		Α			Α
					0
		17			61
366			377		
					403
					0
		0	0	0	0
0		-	0		0
0.33		0.17	0.52	0.25	0.37
5					
to phase 2:1	DT and	4.M/DTI	Ctart of	Croon	
	15.0 34.0 91.0 66.3 86.0 91.0 67.4% 4.0 1.0 0.0 5.0 Lead Yes C-Max 86.0 0.64 0.33 6.9 0.0 6.9 A 78 18 18 366	663 36 663 36 663 36 663 36 743 0.94 0.94 705 38 743 0 NA 2 2 15.0 34.0 91.0 67.4% 4.0 1.0 0.0 5.0 Lead Yes C-Max 86.0 0.64 0.33 6.9 0.0 6.9 A 78 118 366 2228 0 0 0 0 0.33	15.0 3.0 8.0 91.0 15.0 67.4% 11.1% None B6.0 101.0 0.64 0.75 0.33 0.17 6.9 2.9 A A A 78 6 118 17 366 115 2228 542 0 0 0 0 0 0 0.33 0.17	15.0 3.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	15.0 3.0 15.0 15.0 15.0 15.0 34.0 87.0 10.6 14.5 15.0 10.0 29.0 15.0 1

 09/29/2016
 Synchro 9 Report

 MS
 Page 5

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.42

Intersection Signal Delay: 7.8

Intersection Capacity Utilization 54.0%

Analysis Period (min) 15

Intersection LOS: A

Splits and Phases: 5: N. Congress Ave & Martin Luther King Jr. Blvd

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

	•	→	•	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ î≽		ሻ	^	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	84	702	11	14	836	126	26	22	149	92	24	234
Future Volume (vph)	84	702	11	14	836	126	26	22	149	92	24	234
Confl. Peds. (#/hr)	41		7	7		41	21		22	22		21
Confl. Bikes (#/hr)			4			3						
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	87	724	11	14	862	130	27	23	154	95	25	241
Shared Lane Traffic (%)												
Lane Group Flow (vph)	87	735	0	14	862	130	0	50	154	0	120	241
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6		_	8	_		4	
Permitted Phases	2	_		6		6	8	_	8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase	2.0	10.0		2.0	10.0	10.0	F 0	F 0	F 0	F 0	F 0	F 0
Minimum Initial (s)	3.0	10.0		3.0	10.0	10.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	8.0	22.0		8.0	28.0	28.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (s)	15.0	89.0		15.0	89.0	89.0	31.0	31.0	31.0	31.0	31.0	31.0
Total Split (%)	11.1%	65.9%		11.1%	65.9%	65.9%	23.0%	23.0%	23.0%	23.0%	23.0%	23.0%
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	97.9	94.6		92.4	86.6	86.6		26.0	26.0		26.0	26.0
Actuated g/C Ratio	0.73	0.70		0.68	0.64	0.64		0.19	0.19		0.19	0.19
v/c Ratio	0.20	0.30		0.03	0.38	0.14		0.17	0.37		0.47	0.50
Control Delay	3.6	3.8		1.6	4.8	1.8		47.5	9.5		55.2	9.3
Queue Delay	0.0	0.1		0.0	0.3	0.0		0.0	0.0		0.0	0.0
Total Delay	3.6	4.0		1.6	5.1	1.8		47.5	9.5		55.2	9.3
LOS	Α	A		Α	A	Α		D	Α		E	Α
Approach Delay		3.9			4.6			18.8			24.6	
Approach LOS		A			A			В			С	
Queue Length 50th (ft)	8	38		1	87	2		37	0		94	0
Queue Length 95th (ft)	12	65		m2	128	15		76	60		160	75
Internal Link Dist (ft)	4/0	377		400	273	100		337	400		212	
Turn Bay Length (ft)	160	0.170		100	0074	100			100		057	105
Base Capacity (vph)	452	2473		562	2271	910		289	414		257	485
Starvation Cap Reductn	0	736		0	722	0		0	0		0	0
Spillback Cap Reductn	0	12		0	0	0		0	0		0	0
Storage Cap Reductn	0	0		0	0	0		0	0		0	0
Reduced v/c Ratio	0.19	0.42		0.02	0.56	0.14		0.17	0.37		0.47	0.50

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 70

09/29/2016 Synchro 9 Report MS Page 7

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.50 Intersection Signal Delay: 8.6 Intersection Capacity Utilization 77.3% Intersection LOS: A ICU Level of Service D Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Brazos St & Martin Luther King Jr. Blvd

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Lane Group		۶	-	•	•	←	•	4	†	~	-	↓	1
Lane Configurations Traffic Volume (ph) 0 882 21 284 925 0 0 0 0 0 36 188 133 Future Volume (ph) 0 882 21 284 925 0 0 0 0 0 36 188 133 Confl. Peds. (#hh) 7 882 81 925 0 0 0 0 0 36 188 133 Confl. Peds. (#hh) 7 884 Hour Factor 0,93 0,93 0,93 0,93 0,93 0,93 0,93 0,93	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (vph)			↑ 1>		ሻ	^					ሻ	^	7
Confl. Peds. (#/hr)	Traffic Volume (vph)	0		21	284		0	0	0	0	36	188	133
Confl. Bikes (#/hr)	Future Volume (vph)	0	882	21	284	925	0	0	0	0	36	188	133
Peak Hour Factor 0.93	Confl. Peds. (#/hr)			35	35						68		16
Adj. Flow (vph) 0 948 23 305 995 0 0 0 39 202 143 Shared Lane Traffic (%) Lane Group Flow (vph) 0 971 0 305 995 0 0 0 0 39 202 143 Tum Type NA pm+pt NA permitted Phases 4 <	Confl. Bikes (#/hr)			7									13
Shared Lane Traffic (%) Lane Group Flow (yrph) 0 971 0 305 995 0 0 0 0 39 202 143 Turn Type NA	Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Lane Group Flow (vph) 0 971 0 305 995 0 0 0 0 39 202 143 Turn Type NA pm-pt NA Perm NA Perm Protected Phases 2 1 1 6 4 Permitted Phases 6 4 4 4 4 4 Permitted Phases 6 6 4 4 4 4 4 Permitted Phases 7 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0	948	23	305	995	0	0	0	0	39	202	143
Tum Type NA pm+pt NA perm NA Perm Protected Phases 2 1 6 4 4 4 Detector Phase 2 1 6 4 4 4 Switch Phase 3 1 6 4 4 4 Minimum Initial (s) 10.0 3.0 10.0 5.0 5.0 5.0 Minimum Initial (s) 32.0 8.0 30.0	Shared Lane Traffic (%)												
Protected Phases 2		0	971	0	305	995	0	0	0	0	39	202	143
Permitted Phases C			NA		pm+pt	NA					Perm	NA	Perm
Detector Phase 2	Protected Phases		2		1	6						4	
Switch Phase Minimum Initial (s) 10.0 3.0 10.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 30.0 40.0	Permitted Phases				6						4		4
Minimum Initial (s) 10.0 3.0 10.0 5.0 5.0 5.0 Minimum Split (s) 32.0 8.0 30.0 40.0 4	Detector Phase		2		1	6					4	4	4
Minimum Split (s) 32.0 8.0 30.0 40.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	Switch Phase												
Total Split (s) 78.0 25.0 103.0 32.0 32.0 32.0 70tal Split (%) 57.8% 18.5% 76.3% 23.7% 23.			10.0		3.0	10.0					5.0	5.0	5.0
Total Split (%) 57.8% 18.5% 76.3% 23.7% 23.7% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0			32.0		8.0	30.0					30.0	30.0	30.0
Yellow Time (s) 4.0 All All 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0	Total Split (s)		78.0		25.0								32.0
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0													23.7%
Lost Time Adjust (s) 0.0	Yellow Time (s)												4.0
Total Lost Tine (s) 5.0 27.0 20.0 20.0 20.0 20			1.0										1.0
Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max Max Max <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max Max 0.0 0.			5.0		5.0	5.0					5.0	5.0	5.0
Recall Mode C-Max None C-Max Max Max Max Max Max Max Act Max Max Act Max Max <td></td>													
Act Effet Green (s) 79.1 98.0 98.0 27.0													
Actuated g/C Ratio 0.59 0.73 0.73 0.20 0.20 0.20 v/c Ratio 0.47 0.71 0.39 0.12 0.29 0.35 Control Delay 11.4 29.1 4.8 45.7 47.1 9.3 Queue Delay 0.5 0.3 0.2 0.0 0.0 0.0 Total Delay 11.8 29.4 4.9 45.7 47.1 9.3 LOS B C A D D A Approach Delay 11.8 10.7 32.9 Approach LOS B B C C C Queue Length 50th (ft) 166 103 85 28 80 0 Queue Length 95th (ft) 222 194 110 62 118 58 Internal Link Dist (ft) 273 321 343 24 100 100 100 100 100 100 100 100 100 100 100 100 100 100													
v/c Ratio 0.47 0.71 0.39 0.12 0.29 0.35 Control Delay 11.4 29.1 4.8 45.7 47.1 9.3 Queue Delay 0.5 0.3 0.2 0.0 0.0 0.0 Total Delay 11.8 29.4 4.9 45.7 47.1 9.3 LOS B C A D D A Approach Delay 11.8 10.7 32.9 A Approach LOS B B B C C Queue Length 95th (ft) 166 103 85 28 80 0 Queue Length 95th (ft) 222 194 110 62 118 58 Internal Link Dist (ft) 273 321 343 24 17 Turn Bay Length (ft) 120 100 100 100 Base Capacity (vph) 2064 493 2569 315 707 414 Starvation Cap Reductn													
Control Delay 11.4 29.1 4.8 45.7 47.1 9.3 Queue Delay 0.5 0.3 0.2 0.0 0.0 0.0 Total Delay 11.8 29.4 4.9 45.7 47.1 9.3 LOS B C A D D D A Approach Delay 11.8 10.7 32.9 C Approach LOS B B C C Queue Length 50th (ft) 166 103 85 28 80 0 Queue Length 95th (ft) 222 194 110 62 118 58 Internal Link Dist (ft) 273 321 343 244 Turn Bay Length (ft) 120 100 100 Base Capacity (vph) 2064 493 2569 315 707 414 Starvation Cap Reductn 583 20 627 0 0 0 Spillback Cap Reductn 0 0 0													
Queue Delay 0.5 0.3 0.2 0.0 0.0 0.0 Total Delay 11.8 29.4 4.9 45.7 47.1 9.3 LOS B C A D D A Approach Delay 11.8 10.7 32.9 Approach LOS B B C C Oueue Length 50th (ft) 166 103 85 28 80 0 Queue Length 95th (ft) 222 194 110 62 118 58 Internal Link Dist (ft) 273 321 343 244 Turn Bay Length (ft) 120 100 100 Base Capacity (vph) 2064 493 2569 315 707 414 Starvation Cap Reductn 583 20 627 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.66 0.64 0.51 0.12 0.29													
Total Delay 11.8 29.4 4.9 45.7 47.1 9.3 LOS B C A D D A Approach Delay 11.8 10.7 32.9 Approach LOS B B C C Queue Length 50th (ft) 166 103 85 28 80 0 Queue Length 95th (ft) 222 194 110 62 118 58 Internal Link Dist (ft) 273 321 343 24 100 110 100													
LOS B C A D D A Approach Delay 11.8 10.7 32.9 A Approach LOS B B C C Oueue Length 50th (ft) 166 103 85 28 80 0 Oueue Length 95th (ft) 222 194 110 62 118 58 Internal Link Dist (ft) 273 321 343 244 17 Turn Bay Length (ft) 120 100 100 10 10 Base Capacitly (vph) 2064 493 2569 315 707 414 Starvation Cap Reductn 583 20 627 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
Approach Delay 11.8 10.7 32.9 Approach LOS B B C Oueue Length 50th (fit) 166 103 85 28 80 0 Oueue Length 95th (fit) 222 194 110 62 118 58 Internal Link Dist (fit) 273 321 343 244 Turn Bay Length (fit) 120 100 100 Base Capacity (vph) 2064 493 2569 315 707 414 Starvation Cap Reductn 583 20 627 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.66 0.64 0.51 0.12 0.29 0.35													
Approach LOS B B C Oueue Length 50th (ft) 166 103 85 28 80 0 Queue Length 95th (ft) 222 194 110 62 118 58 Internal Link Dist (ft) 273 321 343 244 Turn Bay Length (ft) 120 100 100 Base Capacity (vph) 2064 493 2569 315 707 414 Starvation Cap Reductn 583 20 627 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Storage Cap Reductn 0 <					С						D		Α
Oueue Length 50th (ft) 166 103 85 28 80 0 Queue Length 95th (ft) 222 194 110 62 118 58 Internal Link Dist (ft) 273 321 343 24 Tum Bay Length (ft) 100 118 200 100													
Queue Length 95th (ft) 222 194 110 62 118 58 Internal Link Dist (ft) 273 321 343 244 Turm Bay Length (ft) 120 100 100 Base Capacity (vph) 2064 493 2569 315 707 414 Starvation Cap Reductn 583 20 627 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Internal Link Dist (fit) 273 321 343 244 Turn Bay Length (fit) 120 100 100 Base Capacity (vph) 2064 493 2569 315 707 414 Starvation Cap Reductn 583 20 627 0													
Turn Bay Length (tf) 120 100 100 Base Capacity (vph) 2064 493 2569 315 707 414 Starvation Cap Reductn 583 20 627 0<					194						62		58
Base Capacity (vph) 2064 493 2569 315 707 414 Starvation Cap Reductn 583 20 627 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.66 0.64 0.51 0.12 0.29 0.35 Intersection Summary			273			321			343			244	
Starvation Cap Reductn 583 20 627 0 0 0 Spillback Cap Reductn 0													
Spillback Cap Reductn 0													
Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.66 0.64 0.51 0.12 0.29 0.35 Intersection Summary													
Reduced v/c Ratio 0.66 0.64 0.51 0.12 0.29 0.35 Intersection Summary													
Intersection Summary			-		-								
	Reduced v/c Ratio		0.66		0.64	0.51					0.12	0.29	0.35
	Intersection Summary												

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 75

09/29/2016 Synchro 9 Report MS Page 9

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.71 Intersection Signal Delay: 14.3 Intersection Capacity Utilization 74.2% Analysis Period (min) 15 Intersection LOS: B
ICU Level of Service D

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

	۶	-	•	•	-	•	4	†	~	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^			∱ β		ሻ	4	7			
Traffic Volume (vph)	80	912	0	0	1069	49	88	302	197	0	0	0
Future Volume (vph)	80	912	0	0	1069	49	88	302	197	0	0	0
Confl. Peds. (#/hr)			32			84	16		142			
Confl. Bikes (#/hr)						4			12			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	82	940	0	0	1102	51	91	311	203	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	82	940	0	0	1153	0	82	320	203	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	104.0			89.0		31.0	31.0	31.0			
Total Split (%)	11.1%	77.0%			65.9%		23.0%	23.0%	23.0%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	99.0	99.0			86.8		26.0	26.0	26.0			
Actuated g/C Ratio	0.73	0.73			0.64		0.19	0.19	0.19			
v/c Ratio	0.25	0.36			0.52		0.26	0.94	0.56			
Control Delay	3.5	1.5			6.7		63.0	102.6	28.7			
Queue Delay	0.0	0.0			0.3		0.0	0.0	0.0			
Total Delay	3.5	1.6			7.0		63.0	102.6	28.7			
LOS	Α	Α			Α		Е	F	С			
Approach Delay		1.7			7.0			72.4				
Approach LOS		Α			Α			Е				
Queue Length 50th (ft)	4	22			100		70	303	50			
Queue Length 95th (ft)	11	25			120		m118	#495	m0			
Internal Link Dist (ft)		321			665			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	351	2595			2232		313	340	363			
Starvation Cap Reductn	0	308			424		0	0	0			
Spillback Cap Reductn	0	0			0		0	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.23	0.41			0.64		0.26	0.94	0.56			

Intersection Summary

Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 60

09/29/2016 Synchro 9 Report MS Page 11

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

↑Ø4 Ø2 (R) ▼

18: Guadalupe St & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update

	۶	-	•	•	•	•	•	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		†	7								414	
Traffic Volume (vph)	0	57	33	0	0	0	0	0	0	76	944	(
Future Volume (vph)	0	57	33	0	0	0	0	0	0	76	944	(
Confl. Peds. (#/hr)		0.	64							41	,	
Confl. Bikes (#/hr)			01						2	- 11		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.9
Parking (#/hr)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.7
Adj. Flow (vph)	0	59	34	0	0	0	0	0	0	79	983	(
Shared Lane Traffic (%)	Ū	0,	31	U	U	U	U	U	U	- ' '	700	
Lane Group Flow (vph)	0	59	34	0	0	0	0	0	0	0	1062	(
Turn Type	U	NA	Perm	U	U	U	U	U	U	Perm	NA	,
Protected Phases		4 12	r ciiii							r ciiii	2 10	
Permitted Phases		4 12	4 12							2 10	2 10	
Detector Phase		4 12	4 12							2 10	2 10	
Switch Phase		4 12	4 12							2 10	2 10	
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		31.2	31.2								91.8	
Actuated g/C Ratio		0.23	0.23								0.68	
v/c Ratio		0.15	0.09								0.44	
Control Delay		24.9	0.4								6.7	
Queue Delay		0.0	0.0								0.0	
Total Delay		24.9	0.4								6.7	
LOS		С	Α								Α	
Approach Delay		16.0									6.7	
Approach LOS		В									Α	
Queue Length 50th (ft)		28	0								106	
Queue Length 95th (ft)		51	1								130	
Internal Link Dist (ft)		177			244			271			262	
Turn Bay Length (ft)												
Base Capacity (vph)		528	514								2397	
Starvation Cap Reductn		0	0								0	
Spillback Cap Reductn		0	0								0	
Storage Cap Reductn		0	0								0	
Reduced v/c Ratio		0.11	0.07								0.44	
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												
Offset: 0 (0%), Referenced to	o phase 2:	SBTL, St	art of Gre	en								

Synchro 9 Report Page 13 09/29/2016 MS

18: Guadalupe St & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	15.0	15.0
Minimum Split (s)	21.0	21.0	21.0	21.0
Total Split (s)	56.0	29.0	24.0	26.0
Total Split (%)	41%	21%	18%	19%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0
	2.0	2.0	2.0	2.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag	Lead	Lag		
Lead-Lag Optimize?	Yes	Yes		
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Neduced We Natio				
Intersection Summary				

Synchro 9 Report Page 14 09/29/2016 MS

18: Guadalupe St & E. 17th St

Existing Conditions
Timing Plan: PM

TIA for Texas Capital Complex Master Plan 2018 Update

Natural Cycle: 85

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.44

Intersection Signal Delay: 7.5

Intersection Capacity Utilization 50.8%

Analysis Period (min) 15

Splits and Phases: 18: Guadalupe St & E. 17th St

 09/29/2016
 Synchro 9 Report

 MS
 Page 15

19: Lavaca St & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

	•	-	•	•	-	•	1	1		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ર્ન						######################################				
Traffic Volume (vph)	30	125	0	0	0	0	0	960	149	0	0	(
uture Volume (vph)	30	125	0	0	0	0	0	960	149	0	0	
Confl. Peds. (#/hr)	32								44			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)		0										
Adj. Flow (vph)	33	136	0	0	0	0	0	1043	162	0	0	(
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	169	0	0	0	0	0	1205	0	0	0	(
Turn Type	Perm	NA						NA				
Protected Phases		4 12						2 10				
Permitted Phases	4 12											
Detector Phase	4 12	4 12						2 10				
Switch Phase												
Vlinimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
ost Time Adjust (s)												
Fotal Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		25.1						85.9				
Actuated g/C Ratio		0.19						0.64				
v/c Ratio		0.47						0.31				
Control Delay		20.9						9.5				
Queue Delay		0.0						0.0				
Total Delay		20.9						9.5				
_OS		С						Α				
Approach Delay		20.9						9.5				
Approach LOS		С						Α				
Queue Length 50th (ft)		46						121				
Queue Length 95th (ft)		65						89				
Internal Link Dist (ft)		244			319			272			254	
Turn Bay Length (ft)												
Base Capacity (vph)		578						4048				
Starvation Cap Reductn		2						818				
Spillback Cap Reductn		0						0				
Storage Cap Reductn		0						0				
Reduced v/c Ratio		0.29						0.37				
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135		NDT 0										
Offset: 0 (0%), Referenced	to phase 2:	NBT, Sta	t of Gree	n								
Natural Cycle: 100												

19: Lavaca St & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	26.0	28.0	23.0	23.0
Total Split (s)	54.0	28.0	25.0	28.0
Total Split (%)	40%	21%	19%	21%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	2.0	2.0	110	1.0
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)	C-IVIAX	NOTIC	None	INOTIC
Actuated g/C Ratio				
v/c Ratio				
Control Delay Queue Delay				
Total Delay				
LOS Approach Dolov				
Approach Delay Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft) Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn Reduced v/c Ratio				
Reduced WC Rallo				
Intersection Summary				

 09/29/2016
 Synchro 9 Report

 MS
 Page 17

19: Lavaca St & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

TIA for Texas Capital Complex Master Plan 2018 Update

	۶	-	•	•	←	•	4	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					1>			नी				
Traffic Volume (vph)	0	0	0	0	77	48	69	1079	0	0	0	(
Future Volume (vph)	0	0	0	0	77	48	69	1079	0	0	0	(
Confl. Peds. (#/hr)						157	82					
Confl. Bikes (#/hr)						2						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Parking (#/hr)					0							
Adj. Flow (vph)	0	0	0	0	81	51	73	1136	0	0	0	(
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	0	0	0	132	0	0	1209	0	0	0	(
Turn Type					NA		Perm	NA				
Protected Phases					4 12			2 10				
Permitted Phases							2 10					
Detector Phase					4 12		2 10	2 10				
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)					22.5			88.5				
Actuated g/C Ratio					0.17			0.66				
v/c Ratio					0.51			0.29				
Control Delay					31.2			5.7				
Queue Delay					0.0			0.2				
Total Delay					31.2			5.9				
LOS					С			А				
Approach Delay					31.2			5.9				
Approach LOS					С			A				
Queue Length 50th (ft)					63			98				
Queue Length 95th (ft)					98			86				
Internal Link Dist (ft)		233			336			281			272	
Turn Bay Length (ft)		200			000			201			2,2	
Base Capacity (vph)					484			4217				
Starvation Cap Reductn					0			1854				
Spillback Cap Reductn					0			0				
Storage Cap Reductn					0			0				
Reduced v/c Ratio					0.27			0.51				
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135		NDT/ C	1.0									
Offset: 0 (0%), Referenced t	o phase 2:	NBTL, Sta	art of Gre	en								

 09/29/2016
 Synchro 9 Report

 MS
 Page 19

28: Lavaca St & E. 16th St TIA for Texas Capital Complex Master Plan 2018 Update Existing Conditions
Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases	_	•		
Detector Phase				
Switch Phase				
	15.0	15.0	г о	F 0
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	28.0	32.0	21.0	23.0
Total Split (s)	55.0	32.0	24.0	24.0
Total Split (%)	41%	24%	18%	18%
Yellow Time (s)	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

28: Lavaca St & E. 16th St

Existing Conditions
Timing Plan: PM

TIA for Texas Capital Complex Master Plan 2018 Update

Natural Cycle: 105 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.51

Intersection Signal Delay: 8.4
Intersection Capacity Utilization 48.3%
Analysis Period (min) 15 Intersection LOS: A ICU Level of Service A

Splits and Phases: 28: Lavaca St & E. 16th St

Synchro 9 Report Page 21 09/29/2016

34: Guadalupe St & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update Existing Conditions
Timing Plan: PM

	•	-	\rightarrow	•	←	•	•	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		^		7	ተተተ						414	7
Traffic Volume (vph)	0	837	91	204	1640	0	0	0	0	143	808	257
Future Volume (vph)	0	837	91	204	1640	0	0	0	0	143	808	257
Confl. Peds. (#/hr)			17	17						19		26
Confl. Bikes (#/hr)												26
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	0	973	106	237	1907	0	0	0	0	166	940	299
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1079	0	237	1907	0	0	0	0	0	1106	299
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		13	6						4	
Permitted Phases				6						4		
Detector Phase		2		13	6					4	4	
Switch Phase												
Minimum Initial (s)		10.0			5.0					5.0	5.0	5.0
Minimum Split (s)		25.0			25.0					32.0	32.0	32.0
Total Split (s)		58.0			88.0					47.0	47.0	47.0
Total Split (%)		43.0%			65.2%					34.8%	34.8%	34.8%
Yellow Time (s)		4.0			4.0					4.0	4.0	4.0
All-Red Time (s)		1.0			1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0						0.0	0.0
Total Lost Time (s)		5.0			5.0						5.0	5.0
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Max
Act Effct Green (s)		53.1		83.0	83.0						42.0	42.0
Actuated g/C Ratio		0.39		0.61	0.61						0.31	0.31
v/c Ratio		0.55		0.59	0.61						0.71	0.57
Control Delay		32.5		20.0	7.5						40.3	27.3
Queue Delay		0.0		3.5	0.2						0.0	0.0
Total Delay		32.5		23.4	7.7						40.3	27.3
LOS		С		С	Α						D	(
Approach Delay		32.5		-	9.4						37.5	
Approach LOS		С			Α						D	
Queue Length 50th (ft)		262		46	127						265	127
Queue Length 95th (ft)		290		m111	131						287	185
Internal Link Dist (ft)		262			240			197			285	100
Turn Bay Length (ft)		202		50	2.10						200	100
Base Capacity (vph)		1969		401	3126						1564	526
Starvation Cap Reductn		0		91	386						0	(
Spillback Cap Reductn		0		0	0						0	(
Storage Cap Reductn		0		0	0						0	(
Reduced v/c Ratio		0.55		0.76	0.70						0.71	0.57
Intersection Summary												
Cycle Length: 135 Actuated Cycle Length: 135												

34: Guadalupe St & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	5.0	8.0
Minimum Split (s)	10.0	13.0
Total Split (s)	15.0	15.0
Total Split (%)	11%	11%
Yellow Time (s)	4.0	4.0
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)	1.0	1.0
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)	141111	140110
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Synchro 9 Report Page 23 09/29/2016 MS

34: Guadalupe St & W. 15th St

Existing Conditions
Timing Plan: PM

TIA for Texas Capital Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.71

Intersection Signal Delay: 23.3 Inters

Intersection Capacity Utilization 71.9% ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: C ICU Level of Service C

09/29/2016 Synchro 9 Report Page 24 MS

35: Lavaca St & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

	•	-	•	•	-	•	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተተ			ተ ተጉ			सीकि				
Traffic Volume (vph)	85	865	0	0	1543	63	370	828	151	0	0	0
Future Volume (vph)	85	865	0	0	1543	63	370	828	151	0	0	0
Confl. Peds. (#/hr)	45					45	29		17			
Confl. Bikes (#/hr)			2						26			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	94	961	0	0	1714	70	411	920	168	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	94	961	0	0	1784	0	0	1499	0	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA				
Protected Phases	5	2			6			4				
Permitted Phases	2						4					
Detector Phase	5	2			6		4	4				
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0				
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0				
Total Split (s)	20.0	86.0			66.0		49.0	49.0				
Total Split (%)	14.8%	63.7%			48.9%		36.3%	36.3%				
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0				
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0				
Lost Time Adjust (s)	0.0	0.0			0.0			0.0				
Total Lost Time (s)	5.0	5.0			5.0			6.0				
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max				
Act Effct Green (s)	81.0	81.0			67.0			43.0				
Actuated g/C Ratio	0.60	0.60			0.50			0.32				
v/c Ratio	0.54	0.31			0.71			0.77				
Control Delay	57.9	3.5			12.8			43.8				
Queue Delay	0.0	0.1			0.0			0.0				
Total Delay	57.9	3.7			12.8			43.8				
LOS	Е	Α			В			D				
Approach Delay		8.5			12.8			43.8				
Approach LOS		Α			В			D				
Queue Length 50th (ft)	47	46			144			338				
Queue Length 95th (ft)	m104	53			156			384				
Internal Link Dist (ft)		240			335			116			281	
Turn Bay Length (ft)	50											
Base Capacity (vph)	247	3051			2504			1959				
Starvation Cap Reductn	0	836			11			0				
Spillback Cap Reductn	0	0			0			0				
Storage Cap Reductn	0	0			0			0				
Reduced v/c Ratio	0.38	0.43			0.72			0.77				
Intersection Summary Cycle Length: 135												
Cycle Length, 130	_											

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 70

09/29/2016 Synchro 9 Report Page 25 MS

35: Lavaca St & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update Existing Conditions
Timing Plan: PM

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.77
Intersection Signal Delay: 22.5 Intersection Capacity Utilization 71.9% ICU L
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: C ICU Level of Service C

Splits and Phases: 35: Lavaca St & W. 15th St _____ø_{2 (R)} **↑**†_{Ø4} Ø6 (R)

36: Colorado St & W. 15th St

TIA for Texas Capital Complex Master Plan 2018 Update

	•	-	•	•	—	•	4	†	-	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተ ተጉ		ሻ	ተተ _ጉ			4			ર્ન	7
Traffic Volume (vph)	26	1019	20	21	1320	13	8	25	104	122	6	257
Future Volume (vph)	26	1019	20	21	1320	13	8	25	104	122	6	257
Confl. Peds. (#/hr)	31		33	33		31	92		6	6		92
Confl. Bikes (#/hr)			1			2			2			1
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	30	1171	23	24	1517	15	9	29	120	140	7	295
Shared Lane Traffic (%)												
Lane Group Flow (vph)	30	1194	0	24	1532	0	0	158	0	0	147	295
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		8
Detector Phase	5	2		1	6		4	4		8	8	8
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	10.0	20.0		10.0	22.0		36.0	36.0		10.0	10.0	10.0
Total Split (s)	10.0	79.0		10.0	79.0		46.0	46.0		46.0	46.0	46.0
Total Split (%)	7.4%	58.5%		7.4%	58.5%		34.1%	34.1%		34.1%	34.1%	34.1%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	Max
Act Effct Green (s)	81.0	78.0		81.0	78.0			41.0			41.0	41.0
Actuated g/C Ratio	0.60	0.58		0.60	0.58			0.30			0.30	0.30
v/c Ratio	0.16	0.41		0.09	0.52			0.28			0.47	0.60
Control Delay	7.3	8.9		6.9	9.3			11.7			44.1	33.1
Queue Delay	0.0	0.2		0.0	0.1			0.0			0.0	0.0
Total Delay	7.3	9.1		6.9	9.4			11.7			44.1	33.1
LOS	Α	Α		Α	Α			В			D	С
Approach Delay		9.0			9.4			11.7			36.8	
Approach LOS		Α			Α			В			D	
Queue Length 50th (ft)	0	118		5	122			24			105	154
Queue Length 95th (ft)	m0	128		m11	126			74			169	242
Internal Link Dist (ft)		335			362			155			280	
Turn Bay Length (ft)	90			90								100
Base Capacity (vph)	183	2927		254	2931			571			314	493
Starvation Cap Reductn	0	749		0	284			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.16	0.55		0.09	0.58			0.28			0.47	0.60
Intersection Summary												

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 75

09/29/2016 Synchro 9 Report Page 27 MS

36: Colorado St & W. 15th St

TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.60 Intersection Signal Delay: 12.9 Intersection Capacity Utilization 85.8% Intersection LOS: B ICU Level of Service E Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 36: Colorado St & W. 15th St

37: N. Congress Ave & W. 15th St

TIA for Texas Capital Complex Master Plan 2018 Update

	٠	-	\rightarrow	•	•	•	4	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ _ጉ		ሻ	ተተ _ጉ			f)			ર્ન	7
Traffic Volume (vph)	36	1264	0	8	1095	34	0	2	1	165	1	174
Future Volume (vph)	36	1264	0	8	1095	34	0	2	1	165	1	174
Confl. Peds. (#/hr)	16		46	46		16	38		13	13		38
Confl. Bikes (#/hr)									4			9
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	42	1470	0	9	1273	40	0	2	1	192	1	202
Shared Lane Traffic (%)												
Lane Group Flow (vph)	42	1470	0	9	1313	0	0	3	0	0	193	202
Turn Type	pm+pt	NA		pm+pt	NA			NA		Perm	NA	Perm
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6						8		8
Detector Phase	5	2		1	6			4		8	8	8
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	5.0
Minimum Split (s)	10.0	25.0		10.0	25.0			33.0		33.0	33.0	33.0
Total Split (s)	32.0	92.0		10.0	70.0			33.0		33.0	33.0	33.0
Total Split (%)	23.7%	68.1%		7.4%	51.9%			24.4%		24.4%	24.4%	24.4%
Yellow Time (s)	4.0	4.0		4.0	4.0			4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0			1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	Max			Max		Max	Max	Max
Act Effct Green (s)	95.0	95.0		87.6	87.6			28.0			28.0	28.0
Actuated g/C Ratio	0.70	0.70		0.65	0.65			0.21			0.21	0.21
v/c Ratio	0.15	0.41		0.04	0.40			0.01			0.70	0.44
Control Delay	4.6	3.5		5.8	8.4			37.7			64.5	8.9
Queue Delay	0.0	0.1		0.0	0.2			0.0			0.0	0.0
Total Delay	4.6	3.6		5.8	8.6			37.7			64.5	8.9
LOS	Α	Α		Α	Α			D			E	Α
Approach Delay		3.6			8.6			37.7			36.1	
Approach LOS		Α			Α			D			D	
Queue Length 50th (ft)	3	41		3	221			1			158	0
Queue Length 95th (ft)	13	88		m2	276			10			235	56
Internal Link Dist (ft)		362			356			125			278	
Turn Bay Length (ft)	60			100								130
Base Capacity (vph)	501	3578		246	3277			365			275	463
Starvation Cap Reductn	0	660		0	913			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.08	0.50		0.04	0.56			0.01			0.70	0.44
Intersection Cummany												

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green
Natural Cycle: 70

09/29/2016 MS

Synchro 9 Report Page 29

37: N. Congress Ave & W. 15th St

Existing Conditions
Timing Plan: PM

TIA for Texas Capital Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.70 Intersection Signal Delay: 9.7 Intersection Capacity Utilization 61.6% Intersection LOS: A ICU Level of Service B

Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 37: N. Congress Ave & W. 15th St Ø2 (R)) _{Ø5} ₩ ø6

38: Brazos St & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

	•	→	\rightarrow	•	←	•	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ _ጉ		ሻ	ተ ተጉ		ሻ	ĵ»			4	
Traffic Volume (vph)	5	1289	36	9	994	5	125	3	110	61	3	82
Future Volume (vph)	5	1289	36	9	994	5	125	3	110	61	3	82
Confl. Peds. (#/hr)	8		9	9		8	5		18	18		5
Confl. Bikes (#/hr)						1						1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	5	1386	39	10	1069	5	134	3	118	66	3	88
Shared Lane Traffic (%)												
Lane Group Flow (vph)	5	1425	0	10	1074	0	134	121	0	0	157	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		
Detector Phase	5	2		1	6		4	4		8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0		32.0	32.0	
Total Split (s)	12.0	77.0		12.0	77.0		46.0	46.0		46.0	46.0	
Total Split (%)	8.9%	57.0%		8.9%	57.0%		34.1%	34.1%		34.1%	34.1%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0		5.0	5.0			5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	
Act Effct Green (s)	81.6	81.6		81.8	81.8		41.0	41.0			41.0	
Actuated g/C Ratio	0.60	0.60		0.61	0.61		0.30	0.30			0.30	
v/c Ratio	0.02	0.47		0.04	0.35		0.38	0.22			0.34	
Control Delay	6.2	6.6		10.9	11.3		41.0	7.3			27.2	
Queue Delay	0.0	0.1		0.0	0.2		0.0	0.0			0.0	
Total Delay	6.2	6.7		10.9	11.5		41.0	7.3			27.2	
LOS	Α	Α		В	В		D	Α			С	
Approach Delay		6.7			11.5			25.0			27.2	
Approach LOS		Α			В			С			С	
Queue Length 50th (ft)	1	105		2	108		93	2			72	
Queue Length 95th (ft)	m2	94		m9	m220		156	48			136	
Internal Link Dist (ft)		356			297			199			273	
Turn Bay Length (ft)	100			40			40					
Base Capacity (vph)	298	3058		242	3076		350	547			457	
Starvation Cap Reductn	0	532		0	1119		0	0			0	
Spillback Cap Reductn	0	33		0	106		0	0			1	
Storage Cap Reductn	0	0		0	0		0	0			0	
Reduced v/c Ratio	0.02	0.56		0.04	0.55		0.38	0.22			0.34	

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 65

09/29/2016

MS

Synchro 9 Report Page 31

38: Brazos St & W. 15th St

TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Splits and Phases: 38: Brazos St & W. 15th St

39: San Jacinto Blvd & W. 15th St

TIA for Texas Capital Complex Master Plan 2018 Update

	•	-	•	•	•	•	1	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተ _ጉ		ሻ	ተተተ						4143	
Traffic Volume (vph)	0	1521	108	62	782	0	0	0	0	252	564	258
Future Volume (vph)	0	1521	108	62	782	0	0	0	0	252	564	258
Confl. Peds. (#/hr)			11	11						30		5
Confl. Bikes (#/hr)												2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	1635	116	67	841	0	0	0	0	271	606	277
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1751	0	67	841	0	0	0	0	0	1154	0
Turn Type		NA		pm+pt	NA					Perm	NA	
Protected Phases		2		1	6						4	
Permitted Phases				6						4		
Detector Phase		2		1	6					4	4	
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					7.0	7.0	
Minimum Split (s)		28.0		8.0	28.0					32.0	32.0	
Total Split (s)		80.0		15.0	95.0					40.0	40.0	
Total Split (%)		59.3%		11.1%	70.4%					29.6%	29.6%	
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	
Lost Time Adjust (s)		0.0		0.0	0.0						0.0	
Total Lost Time (s)		5.0		5.0	5.0						5.0	
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					Max	Max	
Act Effct Green (s)		79.9		90.0	90.0						35.0	
Actuated g/C Ratio		0.59		0.67	0.67						0.26	
v/c Ratio		0.59		0.37	0.25						0.90	
Control Delay		6.7		18.7	8.1						55.5	
Queue Delay		0.1		0.0	0.2						0.0	
Total Delay		6.7		18.7	8.3						55.5	
LOS		Α		В	Α						E	
Approach Delay		6.7			9.1						55.5	
Approach LOS		Α			Α						E	
Queue Length 50th (ft)		200		19	90						321	
Queue Length 95th (ft)		214		48	102						#400	
Internal Link Dist (ft)		297			282			125			272	
Turn Bay Length (ft)				70								
Base Capacity (vph)		2979		217	3390						1278	
Starvation Cap Reductn		178		0	1474						0	
Spillback Cap Reductn		0		0	0						0	
Storage Cap Reductn		0		0	0						0	
Reduced v/c Ratio		0.63		0.31	0.44						0.90	
Intersection Summary												

Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 70

09/29/2016 Synchro 9 Report Page 33 MS

39: San Jacinto Blvd & W. 15th St

Existing Conditions
Timing Plan: PM

TIA for Texas Capital Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.90
Intersection Signal Delay: 22.0 Intersection Capacity Utilization 70.3% ICU
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles. Intersection LOS: C ICU Level of Service C

40: Trinity St & W. 15th St

TIA for Texas Capital Complex Master Plan 2018 Update

	٠	-	•	•	←	•	1	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ			ተተ _ጉ		ሻ	^	7			
Traffic Volume (vph)	39	1521	0	0	680	46	169	280	266	0	0	0
Future Volume (vph)	39	1521	0	0	680	46	169	280	266	0	0	0
Confl. Peds. (#/hr)	2					2	7		8			
Confl. Bikes (#/hr)									8			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	41	1584	0	0	708	48	176	292	277	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	41	1584	0	0	756	0	176	292	277	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		40.0	40.0	40.0			
Total Split (s)	10.0	100.0			90.0		35.0	35.0	35.0			
Total Split (%)	7.4%	74.1%			66.7%		25.9%	25.9%	25.9%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	95.0	95.0			87.0		30.0	30.0	30.0			
Actuated g/C Ratio	0.70	0.70			0.64		0.22	0.22	0.22			
v/c Ratio	0.09	0.44			0.23		0.45	0.71	0.72			
Control Delay	3.3	3.8			3.0		49.8	58.8	50.0			
Queue Delay	0.0	0.1			0.0		0.0	0.0	0.0			
Total Delay	3.3	3.9			3.0		49.8	58.8	50.0			
LOS	Α	Α			Α		D	Е	D			
Approach Delay		3.9			3.0			53.4				
Approach LOS		Α			Α			D				
Queue Length 50th (ft)	5	75			19		135	238	182			
Queue Length 95th (ft)	m8	82			m31		210	342	287			
Internal Link Dist (ft)		282			648			149			621	
Turn Bay Length (ft)	100											
Base Capacity (vph)	461	3578			3246		390	414	385			
Starvation Cap Reductn	0	701			0		0	0	0			
Spillback Cap Reductn	0	0			0		0	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.09	0.55			0.23		0.45	0.71	0.72			
Intersection Cummens												

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 80

09/29/2016

MS

Synchro 9 Report Page 35

40: Trinity St & W. 15th St

Existing Conditions
Timing Plan: PM

TIA for Texas Capital Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.72

Intersection Signal Delay: 15.5 Intersection Capacity Utilization 70.3% Intersection LOS: B

ICU Level of Service C

Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 40: Trinity St & W. 15th St

80: Red River St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

	۶	-	\rightarrow	•	—	•	4	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ 1>		*	^	7	*	1		ች	^	7
Traffic Volume (vph)	221	1141	35	123	526	46	46	691	67	166	485	194
Future Volume (vph)	221	1141	35	123	526	46	46	691	67	166	485	194
Peak Hour Factor	0.96	0.96	0.96	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	230	1189	36	134	572	50	50	751	73	180	527	211
Shared Lane Traffic (%)												
Lane Group Flow (vph)	230	1225	0	134	572	50	50	824	0	180	527	211
Turn Type	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2			6		6	8			4		4
Detector Phase	5	2		1	6	6	3	8		7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	10.0	23.0		10.0	23.0	23.0	10.0	23.0		10.0	23.0	23.0
Total Split (s)	20.0	51.0		11.0	42.0	42.0	10.0	59.0		14.0	63.0	63.0
Total Split (%)	14.8%	37.8%		8.1%	31.1%	31.1%	7.4%	43.7%		10.4%	46.7%	46.7%
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	None
Act Effct Green (s)	57.0	46.0		43.7	37.7	37.7	59.0	54.0		67.2	60.0	60.0
Actuated g/C Ratio	0.42	0.34		0.32	0.28	0.28	0.44	0.40		0.50	0.44	0.44
v/c Ratio	0.71	1.02		0.99	0.58	0.09	0.13	1.12		1.05	0.34	0.26
Control Delay	48.7	75.1		112.0	50.9	5.8	34.8	124.6		115.2	25.7	3.7
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	48.7	75.1		112.0	50.9	5.8	34.8	124.6		115.2	25.7	3.7
LOS	D	E		F	D	Α	С	F		F	С	Α
Approach Delay		70.9			58.7			119.5			38.2	
Approach LOS		E			Е			F			D	
Queue Length 50th (ft)	122	~593		~98	257	4	36	~846		~121	160	0
Queue Length 95th (ft)	216	#717		#208	326	18	m49 r	m#1061		#278	206	47
Internal Link Dist (ft)		665			503			366			486	
Turn Bay Length (ft)	100			120			140			150		
Base Capacity (vph)	329	1202		135	988	541	383	738		171	1572	820
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.70	1.02		0.99	0.58	0.09	0.13	1.12		1.05	0.34	0.26

Intersection Summary

Cycle Length: 135

Actuated Cycle Length: 135

Offset: 9 (7%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.12

Synchro 9 Report Page 37 09/29/2016 MS

80: Red River St & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

ntersection Signal Delay: 71.7	Intersection LOS: E
ntersection Capacity Utilization 105.8%	ICU Level of Service G
Analysis Period (min) 15	
 Volume exceeds capacity, queue is theoretically infinite. 	
Queue shown is maximum after two cycles.	
95th percentile volume exceeds capacity, queue may be lon	nger.
Queue shown is maximum after two cycles.	
Wolume for 95th percentile queue is metered by upstream s	signal.
Splits and Phases: 80: Red River St & Martin Luther King Jr.	Blvd

Synchro 9 Report Page 38 09/29/2016 MS

	•	-	•	•	-	•	1	Ť		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7	ሻ	^						41∱	77
Traffic Volume (vph)	0	585	270	470	429	0	0	0	0	88	794	275
Future Volume (vph)	0	585	270	470	429	0	0	0	0	88	794	275
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	636	293	511	466	0	0	0	0	96	863	299
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	636	293	511	466	0	0	0	0	0	959	299
Turn Type		NA	Perm	pm+pt	NA					Perm	NA	Perm
Protected Phases		2		1	2 1						4 12	
Permitted Phases			2	12						4 12		4 12
Detector Phase		2	2	1	2 1					4 12	4 12	4 12
Switch Phase												
Minimum Initial (s)		5.0	5.0	5.0								
Minimum Split (s)		23.0	23.0	10.0								
Total Split (s)		36.0	36.0	56.0								
Total Split (%)		26.7%	26.7%	41.5%								
Yellow Time (s)		4.0	4.0	4.0								
All-Red Time (s)		1.0	1.0	1.0								
Lost Time Adjust (s)		0.0	0.0	0.0								
Total Lost Time (s)		5.0	5.0	5.0								
Lead/Lag		Lead	Lead	Lag								
Lead-Lag Optimize?		Yes	Yes	Yes								
Recall Mode		C-Max	C-Max	Min								
Act Effct Green (s)		31.0	31.0	82.0	87.0						38.0	38.0
Actuated g/C Ratio		0.23	0.23	0.61	0.64						0.28	0.28
v/c Ratio		0.78	0.62	0.69	0.20						0.97	0.31
Control Delay		59.9	36.8	13.6	3.5						69.6	9.2
Queue Delay		1.2	0.0	7.1	0.0						0.0	0.0
Total Delay		61.1	36.8	20.7	3.5						69.6	9.2
LOS		Е	D	С	Α						Е	Α
Approach Delay		53.4			12.5						55.3	
Approach LOS		D			В						Е	
Queue Length 50th (ft)		214	123	316	20						438	21
Queue Length 95th (ft)		m208	m119	449	25						#578	60
Internal Link Dist (ft)		503			364			1366			411	
Turn Bay Length (ft)												
Base Capacity (vph)		812	469	738	2280						991	958
Starvation Cap Reductn		0	0	181	0						0	0
Spillback Cap Reductn		54	0	0	0						0	0
Storage Cap Reductn		0	0	0	0						0	0
Reduced v/c Ratio		0.84	0.62	0.92	0.20						0.97	0.31
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												
Offset: 0 (0%), Referenced to	o phase 2	:EBWB, S	Start of G	een								
Natural Cycle: 95												
Control Type: Actuated-Cool	rdinated											
Maximum v/c Ratio: 0.97												

Lane Group	Ø4	Ø5	Ø6	Ø8	Ø12	Ø16
Laneconfigurations						
Traffic Volume (vph)						
Future Volume (vph)						
Peak Hour Factor						
Adj. Flow (vph)						
Shared Lane Traffic (%)						
Lane Group Flow (vph)						
Turn Type						
Protected Phases	4	5	6	8	12	16
Permitted Phases						
Detector Phase						
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	23.0	23.0	23.0	23.0	12.0	12.0
Total Split (s)	31.0	55.0	24.0	44.0	12.0	12.0
Total Split (%)	23%	41%	18%	33%	9%	9%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	5			5		
Total Lost Time (s)						
Lead/Lag	Lag	Lag	Lead	Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	Max	Min	Max	Max	Max	Max
Act Effct Green (s)	· · · · ·		man	· · · · · ·	man	max
Actuated g/C Ratio						
v/c Ratio						
Control Delay						
Queue Delay						
Total Delay						
LOS						
Approach Delay						
Approach LOS						
Queue Length 50th (ft)						
Queue Length 95th (ft)						
Internal Link Dist (ft)						
Turn Bay Length (ft)						
Base Capacity (vph)						
Starvation Cap Reductn						
Spillback Cap Reductn						
Storage Cap Reductn						
Reduced v/c Ratio						
Intersection Summary						

 09/29/2016
 Synchro 9 Report

 MS
 Page 39

81: I-35 SB Frontage Rd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Intersection Signal Delay: 41.5	Intersection LOS: D
Intersection Capacity Utilization 76.0%	ICU Level of Service D
Analysis Period (min) 15	
# 95th percentile volume exceeds capacity, queue may be	longer.
Queue shown is maximum after two cycles.	
m Volume for 95th percentile queue is metered by upstrear	n signal.
Splits and Phases: 81: I-35 SB Frontage Rd & Martin Luthe	er King Jr. Blvd

09/29/2016 Synchro 9 Report Page 41

82: I-35 NB Frontage Rd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions Timing Plan: PM

	•	→	\rightarrow	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	414			^	7	7	41₽	7			
Traffic Volume (vph)	743	525	0	0	470	89	184	555	417	0	0	0
Future Volume (vph)	743	525	0	0	470	89	184	555	417	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	808	571	0	0	511	97	200	603	453	0	0	0
Shared Lane Traffic (%)	50%						10%					
Lane Group Flow (vph)	404	975	0	0	511	97	180	623	453	0	0	0
Turn Type	pm+pt	NA			NA	Perm	Perm	NA	Perm			
Protected Phases	5	56			6			8 16				
Permitted Phases	56					6	8 16		8 16			
Detector Phase	5	56			6	6	8 16	8 16	8 16			
Switch Phase												
Minimum Initial (s)	5.0				5.0	5.0						
Minimum Split (s)	23.0				23.0	23.0						
Total Split (s)	55.0				24.0	24.0						
Total Split (%)	40.7%				17.8%	17.8%						
Yellow Time (s)	4.0				4.0	4.0						
All-Red Time (s)	1.0				1.0	1.0						
Lost Time Adjust (s)	0.0				0.0	0.0						
Total Lost Time (s)	5.0				5.0	5.0						
Lead/Lag	Lag				Lead	Lead						
Lead-Lag Optimize?	Yes				Yes	Yes						
Recall Mode	Min				Max	Max						
Act Effct Green (s)	69.0	69.0			19.0	19.0	51.0	51.0	51.0			
Actuated g/C Ratio	0.51	0.51			0.14	0.14	0.38	0.38	0.38			
v/c Ratio	0.62	0.65			0.71	0.29	0.30	0.49	0.60			
Control Delay	15.2	14.0			61.7	4.7	46.0	50.0	33.0			
Queue Delay	1.6	2.4			0.2	0.0	0.0	0.0	0.0			
Total Delay	16.7	16.4			61.9	4.7	46.1	50.1	33.0			
LOS	В	В			E	Α	D	D	С			
Approach Delay		16.5			52.8			43.3				
Approach LOS		В			D			D				
Queue Length 50th (ft)	202	340			158	0	171	298	248			
Queue Length 95th (ft)	m341	m439			202	20	257	365	355			
Internal Link Dist (ft)		364			388			808			388	
Turn Bay Length (ft)						180						
Base Capacity (vph)	656	1506			715	340	608	1278	759			
Starvation Cap Reductn	115	383			0	0	0	0	0			
Spillback Cap Reductn	0	0			17	0	13	28	0			
Storage Cap Reductn	0	0			0	0	0	0	0			
Reduced v/c Ratio	0.75	0.87			0.73	0.29	0.30	0.50	0.60			

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBWB, Start of Green
Natural Cycle: 95
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.97

09/29/2016 Synchro 9 Report Page 42 MS

82: I-35 NB Frontage Rd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Lane Configurations Traffic Volume (vph) Peak Hour Factor Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) 41% 27% 230, 330, 320, 120, 120, 120, 120, 101, 101, 101, 1	Lane Group	Ø1	Ø2	Ø4	Ø8	Ø12	Ø16
Future Volume (vph) Peak Hour Factor Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases 1 2 4 8 12 16 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 10.0 23.0 23.0 23.0 12.0 12.0 Total Split (s) 56.0 36.0 31.0 44.0 12.0 12.0 Total Split (s) 41% 27% 23% 33% 9% 9% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lead Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Yes Recall Mode Min C-Max Max Max Max Max Max Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn	Lane Configurations						
Future Volume (vph) Peak Hour Factor Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases 1 2 4 8 12 16 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Spit (s) 10.0 23.0 23.0 23.0 12.0 12.0 Total Spit (s) 56.0 36.0 31.0 44.0 12.0 12.0 Total Spit (s) 41% 27% 23% 33% 9% 9% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lead Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Recall Mode Min C-Max Max Max Max Max Max Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Oueue Delay Total Delay Approach Delay Approach Delay Approach Dots (th) Gueue Length 95th (th) Internal Link Dist (th) Turn Bay Length (th) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Spillback Cap Reductn							
Peak Hour Factor Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases							
Shared Lane Traffic (%) Lane Group Flow (vph)							
Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0							
Lane Group Flow (vph) Turn Type Protected Phases							
Tum Type Protected Phases 1 2 4 8 12 16 Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) 10.0 23.0 23.0 23.0 12.0 12.0 Total Split (s) Total Split (s) 41% 27% 23% 33% 9% 9% Pyellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) Lost Time Adjust (s) Total Split (s) Total Split (s) Total Split (red) Lag Lead Lag Lag Lead Lag Lag Lead Lead-Lag Optimize? Recall Mode Min C-Max Max Max Max Max Max Max Act Effet Green (s) Act Letted Gr Catio Vic Ratio Control Delay Coueue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Stortage Cap Reductn	Lane Group Flow (vph)						
Protected Phases Permitted Phases Permitted Phases							
Detector Phase Switch Phase Minimum Initial (s) S.0. 5.0 5.0 5.0 5.0 5.0 5.0 S.0. 5.0 S.0. 5.0 5.0 5.0 5.0 5.0 5.0 S.0. 5.0 5.0 5.0 5.0 5.0 5.0 S.0. 5.0 5.0 5.0 5.0 5.0 5.0 5.0 S.0. 5.0 5.0 5.0 5.0 5.0 5.0 5.0 S.0. 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 S.0. 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 S.0. 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		1	2	4	8	12	16
Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	Permitted Phases						
Switch Phase Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	Detector Phase						
Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 Minimum Split (s) 10.0 23.0 23.0 23.0 12.0 12.0 Total Split (s) 56.0 36.0 31.0 44.0 12.0 12.0 Total Split (%) 41% 27% 23% 33% 9% 9% 9% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Started Lost Time (s) Lead-Lag Optimize? Yes							
Minimum Split (s) 10.0 23.0 23.0 23.0 12.0 12.0 Total Split (s) 56.0 36.0 31.0 44.0 12.0 12.0 Total Split (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead Lead Lead Lead Lead Lead Lead Lead		5.0	5.0	5.0	5.0	5.0	5.0
Total Split (s) 56.0 36.0 31.0 44.0 12.0 12.0 Total Split (%) 41% 27% 23% 33% 9% 9% 9% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lead Lag Lag Lead Lead-Lag Optimize? Yes							
Total Split (%)							
Yellow Time (s)							
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lag Lag Lag Lag Lead Lag Lag Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Yes Yes Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Ocueue Delay Total Delay LOS Approach Delay Approach Delay Approach Dost (fit) Ocueue Length 95th (fit) Internal Link Dist (fit) Turm Bay Length (fit) Base Capacity (vph) Starvation Cap Reductn Storage Ca							
Lost Time Adjust (s) Total Lost Time (e) Lead/Lag Lead Lag Lead Lead Lead Lead Lead Lead Lead Lead							
Total Lost Time (s) Lead/Lag							
Lead/Lag Lag Lag Lag Lag Lad							
Lead-Lag Optimize? Yes Yes Yes Yes Yes Yes Recall Mode Min C-Max Max Max Max Max Max Max Act Effct Green (s) Act Leffct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn		Lan	Lead	Lao	Lao	Lead	Lead
Recall Mode Min C-Max Max Max Max Max Max Act Effet Green (s) Actuated g/C Ratio v/c Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reductn Storage Cap Reductn							
Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (t) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reductn Storage Cap Reductn							
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn		101111	O Max	ax	ax	···ux	HUX
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn							
Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reductn Storage Cap Reductn							
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn							
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn Storage Cap Reductn							
LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn							
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn							
Approach LOS Oueue Length 95th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Startantion Cap Reducth Spillback Cap Reductn Storage Cap Reductn							
Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn							
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn							
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn							
Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn							
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn							
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn							
Spillback Cap Reductn Storage Cap Reductn							
Storage Cap Reductn							
Troubou To Trailo							
Intersection Summary							

 09/29/2016
 Synchro 9 Report

 MS
 Page 43

82: I-35 NB Frontage Rd & Martin Luther King Jr. Blvd TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

83: Red River St & W. 15th St

TIA for Texas Capital Complex Master Plan 2018 Update

	•	→	•	•	←	•	4	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^		7	^			44		ሻ	î»	
Traffic Volume (vph)	539	1631	31	45	512	22	13	105	133	49	133	549
Future Volume (vph)	539	1631	31	45	512	22	13	105	133	49	133	549
Peak Hour Factor	0.96	0.96	0.96	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	561	1699	32	49	557	24	14	114	145	53	145	597
Shared Lane Traffic (%)												
Lane Group Flow (vph)	561	1731	0	49	581	0	0	273	0	53	742	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6			8			4		
Minimum Split (s)	10.0	23.0		10.0	23.0		23.0	23.0		23.0	23.0	
Total Split (s)	49.0	63.0		10.0	24.0		62.0	62.0		62.0	62.0	
Total Split (%)	36.3%	46.7%		7.4%	17.8%		45.9%	45.9%		45.9%	45.9%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Act Effct Green (s)	68.0	58.0		24.0	19.0			57.0		57.0	57.0	
Actuated g/C Ratio	0.50	0.43		0.18	0.14			0.42		0.42	0.42	
v/c Ratio	0.89	0.79		0.41	0.81			0.59		0.13	0.93	
Control Delay	62.1	49.4		35.5	51.5			30.2		39.2	65.4	
Queue Delay	0.0	0.1		0.0	0.0			0.1		0.0	0.0	
Total Delay	62.1	49.6		35.5	51.5			30.2		39.2	65.4	
LOS	E	D		D	D			С		D	E	
Approach Delay		52.6			50.2			30.2			63.7	
Approach LOS		D			D			С			E	
Queue Length 50th (ft)	458	508		22	181			148		38	561	
Queue Length 95th (ft)	#629	560		44	228			248		m73	m#740	
Internal Link Dist (ft)		648			607			283			924	
Turn Bay Length (ft)	70			55								
Base Capacity (vph)	632	2179		120	714			461		404	800	
Starvation Cap Reductn	0	44		0	0			0		0	0	
Spillback Cap Reductn	0	0		0	0			7		6	0	
Storage Cap Reductn	0	0		0	0			0		0	0	
Reduced v/c Ratio	0.89	0.81		0.41	0.81			0.60		0.13	0.93	

Intersection Summary	
Cycle Length: 135	

Office Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 80

Natural Cycle: 80
Control Type: Pretimed
Maximum v/c Ratio: 0.93
Intersection Signal Delay: 52.9
Intersection Capacity Utilization 93.6%
Analysis Period (min) 15

Intersection LOS: D ICU Level of Service F

95th percentile volume exceeds capacity, queue may be longer.

09/29/2016 Synchro 9 Report MS Page 45

83: Red River St & W. 15th St

Existing Conditions
Timing Plan: PM

TIA for Texas Capital Complex Master Plan 2018 Update

Queue shown is maximum after two cycles.

Molume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 83: Red River St & W. 15th St

	•	-	•	•	•	•	1	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	1		414						ተተኩ	1
Traffic Volume (vph)	0	1028	514	1	138	0	0	0	0	0	1197	362
Future Volume (vph)	0	1028	514	1	138	0	0	0	0	0	1197	362
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	1117	559	1	150	0	0	0	0	0	1301	393
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1117	559	0	151	0	0	0	0	0	1301	393
Turn Type		NA	Perm	pm+pt	NA						NA	Free
Protected Phases		2		1	2 1						4 12	
Permitted Phases			2	12						4 12		Free
Detector Phase		2	2	1	2 1					4 12	4 12	
Switch Phase												
Minimum Initial (s)		5.0	5.0	5.0								
Minimum Split (s)		23.0	23.0	10.0								
Total Split (s)		71.0	71.0	23.0								
Total Split (%)		52.6%	52.6%	17.0%								
Yellow Time (s)		4.0	4.0	4.0								
All-Red Time (s)		1.0	1.0	1.0								
Lost Time Adjust (s)		0.0	0.0									
Total Lost Time (s)		5.0	5.0									
Lead/Lag		Lead	Lead	Lag								
Lead-Lag Optimize?		Yes	Yes	Yes								
Recall Mode		C-Max	C-Max	Min								
Act Effct Green (s)		66.0	66.0		84.0						36.0	135.0
Actuated g/C Ratio		0.49	0.49		0.62						0.27	1.00
v/c Ratio		0.65	0.57		0.07						0.96	0.25
Control Delay		22.3	15.7		3.9						47.4	0.2
Queue Delay		1.5	1.0		0.0						0.0	0.0
Total Delay		23.7	16.7		3.9						47.4	0.2
LOS		C	В		A						D	A
Approach Delay		21.4			3.9						36.5	, ,
Approach LOS		C			A						D	
Queue Length 50th (ft)		508	396		5						367	0
Queue Length 95th (ft)		582	514		8						m#467	m0
Internal Link Dist (ft)		607	011		190			264			1366	1110
Turn Bay Length (ft)		007			170			201			1300	
Base Capacity (vph)		1730	978		2124						1356	1583
Starvation Cap Reductn		395	196		0						0	0
Spillback Cap Reductn		138	0		0						0	0
Storage Cap Reductn		0	0		0						0	0
Reduced v/c Ratio		0.84	0.71		0.07						0.96	0.25
Intersection Summary												
Cycle Length: 135												

Intersection Summary	
Cycle Length: 135	
Actuated Cycle Length: 135	
Offset: 0 (0%), Referenced to phase 2:EBWB, Start of Green	
Natural Cycle: 75	
Control Type: Actuated-Coordinated	
Maximum v/c Ratio: 0.96	

Synchro 9 Report Page 47 09/29/2016

84: I-35 SB Frontage Rd & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Lane Group	Ø4	Ø5	Ø8	Ø12	Ø16
Lane Configurations					
Traffic Volume (vph)					
Future Volume (vph)					
Peak Hour Factor					
Adj. Flow (vph)					
Shared Lane Traffic (%)					
Lane Group Flow (vph)					
Turn Type					
Protected Phases	4	5	8	12	16
Permitted Phases					
Detector Phase					
Switch Phase					
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	23.0	23.0	23.0	10.0	10.0
Total Split (s)	31.0	92.0	33.0	10.0	10.0
Total Split (%)	23%	68%	24%	7%	7%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)					
Total Lost Time (s)					
Lead/Lag	Lag	Lag		Lead	Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes
Recall Mode	Max	Max	Max	Max	Max
Act Effct Green (s)	man	man		· · · · · ·	man
Actuated g/C Ratio					
v/c Ratio					
Control Delay					
Queue Delay					
Total Delay					
LOS					
Approach Delay					
Approach LOS					
Queue Length 50th (ft)					
Queue Length 95th (ft)					
Internal Link Dist (ft)					
Turn Bay Length (ft)					
Base Capacity (vph)					
Starvation Cap Reductn					
Spillback Cap Reductn					
Storage Cap Reductn					
Reduced v/c Ratio					

Synchro 9 Report Page 48 09/29/2016 MS

84: I-35 SB Frontage Rd & W. 15th St

TIA for Texas Capital Complex Master Plan 2018 Update

Intersection LOS: C ICU Level of Service C

Existing Conditions
Timing Plan: PM

Intersection Signal Delay: 27.9 Intersection Capacity Utilization 71.6% ICU L
Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 84: I-35 SB Frontage Rd & W. 15th St #84 \$\infty\$2 (R) #84 Ø4

09/29/2016 Synchro 9 Report Page 49 MS

85: I-35 NB Frontage Rd & W. 15th St

Existing Conditions
Timing Plan: PM

TIA for Texas Capital Complex Master Plan 2018 Update

	•	•	4	†	ļ	4						
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	Ø1	Ø2	Ø4	Ø8	Ø12	Ø1
Lane Configurations	77		ሻ	ተተኩ								
Traffic Volume (vph)	1033	0	102	706	0	0						
Future Volume (vph)	1033	0	102	706	0	0						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92						
Adj. Flow (vph)	1123	0	111	767	0	0						
Shared Lane Traffic (%)			10%									
Lane Group Flow (vph)	1123	0	100	778	0	0						
Turn Type	Prot		custom	NA								
Protected Phases	5		8 16	8 16			1	2	4	8	12	10
Permitted Phases			8 16	0.10								
Detector Phase	5		8 16	8 16								
Switch Phase	J		0 10	0 10								
Minimum Initial (s)	5.0						5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	23.0						10.0	23.0	23.0	23.0	10.0	10.0
Total Split (s)	92.0						23.0	71.0	31.0	33.0	10.0	10.0
Total Split (%)	68.1%						17%	53%	23%	24%	7%	79
Yellow Time (s)	4.0						4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0						1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0						1.0	1.0	1.0	1.0	1.0	1.0
Total Lost Time (s)	5.0											
Lead/Lag	Lag						Lag	Lead	Lag		Lead	Lead
Lead-Lag Optimize?	Yes						Yes	Yes	Yes		Yes	Yes
Recall Mode	Max						Min	C-Max	Max	Max	Max	Max
Act Effct Green (s)	87.0		38.0	38.0			IVIIII	C-IVIAX	IVIAA	IVIGA	IVICIA	IVICI
Actuated g/C Ratio	0.64		0.28	0.28								
v/c Ratio	0.51		0.23	0.58								
Control Delay	5.9		39.1	43.6								
Queue Delay	0.6		0.0	0.0								
Total Delay	6.5		39.1	43.6								
LOS	Α.		37.1 D	43.0 D								
Approach Delay	6.5		U	43.1								
Approach LOS	Α.			43.1 D								
Queue Length 50th (ft)	509		79	227								
Queue Length 95th (ft)	1		138	276								
Internal Link Dist (ft)	190		130	238	628							
Turn Bay Length (ft)	190			230	020							
	2212		428	1351								
Base Capacity (vph)												
Starvation Cap Reductn	652		0	0								
Spillback Cap Reductn	0		0	0								
Storage Cap Reductn Reduced v/c Ratio	0.72		0.23	0.58								
	0.72		0.23	0.50								
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												
Offset: 0 (0%), Referenced	to phase 2:	EBWB, S	start of Gr	een								
Natural Cycle: 75												
Control Type: Actuated-Coo	ordinated											
Maximum v/c Ratio: 0.96												

85: I-35 NB Frontage Rd & W. 15th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Intersection Signal Delay: 22.6	Intersection LOS: C
Intersection Capacity Utilization 51.4%	ICU Level of Service A
Analysis Period (min) 15	

Splits and Phases: 85: I-35 NB Frontage Rd & W. 15th St

#84 #82 (R)	#84	#84 Ø12	#84 Ø1
71 s	31 s	10 s	23 s
#85 #85		#85 Ø8	
10 s 92 s		33 s	

Synchro 9 Report Page 51 09/29/2016

11: Colorado St & W. 18th St

Existing Conditions
Timing Plan: PM

TIA for Texas Capital Complex Master Plan 2018 Update

ntersection	
ntersection Delay, s/veh	8.4
ntersection LOS	Α

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations							4				ર્ન	
Traffic Vol, veh/h	0	0	0	0	0	39	70	20	0	29	86	0
Future Vol, veh/h	0	0	0	0	0	39	70	20	0	29	86	0
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	50	90	26	0	37	110	0
Number of Lanes	0	0	0	0	0	0	1	0	0	0	1	0

Approach	WB	NB
Opposing Approach		SB
Opposing Lanes	0	1
Conflicting Approach Left	NB	
Conflicting Lanes Left	1	0
Conflicting Approach Right	SB	WB
Conflicting Lanes Right	1	1
HCM Control Delay	8.7	8.5
HCM LOS	A	A
Conflicting Lanes Left Conflicting Approach Right Conflicting Lanes Right HCM Control Delay	1 SB 1 8.7	WB 1 8.5

Lane	NBLn1	WBLn1	SBLn1			
Vol Left, %	25%	30%	0%)	_	
Vol Thru, %	75%	54%	72%)		
Vol Right, %	0%	16%	28%)		
Sign Control	Stop	Stop	Stop)		
Traffic Vol by Lane	115	129	87			
LT Vol	29	39	0)		
Through Vol	86	70	63	}		
RT Vol	0	20	24			
Lane Flow Rate	147	165	112	?		
Geometry Grp	1	1	1			
Degree of Util (X)	0.184	0.206	0.134			
Departure Headway (Hd)	4.496	4.487	4.324			
Convergence, Y/N	Yes	Yes	Yes	;		
Cap	799	802	831			
Service Time	2.514	2.506	2.343	1		
HCM Lane V/C Ratio	0.184	0.206	0.135	i		
HCM Control Delay	8.5	8.7	8	3		
HCM Lane LOS	Α	Α	Α	l .		
HCM 95th-tile Q	0.7	0.8	0.5	,		

 09/29/2016
 Synchro 9 Report

 MS
 Page 1

11: Colorado St & W. 18th St TIA for Texas Capital Complex Master Plan 2018 Update Existing Conditions
Timing Plan: PM

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			î,	
Traffic Vol, veh/h	0	0	63	24
Future Vol, veh/h	0	0	63	24
Peak Hour Factor	0.78	0.78	0.78	0.78
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	81	31
Number of Lanes	0	0	1	0

Number of Lanes	U	U	- 1	U	
Approach			SB		
Opposing Approach			NB		
Opposing Lanes			1		
Conflicting Approach Left			WB		
Conflicting Lanes Left			1		
Conflicting Approach Right					
Conflicting Lanes Right			0		
HCM Control Delay			8		
HCM LOS			Α		

12: N. Congress Ave & W. 18th St TIA for Texas Capital Complex Master Plan 2018 Update

Intersection

Existing Conditions
Timing Plan: PM

ntersection	
ntersection Delay, s/veh	9,9
ntersection LOS	Α

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations							4				ર્ન	
Traffic Vol, veh/h	0	0	0	0	0	77	50	108	0	13	196	0
Future Vol, veh/h	0	0	0	0	0	77	50	108	0	13	196	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	90	58	126	0	15	228	0
Number of Lanes	0	0	0	0	0	0	1	0	0	0	1	0

Approach	WB	NB
Opposing Approach		SB
Opposing Lanes	0	1
Conflicting Approach Left	NB	
Conflicting Lanes Left	1	0
Conflicting Approach Right	SB	WB
Conflicting Lanes Right	1	1
HCM Control Delay	10.2	10.1
HCM LOS	В	В

Lane	NBLn1	WBLn1	SBLn1	
Vol Left, %	6%	33%	0%	
Vol Thru, %	94%	21%	88%	
Vol Right, %	0%	46%	12%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	209	235	122	
LT Vol	13	77	0	
Through Vol	196	50	107	
RT Vol	0	108	15	
Lane Flow Rate	243	273	142	
Geometry Grp	1	1	1	
Degree of Util (X)	0.322	0.352	0.19	
Departure Headway (Hd)	4.776	4.634	4.814	
Convergence, Y/N	Yes	Yes	Yes	
Cap	749	773	742	
Service Time	2.828	2.681	2.87	
HCM Lane V/C Ratio	0.324	0.353	0.191	
HCM Control Delay	10.1	10.2	9	
HCM Lane LOS	В	В	Α	
HCM 95th-tile Q	1.4	1.6	0.7	

Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Lane Configurations			ĵ.		
Traffic Vol, veh/h	0	0	107	15	
Future Vol, veh/h	0	0	107	15	
Peak Hour Factor	0.86	0.86	0.86	0.86	
Heavy Vehicles, %	2	2	2	2	
Mvmt Flow	0	0	124	17	
Number of Lanes	0	0	1	0	
Approach			SB		
Opposing Approach			NB		
Opposing Lanes			1		
Conflicting Approach Left			WB		
Conflicting Lanes Left			1		
Conflicting Approach Right					
Conflicting Lanes Right			0		
HCM Control Delay			9		
HCM LOS			Α		

,	 ···Onac	Capital	Complex	Mactor	•	iuii	 	paat

ersection	
ersection Delay, s/veh	9.4
ersection LOS	Α

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations							4				ર્ન	
Traffic Vol, veh/h	0	0	0	0	0	10	37	15	0	133	154	0
Future Vol, veh/h	0	0	0	0	0	10	37	15	0	133	154	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	12	43	17	0	155	179	0
Number of Lanes	0	0	0	0	0	0	1	0	0	0	1	0

Approach	WB	NB
Opposing Approach		SB
Opposing Lanes	0	1
Conflicting Approach Left	NB	
Conflicting Lanes Left	1	0
Conflicting Approach Right	SB	WB
Conflicting Lanes Right	1	1
HCM Control Delay	8.4	10.2
HCM LOS	A	В

Lane	NBLn1	WBLn1	SBLn1	
Vol Left, %	46%	16%	0%	
Vol Thru, %	54%	60%	46%	
Vol Right, %	0%	24%	54%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	287	62	118	
LT Vol	133	10	0	
Through Vol	154	37	54	
RT Vol	0	15	64	
Lane Flow Rate	334	72	137	
Geometry Grp	1	1	1	
Degree of Util (X)	0.395	0.097	0.158	
Departure Headway (Hd)	4.258	4.848	4.133	
Convergence, Y/N	Yes	Yes	Yes	
Cap	831	742	871	
Service Time	2.356	2.858	2.143	
HCM Lane V/C Ratio	0.402	0.097	0.157	
HCM Control Delay	10.2	8.4	7.9	
HCM Lane LOS	В	Α	Α	
HCM 95th-tile Q	1.9	0.3	0.6	

09/29/2016	Synchro 9 Report
MS	Page 5

Intersection					
Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Lane Configurations			ĵ.		
Traffic Vol, veh/h	0	0	54	64	
Future Vol, veh/h	0	0	54	64	
Peak Hour Factor	0.86	0.86	0.86	0.86	
Heavy Vehicles, %	2	2	2	2	
Mvmt Flow	0	0	63	74	
Number of Lanes	0	0	1	0	
Approach			SB		
Opposing Approach			NB		_
Opposing Lanes			1		
Conflicting Approach Left			WB		
Conflicting Lanes Left			1		
Conflicting Approach Right					
Conflicting Lanes Right			0		
HCM Control Delay			7.9		
HCM LOS			Α		

14: Brazos St & W. 18th St

TIA for Texas Capital Complex Master Plan 2018 Update

20: Colorado St & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update Existing Conditions
Timing Plan: PM

ntersection	
ntersection Delay, s/veh	10.2
ntersection LOS	В

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4								ĵ»	
Traffic Vol, veh/h	0	19	200	40	0	0	0	0	0	0	85	117
Future Vol, veh/h	0	19	200	40	0	0	0	0	0	0	85	117
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	23	244	49	0	0	0	0	0	0	104	143
Number of Lanes	0	0	1	0	0	0	0	0	0	0	1	0

Approach	EB	NB
Opposing Approach		SB
Opposing Lanes	0	1
Conflicting Approach Left	SB	EB
Conflicting Lanes Left	1	1
Conflicting Approach Right	NB	
Conflicting Lanes Right	1	0
HCM Control Delay	11	9.6
HCM LOS	В	A

Lane	NBLn1	EBLn1	SBLn1	ĺ	
Vol Left, %	0%	7%	27%		
Vol Thru, %	42%	77%	73%		
Vol Right, %	58%	15%	0%		
Sign Control	Stop	Stop	Stop		
Traffic Vol by Lane	202	259	97		
LT Vol	0	19	26		
Through Vol	85	200	71		
RT Vol	117	40	0		
Lane Flow Rate	246	316	118		
Geometry Grp	1	1	1		
Degree of Util (X)	0.309	0.412	0.166		
Departure Headway (Hd)	4.513	4.696	5.052		
Convergence, Y/N	Yes	Yes	Yes		
Cap	793	764	706		
Service Time	2.563	2.748	3.113		
HCM Lane V/C Ratio	0.31	0.414	0.167		
HCM Control Delay	9.6	11	9.1		
HCM Lane LOS	Α	В	Α		
HCM 95th-tile Q	1.3	2	0.6		

Intersection				
Intersection Delay, s/veh	·			
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	26	71	0
Future Vol, veh/h	0	26	71	0
Peak Hour Factor	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	32	87	0
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left				
Conflicting Lanes Left		0		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		9.1		
HCM LOS		Α		

22: N. Congress Ave & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

itersection	
ntersection Delay, s/veh	12.3
ntersection LOS	В

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBF
Lane Configurations			4								4	
Traffic Vol, veh/h	0	86	190	73	0	0	0	0	0	0	104	39
Future Vol, veh/h	0	86	190	73	0	0	0	0	0	0	104	39
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	102	226	87	0	0	0	0	0	0	124	46
Number of Lanes	0	0	1	0	0	0	0	0	0	0	1	(
Approach		EB									NB	
Opposing Approach											SB	
Opposing Lanes		0									1	

Opposing Approach		SB
Opposing Lanes	0	1
Conflicting Approach Left	SB	EB
Conflicting Lanes Left	1	1
Conflicting Approach Right	NB	
Conflicting Lanes Right	1	0
HCM Control Delay	14	9.9
HCM LOS	В	A

Lane	NBLn1	EBLn1	SBLn1	
Vol Left, %	0%	25%	19%	
Vol Thru, %	73%	54%	81%	
Vol Right, %	27%	21%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	143	349	189	
LT Vol	0	86	35	
Through Vol	104	190	154	
RT Vol	39	73	0	
Lane Flow Rate	170	415	225	
Geometry Grp	1	1	1	
Degree of Util (X)	0.247	0.558	0.334	
Departure Headway (Hd)	5.219	4.837	5.337	
Convergence, Y/N	Yes	Yes	Yes	
Cap	691	735	677	
Service Time	3.227	2.936	3.337	
HCM Lane V/C Ratio	0.246	0.565	0.332	
HCM Control Delay	9.9	14	11	
HCM Lane LOS	Α	В	В	
HCM 95th-tile Q	1	3.5	1.5	

Synchro 9 Report Page 9 09/29/2016

22: N. Congress Ave & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

SBU	SBL	SBT	SBR
		ર્ન	
0	35	154	0
0	35	154	0
0.84	0.84	0.84	0.84
2	2	2	2
-			0
0	0	1	0
	SB		
	NB		
	1		
	0		
	EB		
	1		
	В		
	0 0 0.84	0 35 0 35 0.84 0.84 2 2 0 42 0 0 SB NB 1 1	0 35 154 0 35 154 0.84 0.84 0.84 2 2 2 2 0 42 183 0 0 1 SB NB 1 0 EB 1 1

Synchro 9 Report Page 10 09/29/2016 MS

Intersection						
Int Delay, s/veh 0	.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ 1>		*	^	¥	
Traffic Vol, veh/h	602	32	31	1171	2	111
Future Vol. veh/h	602	32	31	1171	2	111
Conflicting Peds, #/hr	0	8	8	0	0	11
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None		None
Storage Length		-	40	-	0	
Veh in Median Storage, #	0	-	-	0	0	-
Grade. %	0			0	0	
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	640	34	33	1246	2	118
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	682	0	1354	356
Stage 1		-		-	665	-
Stage 2					689	
Critical Hdwy	-	-	4.14	-	7.54	6.94
Critical Hdwy Stg 1			-	-	6.54	-
Critical Hdwy Stg 2	-	-		-	6.54	-
Follow-up Hdwy	-		2.22		3.52	3.32
Pot Cap-1 Maneuver	-	-	907	-	108	640
Stage 1	-				416	
Stage 2	-	-		-	402	-
Platoon blocked, %	-					
Mov Cap-1 Maneuver	-		897	-	104	628
Mov Cap-2 Maneuver	-	-	-	-	104	-
Stage 1	-				416	
Stage 2	-	-		-	387	
, , , , , , , , , , , , , , , , , , ,						
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		12.9	
HCM LOS					В	
Minor Lane/Major Mvmt	NBLn1 EBT	EBR W	BL WBT			
Capacity (veh/h)	577 -	- 8	397 -			
HCM Lane V/C Ratio	0.208 -	- 0.0				
HCM Control Delay (s)	12.9 -		9.2 -			
HCM Lane LOS	В -		Α -			

Intersection												
Int Delay, s/veh	3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations					4						۸ß	
Traffic Vol, veh/h	0	0	0	57	137	0	0	0	0	0	933	39
Future Vol, veh/h	0	0	0	57	137	0	0	0	0	0	933	39
Conflicting Peds, #/hr	0	0	0	52	0	0	0	0	0	0	0	39
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free
RT Channelized		-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, #		-	-	-	0	-	-	-	-	-	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	59	141	0	0	0	0	0	962	40
Major/Minor				Minor1						Major2		
Conflicting Flow All				533	1041					-		C
Stage 1				0	0							
Stage 2				533	1041							
Critical Hdwy				6.84	6.54							
Critical Hdwy Stg 1				0.01	0.01							
Critical Hdwy Stg 2				5.84	5.54							
Follow-up Hdwy				3.52	4.02					-		
Pot Cap-1 Maneuver				477	229	0				0		
Stage 1						0				0		
Stage 2				553	305	0				0	-	
Platoon blocked, %				000	000	Ū						
Mov Cap-1 Maneuver				477	0	-				_	-	
Mov Cap-2 Maneuver				477	0	-				_		
Stage 1				-	0							
Stage 2				553	0							
Stage 2				000								
Approach				WB						SB		
HCM Control Delay, s				17.9						0		
HCM LOS				С								
Minor Lane/Major Mvmt	WBLn1	SBT	SBR									
Capacity (veh/h)	477	-	-									
HCM Lane V/C Ratio	0.419											
HCM Control Delay (s)	17.9	-										
HCM Lane LOS	С											
HCM 95th %tile Q(veh)	2		-									

 09/29/2016
 Synchro 9 Report

 MS
 Page 1

Intersection													
Int Delay, s/veh	2.4												
Movement		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations						ĥ		۲	^				
Traffic Vol, veh/h		0	0	0	0	79	28	113	900	0	0	0	0
Future Vol, veh/h		0	0	0	0	79	28	113	900	0	0	0	0
Conflicting Peds, #/hr		0	0	0	0	0	20	24	0	0	0	0	0
Sign Control		Free	Free	Free	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	-	None	-	-	None	-	-	None	-	-	None
Storage Length		-	-	-	-	-	-	0	-	-	-	-	-
Veh in Median Storage, #	!	-	-	-	-	0	-	-	0	-	-	-	-
Grade, %		-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor		95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %		2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow		0	0	0	0	83	29	119	947	0	0	0	0

Major/Minor	Minor1			Major1			
Conflicting Flow All	-	1209	494	24	0	-	
Stage 1		1185	-	-	-	-	
Stage 2	-	24	-	-	-	-	
Critical Hdwy		6.54	7.14	5.34	-	-	
Critical Hdwy Stg 1		5.54	-	-	-	-	
Critical Hdwy Stg 2		-	-	-	-	-	
Follow-up Hdwy		4.02	3.92	3.12	-	-	
Pot Cap-1 Maneuver	0	182	446	1125	-	0	
Stage 1	0	261	-	-	-	0	
Stage 2	0	-	-	-	-	0	
Platoon blocked, %					-		
Mov Cap-1 Maneuver		0	446	1125	-	-	
Mov Cap-2 Maneuver		0	-	-	-	-	
Stage 1		0	-	-	-	-	
Stage 2	-	0	-	-	-	-	
-							

Approach	WB	NB	
HCM Control Delay, s	15.8	1	
HCM LOS	С		

Minor Lane/Major Mvmt	NBL	NBTV	VBLn1
Capacity (veh/h)	1125	-	446
HCM Lane V/C Ratio	0.106	-	0.253
HCM Control Delay (s)	8.6	-	15.8
HCM Lane LOS	Α	-	С
HCM 95th %tile Q(veh)	0.4	-	1

09/29/2016	Synchro 9 Report
MS	Page 3

Int Delay, s/veh	16.8					
Movement		EBT	WDT	WBR	SBL	SBR
	EBL		WBT	WBK		SBK
Lane Configurations	56	4	0	٥	7	0
Traffic Vol, veh/h Future Vol, veh/h		229 229	0	0	66	-
	56		-		66	0
Conflicting Peds, #/hr	403	0	0	0	3	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	110110	-	None	-	None
Storage Length		-	-	-	0	-
Veh in Median Storage, #		0	-	-	0	-
Grade, %	- 01	0	0	-	0	- 01
Peak Hour Factor	81	81	81	81	81	81
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	69	283	0	0	81	0
Major/Minor	Major1				Minor2	
Conflicting Flow All	403	0			827	-
Stage 1	-	-			403	-
Stage 2		-			424	
Critical Hdwy	4.12	-			6.42	-
Critical Hdwy Stg 1	-	-			-	-
Critical Hdwy Stg 2	-	-			5.42	-
Follow-up Hdwy	2.218	-			3.518	-
Pot Cap-1 Maneuver	1156	-			341	0
Stage 1	-	-			-	0
Stage 2	-	-			660	0
Platoon blocked, %		-				
Mov Cap-1 Maneuver	1156	-			120	-
Mov Cap-2 Maneuver	-	-			120	-
Stage 1		-			-	
Stage 2		-			378	-
ŭ						
Approach	EB				SB	
HCM Control Delay, s	1.6				82.7	
HCM LOS	1.0				62. <i>1</i>	
TIGWI EUG					1	
Minnel and Maine Marine	ED!	EDT CDL 1				
Minor Lane/Major Mvmt	EBL	EBT SBLn1				
Capacity (veh/h)	1156	- 120				
HCM Cantral Dalay (a)	0.06	- 0.679				
HCM Control Delay (s)	8.3	0 82.7				
HCM Lane LOS	A	A F				
HCM 95th %tile Q(veh)	0.2	- 3.6				

24: E. 17th St & Brazos St

TIA for Texas Capital Complex Master Plan 2018 Update

.3											
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
0	140	175	0	0	0	0	0	0	100	727	(
0	140	175	0	0	0	0	0	0	100	727	(
0	0	18	0	0	0	0	0	0	90	0	(
Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	Free	Free	Free
-	-	None	-	-	None	-	-	None	-	-	None
	-	-	-		-	-	-			-	
-	0		-	-	-	-	-	-		0	
	0	-	-	0	-	-	0			0	
85	85	85	85	85	85	85	85	85	85	85	85
2	2	2	2	2	2	2	2	2	2	2	2
0	165	206	0	0	0	0	0	0	118	855	(
Minor2									Maior2		
-	1181	446							90	0	(
	1091	-								-	
		-									
-		7.14							5.34		
	5.54	-									
-	-	-								-	
	4.02	3.92							3.12	-	
0	189	479							1050	-	(
0	289									-	C
0	-	-								-	(
										-	
-	0	479							1050	-	
-	0	-							-	-	
-	0	-								-	
-	0	-							-	-	
EB									SB		
33.8									1.4		
D											
EDI -1	CDI	CDT									
D	Α	Α									
	EBL 0 0 0 0 Stop	EBL EBT 0 140 0 140 0 0 0 Stop Stop - 0 0 85 85 2 2 2 0 165 Minor2 - 1181 - 1091 - 90 - 6.54 - 5.54 - 4.02 0 189 0 289 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	EBL EBT EBR	The color of the	EBL EBT EBR WBL WBT 140	The color of the	BBL BBT BBR WBL WBT WBR NBL	The color of the	The color of the	BBL BBT BBR WBL WBT WBR NBL NBT NBR SBL	BBL BBT BBR WBL WBT WBR NBL NBT NBR SBL SBT

 09/29/2016
 Synchro 9 Report

 MS
 Page 5

26: Trinity St & E. 17th St TIA for Texas Capital Complex Master Plan 2018 Update

Existing Conditions
Timing Plan: PM

Intersection Int Delay, s/veh	4.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7			^ ^		
Traffic Vol, veh/h	248	0	0	481	0	0
Future Vol, veh/h	248	0	0	481	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-	0	-	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	299	0	0	580	0	0
Major/Minor	Minor2		Major1			
Conflicting Flow All	232		- Iviajor i	0		
Stage 1	0			U		
Stage 2	232	_				
Critical Hdwy	5.74					
Critical Hdwy Stg 1	3.74	-				
Critical Hdwy Stg 2	6.04					
Follow-up Hdwy	3.82					
Pot Cap-1 Maneuver	734	0	0			
Stage 1	734	0	0			
Stage 2	720	0	0			
Platoon blocked, %	720	U	U			
Mov Cap-1 Maneuver	734			-		
Mov Cap-1 Maneuver	734					
Stage 1	134			-		
Stage 2	720			-		
Staye 2	120					
Approach	FB		NB			
Approach HCM Control Delay, s	13.2		0 0			
HCM Control Delay, S HCM LOS	13.2 B		0			
HCM LOS	D					
N4' 1 (N4 - 1 N4 1	NDT EDI					
Minor Lane/Major Mvmt	NBT EBI					
Capacity (veh/h)		734				
HCM Lane V/C Ratio	- 0.4					
HCM Control Delay (s)	•	3.2				
HCM Lane LOS	-	В				
HCM 95th %tile Q(veh)	-	2				

HCM 95th %tile Q(veh)

Existing Conditions
Timing Plan: PM

27: Guadalupe St & E. 16th St TIA for Texas Capital Complex Master Plan 2018 Update

Intersection													
Int Delay, s/veh	9.6												
Movement		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations						ની						^	7
Traffic Vol, veh/h		0	0	0	188	133	0	0	0	0	0	941	25
Future Vol, veh/h		0	0	0	188	133	0	0	0	0	0	941	25
Conflicting Peds, #/hr		0	0	0	23	0	0	0	0	0	0	0	40
Sign Control		Free	Free	Free	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	-	None	-	-	None	-	-	None	-	-	None
Storage Length		-	-	-	-	-	-	-	-	-	-	-	0
Veh in Median Storage, #	ŧ	-	-	-	-	0	-	-	-	-	-	0	-
Grade, %		-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor		87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %		2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow		0	0	0	216	153	0	0	0	0	0	1082	29

Major/Minor	Minor1			Major2		
Conflicting Flow All	564	1122	-	-	-	0
Stage 1	0	0	-	-	-	-
Stage 2	564	1122	-	-	-	-
Critical Hdwy	6.84	6.54	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	5.84	5.54	-	-	-	-
Follow-up Hdwy	3.52	4.02	-	-	-	-
Pot Cap-1 Maneuver	456	205	0	0	-	-
Stage 1	-	-	0	0	-	-
Stage 2	533	279	0	0	-	-
Platoon blocked, %					-	-
Mov Cap-1 Maneuver	456	0	-	-	-	-
Mov Cap-2 Maneuver	456	0	-	-	-	-
Stage 1		0	-	-	-	-
Stage 2	533	0	-	-	-	-
Approach	WB			SB		
HCM Control Delay, s	38.6			0		
HCM LOS	E					

Minor Lane/Maior Mymt	WBI n1	SBT	SBR
Capacity (veh/h)	456		
HCM Lane V/C Ratio	0.809		-
HCM Control Delay (s)	38.6	-	-
HCM Lane LOS	Е	-	-

Synchro 9 Report Page 7 09/29/2016

29: Colorado St & E. 16th St TIA for Texas Capital Complex Master Plan 2018 Update Existing Conditions
Timing Plan: PM

Intersection	`												
Int Delay, s/veh 1.3	-												
Movement	EBL	EBT	EBR	V	VBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations						4			ની			ĵ»	
Traffic Vol, veh/h	0	0	0		11	33	6	13	63	0	0	346	9
Future Vol, veh/h	0	0	0		11	33	6	13	63	0	0	346	9
Conflicting Peds, #/hr	0	0	0		0	0	14	82	0	0	0	0	8
Sign Control	Free	Free	Free	5	Stop	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	Non
Storage Length	-	-	-		-	-	-	-	-	-	-	-	
Veh in Median Storage, #	-	-	-		-	0	-	-	0	-	-	0	
Grade, %	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	78	78	78		78	78	78	78	78	78	78	78	7
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	0		14	42	8	17	81	0	0	444	11
Major/Minor				Mir				Major1			Major2		
Conflicting Flow All					617	759	95	645	0	-	-	-	
Stage 1					114	114	-	-	-	-		-	
Stage 2					503	645	-	-	-	-	-	-	
Critical Hdwy				-	5.42	6.52	6.22	4.12	-	-	-	-	
Critical Hdwy Stg 1					5.42	5.52	-	-	-	-	-	-	
Critical Hdwy Stg 2					5.42	5.52	-	-	-	-	-	-	
Follow-up Hdwy						4.018		2.218	-	-	-	-	
Pot Cap-1 Maneuver					453	336	962	940	-	0	0	-	
Stage 1					911	801	-	-	-	0	0	-	
Stage 2					607	467	-	-	-	0	0	-	
Platoon blocked, %									-			-	
Mov Cap-1 Maneuver					444	0	949	940	-	-	-	-	
Mov Cap-2 Maneuver					444	0	-	-	-	-	-	-	
Stage 1					894	0	-	-	-	-	-	-	
Stage 2					607	0	-	-	-	-	-	-	
Approach					WB			NB			SB		
HCM Control Delay, s					12.5			1.5			0		
HCM LOS					B			1.5			U		
HCW E03					Б								
Minor Lane/Major Mvmt	NBL	NBTV	VBLn1	SBT S	BR								
Capacity (veh/h)	940	-	547	-	-								
HCM Lane V/C Ratio	0.018	-	0.117	-									
HCM Control Delay (s)	8.9	0	12.5	-									
HCM Lane LOS	Α	Α	В	-	-								

Synchro 9 Report Page 8 09/29/2016 MS

Intersection												
Int Delay, s/veh	3.1											
Movement	EBL	EBT	EBR	WBI	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					43-			ર્ન			ĵ.	
Traffic Vol, veh/h	0	0	0	43	3 27	48	3	92	0	0	248	9
Future Vol, veh/h	0	0	0	43	3 27	48	3	92	0	0	248	9
Conflicting Peds, #/hr	0	0	0	5!	5 0	24	20	0	0	0	0	20
Sign Control	Free	Free	Free	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	None			None	-	-	None	-	-	None
Storage Length	-	-	-			-	-		-	-	-	-
Veh in Median Storage, #	-	-	-		- 0	-	-	0	-	-	0	-
Grade, %	-	0	-		- 0	-	-	0	-	-	0	
Peak Hour Factor	81	81	81	8	81	81	81	81	81	81	81	81
Heavy Vehicles, %	2	2	2	:	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	50	33	59	4	114	0	0	306	11
Major/Minor				Minor'			Major1			Major2		
Conflicting Flow All				488	458	138	337	0	-	-	-	0
Stage 1				12	121	-	-	-	-	-	-	-
Stage 2				36	337	-	-	-	-	-	-	-
Critical Hdwy				6.42	6.52	6.22	4.12	-	-	-	-	-
Critical Hdwy Stg 1				5.42	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2				5.42		-	-	-	-	-	-	-
Follow-up Hdwy				3.518	4.018	3.318	2.218	-	-	-	-	-
Pot Cap-1 Maneuver				539	499	910	1222	-	0	0	-	-
Stage 1				904	796	-	-	-	0	0	-	-
Stage 2				70	641	-	-	-	0	0	-	-
Platoon blocked, %								-			-	-
Mov Cap-1 Maneuver				509	0	889	1158	-	-	-	-	-
Mov Cap-2 Maneuver				509	0	-	-	-	-	-	-	-
Stage 1				900	0 (-	-	-	-	-	-	-
Stage 2				66	1 0	-	-	-	-		-	-
Approach				WE			NB			SB		
HCM Control Delay, s				12	2		0.3			0		
HCM LOS				E	3							
Minor Lane/Major Mvmt	NBL	NBTV	WBLn1	SBT SBF	?							
Capacity (veh/h)	1158	-	657	-								
HCM Lane V/C Ratio	0.003	-	0.222	-								
HCM Control Delay (s)	8.1	0	12									
HCM Lane LOS	Α	Α	В	-								
HCM 95th %tile Q(veh)	0	-	0.8	-	-							

Intersection 2	.3						
Int Delay, s/veh 3	.3						
Movement		EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations					ર્ન	ሻ	
Traffic Vol, veh/h		0	0	14	90	35	0
Future Vol, veh/h		0	0	14	90	35	0
Conflicting Peds, #/hr		0	0	1	0	0	0
Sign Control		Free	Free	Free	Free	Stop	Stop
RT Channelized		-	None	-	None	-	None
Storage Length		-	-	-	-	0	-
Veh in Median Storage, #		-	-	-	0	0	-
Grade, %		0	-	-	0	0	-
Peak Hour Factor		58	58	58	58	58	58
Heavy Vehicles, %		2	2	2	2	2	2
Mymt Flow		0	0	24	155	60	0
							_
Major/Minor				Major2		Minor1	
Conflicting Flow All				1	0	204	-
Stage 1				-	-	1	_
Stage 2				-	-	203	_
Critical Hdwy				4.12	-	6.42	_
Critical Hdwy Stg 1				2	-	-	_
Critical Hdwy Stg 2						5.42	
Follow-up Hdwy				2.218	-	3.518	_
Pot Cap-1 Maneuver				1622	-	784	0
Stage 1				1022		704	0
Stage 2					-	831	0
Platoon blocked, %						031	0
Mov Cap-1 Maneuver				1622	-	771	
Mov Cap-1 Maneuver				1022		771	
Stage 1						771	
						818	
Stage 2						818	
Approach				WB		NB	
HCM Control Delay, s				1		10.1	
HCM LOS						10.1 B	
TICIVI EOS						ь	
Minor Lane/Major Mvmt	NBLn1	WBL	WBT				
	771	1622					
Capacity (veh/h)			-				
HCM Cartes Dalay (a)	0.078		-				
HCM Control Delay (s)	10.1	7.3	0				
HCM Lane LOS	В	A	Α				
HCM 95th %tile Q(veh)	0.3	0	-				

 09/29/2016
 Synchro 9 Report

 MS
 Page 9

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

	•	→	\rightarrow	•	←	*	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† }			^	7				ሻ	^	7
Traffic Volume (vph)	66	697	158	0	498	311	0	0	0	233	681	129
Future Volume (vph)	66	697	158	0	498	311	0	0	0	233	681	129
Confl. Peds. (#/hr)	27		19	19		27				28		19
Confl. Bikes (#/hr)			1			1						12
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	70	741	168	0	530	331	0	0	0	248	724	137
Shared Lane Traffic (%)												
Lane Group Flow (vph)	70	909	0	0	530	331	0	0	0	248	724	137
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases						6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase												
Minimum Initial (s)	2.0	15.0			15.0	10.0				10.0	5.0	5.0
Minimum Split (s)	7.0	27.0			34.0	15.0				15.0	32.0	32.0
Total Split (s)	18.0	75.0			57.0	45.0				45.0	45.0	45.0
Total Split (%)	15.0%	62.5%			47.5%	37.5%				37.5%	37.5%	37.5%
Yellow Time (s)	4.0	4.0			4.0	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag				Lead							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max	None				None	Max	Max
Act Effct Green (s)	11.6	70.0			55.6	95.6				40.0	40.0	40.0
Actuated g/C Ratio	0.10	0.58			0.46	0.80				0.33	0.33	0.33
v/c Ratio	0.41	0.45			0.32	0.26				0.42	0.61	0.24
Control Delay	57.7	14.3			21.9	1.3				33.7	36.3	11.6
Queue Delay	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Delay	57.7	14.3			21.9	1.4				33.7	36.3	11.6
LOS	Е	В			C	Α				С	D	В
Approach Delay		17.4			14.0						32.6	
Approach LOS		В			В					4.0	C	
Queue Length 50th (ft)	51	189			134	0				148	246	23
Queue Length 95th (ft)	99	237			196	40		150		225	311	70
Internal Link Dist (ft)	1/0	228			45			159		120	210	120
Turn Bay Length (ft)	160	2007			1639	1273				130 590	1179	120 567
Base Capacity (vph)	191											
Starvation Cap Reductn	0	0			0	144				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn Reduced v/c Ratio	0.37	0.45			0.32	0.29				0.42	0.61	0.24
Reduced WC Rallo	0.37	0.40			0.32	0.29				0.42	U.01	0.24

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 75

MS Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background
Timing Plan: AM

Splits and Phases: 1: Martin Luther King Jr. Blvd & Guadalupe St

MS Synchro 9 Report

Page 2

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

Lane Group EBT EBR WBL WBT NBL NBR Lane Configurations ↑↑
Lane Configurations
Traffic Volume (vph) 930 0 0 692 322 219 Future Volume (vph) 930 0 0 692 322 219 Confl. Peds. (#/hr) 930 0 0 692 322 219 Confl. Peds. (#/hr) 0 0 692 322 219 Confl. Peds. (#/hr) 0 0 805 374 255 Shared Lane Traffic (%) 2 6 8 Lane Group Flow (vph) 1081 0 0 805 374 255 Turn Type NA NA Prot Permited 8 2 6 8 8 Permitted Phases 2 6 8 3 3 0 10 0 9 6 8 3 3 0 10 10 25 6 8 3 3 0 10 10 10 25 0 0 0 0 0 0 <
Future Volume (vph) 930 0 0 692 322 219 Confl. Peds. (#/hr) 10 Peak Hour Factor 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
Confi. Peds. (#/hr) Peak Hour Factor 0.86 0
Peak Hour Factor 0.86 0.85 374 255 Lane Group Flow (vph) 1081 0 0 805 374 255 Turn Type NA NA Prot Perm
Adj. Flow (vph) 1081 0 0 805 374 255 Shared Lane Traffic (%) Lane Group Flow (vph) 1081 0 0 805 374 255 Turn Type NA NA Prot Perm Protected Phases 2 6 8 3 Detector Phase 2 6 8 3 Switch Phase 30 15.0 10.0 29.0 Minimum Initial (s) 10.0 10.0 5.0 5.0 Minimum Split (s) 30.0 15.0 10.0 29.0 Total Split (s) 87.0 87.0 33.0 15.0 15.0 15.0 15.0 21.5% 72.5% 27.5% 27.5% 27.5% 27.5% 27.5%
Shared Lane Traffic (%) Lane Group Flow (vph) 1081 0 0 805 374 255
Lane Group Flow (vph) 1081 0 0 805 374 255 Turn Type NA NA Prot Perm Protected Phases 2 6 8 Permitted Phases 3 3 Detector Phase 2 6 8 3 Switch Phase 8 3 3 3 Minimum Itilal (s) 10.0 10.0 5.0 5.0 Minimum Split (s) 30.0 15.0 10.0 29.0 Total Split (s) 87.0 87.0 33.0 33.0 33.0 73.0 72.5% 27.5%<
Turn Type NA NA Prot Perm Protected Phases 2 6 8 Permitted Phases 2 6 8 Detector Phase 2 6 8 3 Detector Phase 2 6 8 3 Switch Phase 8 3 5 5.0 5.0 Minimum Split (s) 30.0 15.0 10.0 29.0 Minimum Split (s) 30.0 87.0 87.0 33.0
Protected Phases 2 6 8 Permitted Phases 2 6 8 3 Detector Phase 2 6 8 3 Switch Phase 8 3 3 Minimum Initial (s) 10.0 10.0 5.0 5.0 Minimum Split (s) 30.0 15.0 10.0 29.0 100 29.0 100 29.0 100 29.0 27.5% </td
Permitted Phases 2 3 Detector Phase 2 6 8 3 Switch Phase 8 3 3 Switch Phase Winder Phase 5 5 Minimum Initial (s) 10.0 10.0 5.0 5.0 Minimum Split (s) 30.0 15.0 10.0 29.0 Total Split (%) 72.5% 27.0%
Detector Phase 2 6 8 3 Switch Phase Switch Phase
Switch Phase Switch Phase Minimum Initial (s) 10.0 10.0 5.0 5.0 Minimum Split (s) 30.0 15.0 10.0 29.0 Total Split (s) 87.0 87.0 33.0 36.0 40.0 4.0 <
Minimum Initial (s) 10.0 10.0 5.0 5.0 Minimum Split (s) 30.0 15.0 10.0 29.0 Total Split (s) 87.0 87.0 33.0 33.0 Total Split (%) 72.5% 72.5% 27.5% 27.5% Yellow Time (s) 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 Lead-Lag Optimize? Recall Mode C-Max Max Max Recall Mode C-Max C-Max Max Max Act Lated g/C Ratio 0.68 0.68 0.23 0.23 0.23 Vc Ratio 0.45 0.33 0.47 0.55 Control Delay 7.9 5.1 43.5 28.2 Queue Delay 0.1 0.0 0.0 Total Delay 8.0 5.1 <td< td=""></td<>
Minimum Split (s) 30.0 15.0 10.0 29.0 Total Split (s) 87.0 87.0 33.0 33.0 Total Split (%) 72.5% 27.5% 27.5% 27.5% Yellow Time (s) 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 Lead/Lag 8.0 0.0 0.0 0.0 0.0 Lead/Lag Optimize? Recall Mode C-Max C-Max Max Max Recall Mode C-Max C-Max Max Max Actuated g/C Ratio 0.68 0.68 0.23 0.23 0.23 v/c Ratio 0.45 0.33 0.47 0.55 0.5 2.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 2.5 1.3 3
Total Split (s) 87.0 87.0 33.0 33.0 Total Split (%) 72.5% 72.5% 27.5% 27.5% Yellow Time (s) 4.0 </td
Total Split (%) 72.5% 72.5% 27.5% 27.5% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
Yellow Time (s) 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 Lead-Lag Optimize? Recall Mode C-Max Max Max Recall Mode C-Max 82.0 28.0 28.0 28.0 Act Effct Green (s) 82.0 82.0 28
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 Lost Time Adjust (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Max Max Act Effct Green (s) 82.0 82.0 28.0 28.0 28.0 1.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Max
Total Lost Time (s) 5.0 5.0 5.0 5.0 Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Max Max Recall Mode C-Max 82.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 20.3 0.23
Lead/Lag Lead-Lag Optimize? Recall Mode C-Max C-Max Max Max Recall Mode C-Max 82.0 28.0 28.0 28.0 Act Liftct Green (s) 82.0 82.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 0.23
Lead-Lag Optimize? Recall Mode C-Max C-Max Max Max Act Effct Green (s) 82.0 82.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.25 0.25 0.23 0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.25 0.25 0.25 28.2 20 0.00 0.0
Recall Mode C-Max C-Max Max Max Act Effet Green (s) 82.0 82.0 28.0 28.0 Act Lated g/C Ratio 0.68 0.68 0.23 0.23 v/c Ratio 0.45 0.33 0.47 0.55 Control Delay 7.9 5.1 43.5 28.2 Queue Delay 0.1 0.0 0.0 0.0 Total Delay 8.0 5.1 43.5 28.2 LOS A A D C Approach Delay 8.0 5.1 37.3 A Approach LOS A A D C Queue Length Soth (ft) 126 52 89 14 Queue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn
Act Effct Green (s) 82.0 82.0 28.0 28.0 Actuated g/C Ratio 0.68 0.68 0.23 0.23 v/c Ratio 0.45 0.33 0.47 0.55 Control Delay 7.9 5.1 43.5 28.2 Queue Delay 0.1 0.0 0.0 0.0 Total Delay 8.0 5.1 43.5 28.2 LOS A A D C Approach Delay 8.0 5.1 37.3 Approach LOS A A D C Queue Length 50th (ft) 126 52 89 14 Queue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) 88 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Actuated g/C Ratio 0.68 0.68 0.23 0.23 v/c Ratio 0.45 0.33 0.47 0.55 Control Delay 7.9 5.1 43.5 28.2 Oueue Delay 0.1 0.0 0.0 0.0 Total Delay 8.0 5.1 43.5 28.2 LOS A A D C Approach Delay 8.0 5.1 37.3 Approach LOS A A D Queue Length 50th (ft) 126 52 89 14 Queue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) 83 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
v/c Ratio 0.45 0.33 0.47 0.55 Control Delay 7.9 5.1 43.5 28.2 Queue Delay 0.1 0.0 0.0 0.0 Total Delay 8.0 5.1 43.5 28.2 LOS A A D C Approach Delay 8.0 5.1 37.3 - Approach LOS A A D C Queue Length 50th (ft) 126 52 89 14 Queue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) 248 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Control Delay 7.9 5.1 43.5 28.2 Queue Delay 0.1 0.0 0.0 0.0 Total Delay 8.0 5.1 43.5 28.2 LOS A A D C Approach Delay 8.0 5.1 37.3 C Approach LOS A A D C Queue Length 50th (ft) 126 52 89 14 Queue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) 2418 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Queue Delay 0.1 0.0 0.0 0.0 Total Delay 8.0 5.1 43.5 28.2 LOS A A D C Approach Delay 8.0 5.1 37.3 Approach LOS A A D Queue Length 50th (ft) 126 52 89 14 Queue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) 8ase Capacity (vph) 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Queue Delay 0.1 0.0 0.0 0.0 Total Delay 8.0 5.1 43.5 28.2 LOS A A D C Approach Delay 8.0 5.1 37.3 Approach LOS A A D Queue Length 50th (ft) 126 52 89 14 Queue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) 8ase Capacity (vph) 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Total Delay 8.0 5.1 43.5 28.2 LOS A A D C Approach Delay 8.0 5.1 37.3 Approach LOS A A D Queue Length 50th (ft) 126 52 89 14 Queue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) Base Capacity (vph) 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
LOS A A D C Approach Delay 8.0 5.1 37.3 Approach LOS A A D Oueue Length 50th (ft) 126 52 89 14 Oueue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turm Bay Length (ft) 882 2418 801 463 Starvation Cap Reducth 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Approach Delay 8.0 5.1 37.3 Approach LOS A A D Queue Length 50th (ft) 126 52 89 14 Queue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) 801 483 Base Capacity (vph) 2418 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Approach LOS A A D Queue Length 50th (ft) 126 52 89 14 Queue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) Base Capacity (vph) 2418 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Queue Length 50th (ft) 126 52 89 14 Queue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) 888e Capacity (vph) 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Queue Length 95th (ft) 138 63 171 162 Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) 882 2418 801 463 Base Capacity (vph) 2418 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Internal Link Dist (ft) 272 277 337 Turn Bay Length (ft) 801 463 Base Capacity (vph) 2418 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Turn Bay Length (ft) Base Capacity (vph) 2418 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Base Capacity (vph) 2418 2418 801 463 Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Starvation Cap Reductn 426 0 0 0 Spillback Cap Reductn 0 0 0 0
Spillback Cap Reductn 0 0 0 0
gp
Reduced v/c Ratio 0.54 0.33 0.47 0.55
Intersection Summary
Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 60
Control Type: Actuated-Coordinated

MS Synchro 9 Report Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

Maximum v/c Ratio: 0.55
Intersection Signal Delay: 14.4 Intersection LOS: B
Intersection Capacity Utilization 54.0% ICU Level of Service A
Analysis Period (min) 15

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

→ø2 (R)	ľø3
87 s	33 s
● Ø6 (R)	★ Ø8
87 s	33 s

MS Synchro 9 Report

Page 4

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

ane Configurations		-	•	1	•	1	~
raffic Volume (vph) 986 0 8 942 0 0 outure Volume (vph) 986 0 8 942 0 0 confl. Peds. (#hr) 6 6 6 1 confl. Bikes (#hr) 1 reak Hour Factor 0.89 0.89 0.89 0.89 0.89 0.89 0.89 dd, Flow (vph) 1108 0 9 1058 0 0 run Type NA pm+pt NA rotected Phases 2 1 1 6 retected Phases 2 1 6 retemitted Phases 6 retemitted Phases 6 retemitted Phase 7 1 6 rotected Phase 8 2 1 1 6 retemitted Phase 8 1 6 retemitted Phase 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
raffic Volume (vph) 986 0 8 942 0 0 outure Volume (vph) 986 0 8 942 0 0 confl. Peds. (#hr) 6 6 6 1 confl. Bikes (#hr) 1 reak Hour Factor 0.89 0.89 0.89 0.89 0.89 0.89 0.89 dd, Flow (vph) 1108 0 9 1058 0 0 run Type NA pm+pt NA rotected Phases 2 1 1 6 retected Phases 2 1 6 retemitted Phases 6 retemitted Phases 6 retemitted Phase 7 1 6 rotected Phase 8 2 1 1 6 retemitted Phase 8 1 6 retemitted Phase 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lane Configurations	^ 12-		75	44		
tuture Volume (vph) 986 0 8 942 0 0 0 2 2 0 0 1 2 1 1 1 2 1 2 1 2 1 2	Traffic Volume (vph)		0			0	0
Confl. Peds. (#/hr)	Future Volume (vph)						
Confl. Bikes (#/hu) 1 1 1 1 1 1 1 1 1		, 50			,,,_		
Company Comp				- 0			
Indignate Indi		0.89		0.89	0.89	0.89	0.89
Chared Lane Traffic (%) ane Group Flow (vph) 1108 0 9 1058 0 0 Turn Type NA pm+pt NA Protected Phases 2 1 1 6 Permitted Phases 6 Permitted Phase 2 1 1 6 Permitted Phase 6 Political Phase 7 Political Phase 7 Political Phase 8 Political Phase 8 Political Phase 9 Pol							
ane Group Flow (vph) 1108 0 9 1058 0 0 virn Type NA pm+pt NA pm+pt NA protected Phases 2 1 1 6 vermitted Phases 6 6 vereintited Phases 6 6 vereintited Phase 6 6 vereintited Phase 7 1 6 vivich Phase 6 7 1 1 6 vivich Phase 7 1 1 6 vivich Phase 8 1 1 1 6 vivich Phase 8 1 1 1 6 vivich Phase 9 1 1 1 6 vivich Phase 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1100	U		1030	U	U
turn Type		1100	0	0	1059	٥	٥
Protected Phases 2 1 6 Permitted Phases 6 Detector Phase 2 1 6 Detector Phase 2 1 6 Detector Phase 2 1 6 Detector Phase 3 1 6 Detector Phase 4 1 6 Detector Phase 5 1 6 Detector Phase 6 1 6 Detector Phase 7 1 6 Detector Phase 8 1 1 6 Detector Phase 8 1 1 6 Detector Phase 8 1 1 6 Detector Phase 9 1 1 1 6 Detector Phase 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			U			U	U
Permitted Phases 2 1 6							
Detector Phase 2		2			U		
Switch Phase Ininimum Initial (s)		2					
Afinimum Initial (s) 15.0 1.0 5.0 Afinimum Split (s) 34.0 5.5 29.0 Idrial Split (s) 106.0 14.0 120.0 Iotal Split (s) 106.0 14.0 120.0 Iotal Split (s) 88.3% 11.7% 100.0% Vellow Time (s) 4.0 3.5 4.0 Ull-Red Time (s) 1.0 1.0 1.0 sot Time Adjust (s) 0.0 0.0 0.0 rotal Lost Time (s) 5.0 4.5 5.0 ead/Lag Lead Lag Lag ead/Lag Optimize? Yes Yes Yes Recall Mode C-Max None C-Max vct Effct Green (s) 116.2 119.1 120.0 vct atled g/C Ratio 0.97 0.99 1.00 /c Ratio 0.32 0.02 0.0 2 Useue Delay 0.0 0.0 0.2 2 Useue Delay 0.5 0.0 0.2 2 Useue Delay				- '	0		
Afinimum Split (s) 34.0 5.5 29.0 Total Split (s) 106.0 14.0 120.0 Total Split (s) 88.3% 11.7% 100.0% Stolal Split (s) 88.3% 11.7% 100.0% Stolal Lost Time (s) 4.0 3.5 4.0 NI-Red Time (s) 1.0 1.0 1.0 Storal Lost Time (s) 5.0 4.5 5.0 ead/Lag Lead Lag ead-Lag Optimize? Yes Yes execall Mode C-Max None C-Max kct Effet Green (s) 116.2 119.1 120.0 kct Lifet Green (s) 116.2 119.1 120.0 kct Effet Green (s) 10.2 1.0 0.0 kct Effet Green (s) 0.32 0.02 0.30 bcontrol Delay </td <td></td> <td>15.0</td> <td></td> <td>1.0</td> <td>E C</td> <td></td> <td></td>		15.0		1.0	E C		
Total Split (s) 106.0 14.0 120.0							
Solid Split Spli							
Vellow Time (s) 4.0 3.5 4.0 Ull-Red Time (s) 1.0 1.0 1.0 sost Time Adjust (s) 0.0 0.0 0.0 votal Lost Time (s) 5.0 4.5 5.0 ead/Lag Lead Lag ead/Lag Optimize? Yes Yes Recall Mode C-Max None C-Max ket Effet Green (s) 116.2 119.1 120.0 vctuated g/C Ratio 0.97 0.99 1.00 /c Ratio 0.32 0.02 0.30 control Delay 0.5 0.0 0.2 control Delay 0.5 0.0 0.2 valueue Delay 0.5 0.0 0.2 valueue Delay 0.5 0.0 0.2 valueue Length 0.5 0.0 0.2 valueue Length 50th (ft) 0 0 0 valueue Length 50th (ft) 47 mo 0 valueue Length 95th (ft) 47 mo 0 valueue Length 95th (ft) 47 mo 0							
NI-Red Time (s) 1.0 1.0 1.0 0.0 st Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.							
cost Time Adjust (s) 0.0 0.0 0.0 otal Lost Time (s) 5.0 4.5 5.0 ead/Lag Lead Lag ead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max Act Effet Green (s) 116.2 119.1 120.0 Included g/C Ratio 0.97 0.99 1.00 Included g/C Ratio 0.32 0.02 0.30 Included g/C Ratio 0.5 0.0 0.2 Included play 0.5 0.0 0.2 Included Delay 0.5 0.0 0.2 Included Delay 0.5 0.2 0.2 Improved Delay 0.5 0.2 0.2 Included Delay 0.5 0.2							
State Color Colo							
lead/Lag Lead Lag ead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max ket Effet Green (s) 116.2 119.1 120.0 ket Lag 0.97 0.99 1.00 fc Ratio 0.32 0.02 0.30 Control Delay 0.5 0.0 0.2 Dueue Delay 0.5 0.0 0.2 OS A A A Approach Delay 0.5 0.0 0.2 OS A A A Approach Delay 0.5 0.0 0.2 Approach Delay 0.5 0.2 0.2 Approach Delay 0.5 0.2 0.2 Approach Delay 0.5 0.2 0.2 Approach Delay 0.5	, ,,						
ead-Lag Optimize? Yes Yes kecall Mode C-Max None C-Max kot Effct Green (s) 116.2 119.1 120.0 kct Effct Green (s) 116.2 119.1 120.0 kct act Effct Green (s) 0.97 0.99 1.00 kct Ratio 0.32 0.02 0.30 control Delay 0.5 0.0 0.2 Dueue Delay 0.5 0.0 0.2 OS A A A Approach Delay 0.5 0.2 0.2 Approach LOS A A A Approach LOS A A A Approach LOS A A A Dueue Length 50th (ft) 0 0 0 Dueue Length 95th (ft) 47 m0 0 Dueue Length 95th (ft) 47 m0 0 Dueue Length (ft) 366 377 331 urn Bay Length (ft) 342 560 3539	Total Lost Time (s)				5.0		
Recall Mode C-Max None C-Max Act Effet Green (s) 116.2 119.1 120.0 Act Lated g/C Ratio 0.97 0.99 1.00 Included g/C Ratio 0.32 0.02 0.30 Control Delay 0.5 0.0 0.2 Dueue Delay 0.5 0.0 0.2 OS A A A Approach Delay 0.5 0.2 0.2 Approach LOS A A A Oueue Length 50th (ft) 0 0 0 Dueue Length 59th (ft) 47 m0 0 Dueue Length 95th (ft) 47 m0 0 Dueue Length (ft) 115 337 331 Turn Bay Length (ft) 115 3539 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Seduced v/c Ratio 0.32 0.02 0.30 Intersection Summary Ovclue Length: 120 0 <td>Lead/Lag</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Lead/Lag						
Act Effect Green (s) 116.2 119.1 120.0 Act Letter Green (s) 116.2 119.1 120.0 Act Letter Green (s) 116.2 119.1 120.0 Act Letter Green (s) 1.097 0.99 1.00 Act Letter Green (s) 0.97 0.99 1.00 Act Letter Green (s) 0.32 0.02 0.30 Act Letter Green (s) 0.5 0.0 0.2 Act Letter Green (s) 0.5 0.0 0.2 Act Letter Green (s) 0.5 0.0 0.2 Act Letter Green (s) 0.5 0.5 0.5 Act Letter Green (s) 0.5 0.5 0.5 Act Letter Green (s) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Lead-Lag Optimize?						
Actuated g/C Ratio 0.97 0.99 1.00 //c Ratio 0.32 0.02 0.30 Control Delay 0.5 0.0 0.2 Dueue Delay 0.0 0.0 0.0 OS A A A A A Approach Delay 0.5 0.2 Approach Delay 0.5 0.0 0.2 Approach Delay 0.5 0.0 0.2 Approach Delay 0.5 0.0 0.2 Approach Delay 0.5 0.2 A A A A A A A A A A A A A A A A A A A	Recall Mode						
	Act Effct Green (s)	116.2		119.1	120.0		
Control Delay 0.5 0.0 0.2 Dueue Delay 0.5 0.0 0.2 OS A A A A Approach Delay 0.5 0.0 OS A A A A Approach Delay 0.5 0.2 Approach LOS A A A Dueue Length 50th (ft) 0 0 0 Dueue Length 95th (ft) 47 m0 0 Dueue Length (ft) 47 m0 0 Dueue Length (ft) 115 Star Capacity (vph) 3427 560 3539 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Actuated g/C Ratio	0.97		0.99	1.00		
Dueue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	v/c Ratio	0.32		0.02	0.30		
Dueue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Control Delay	0.5		0.0	0.2		
Starvation Cap Reductn	Queue Delay	0.0		0.0	0.0		
OS A A A A A A A A A A A A A A A A A A A	Total Delay			0.0			
Approach Delay	LOS						
A							
Dueue Length 50th (ft) 0 0 0 Dueue Length 95th (ft) 47 m0 0 Dueue Length 95th (ft) 47 m0 0 Dueue Length 95th (ft) 366 377 331 Dueue Length (ft) 115 Dueuee Length (ft) 115 D							
Dueue Length 95th (ft) 47 m0 0 Internal Link Dist (ft) 366 377 331 Internal Link Dist (ft) 366 377 331 Internal Link Dist (ft) 366 377 331 Internal Link Dist (ft) 360 377 331 Internal Link Dist (ft) 3427 560 3539 Internation Cap Reductn 0 0 0 0 0 0 0 0 Internation Cap Reductn 0 0 0 0 0 0 Internation Cap Reductn 0 0				0			
nternal Link Dist (fi) 366 377 331 Turn Bay Length (ft) 115 Sase Capacity (vph) 3427 560 3539 Starvation Cap Reductn 0 0 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced vic Ratio 0.32 0.02 0.30 **Reduced vic Ratio 0.32 0.02 0.30 **Retresection Summary** Sycle Length: 120 Suctuated Cycle Length: 120 Diffset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green				-	-		
Turn Bay Length (ft) 115 Jase Capacity (vph) 3427 560 3539 Starvation Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.32 0.02 0.30 Intersection Summary Sycle Length: 120 Sycle Length: 120 Softset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green				1110		331	
Base Capacity (vph) 3427 560 3539 Starvation Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.32 0.02 0.30 Intersection Summary Sycle Length: 120 Storage Cap Reductn 0.32 0.02 0.30 Storage Cap Reductn 0.32		300		11F	311	331	
Starvation Cap Reductn 0 0 0 spillback Cap Reductn 0 0 0 storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.32 0.02 0.30 materisection Summary Sycle Length: 120 scutuated Cycle Length: 120 Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green		2/127			3530		
Spillback Cap Reductn							
brage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.32 0.02 0.30 **Reduced v/c Ratio 0.32 0.02 0.30 **Reduced v/c Ratio 0.32 0.02 0.30 **Reduced Cycle Length: 120 **Diffset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green							
Reduced v/c Ratio 0.32 0.02 0.30 Intersection Summary Lycie Length: 120 Intersection Summary Lycie Length: 120 Intersection Summary Intersection Sum							
ntersection Summary Cycle Length: 120 Included Cycle Length: 120 Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green							
Cycle Length: 120 Actuated Cycle Length: 120 Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green		0.32		0.02	0.30		
octuated Cycle Length: 120 Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green	Intersection Summary						
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green		20					
latural Cycle: 40		d to phase 2:I	EBT and	6:WBTL	, Start of C	Green	
,	Natural Cycle: 40						

MS Synchro 9 Report
Page 5

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

MS Synchro 9 Report
Page 6

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

	•	→	•	•	←	•	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	∱ î>		ሻ	^	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	137	734	123	133	948	135	5	Ö	14	42	i	10
Future Volume (vph)	137	734	123	133	948	135	5	0	14	42	1	10
Confl. Peds. (#/hr)	18		8	8		18	23		7	7		23
Confl. Bikes (#/hr)			3			3						1
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	163	874	146	158	1129	161	6	0	17	50	1	12
Shared Lane Traffic (%)												
Lane Group Flow (vph)	163	1020	0	158	1129	161	0	6	17	0	51	12
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	1.0	10.0		1.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	5.5	22.0		5.5	28.0	28.0	22.0	22.0	22.0	28.0	28.0	28.0
Total Split (s)	20.0	70.0		20.0	70.0	70.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	16.7%	58.3%		16.7%	58.3%	58.3%	25.0%	25.0%	25.0%	25.0%	25.0%	25.0%
Yellow Time (s)	3.5	4.0		3.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	4.5	5.0		4.5	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	81.1	71.6		80.9	71.5	71.5		25.0	25.0		25.0	25.0
Actuated g/C Ratio	0.68	0.60		0.67	0.60	0.60		0.21	0.21		0.21	0.21
v/c Ratio	0.48	0.49		0.42	0.54	0.18		0.02	0.05		0.18	0.03
Control Delay	13.4	9.6		9.1	11.9	4.4		38.2	0.2		41.1	0.2
Queue Delay	0.0	0.3		0.0	0.2	0.0		0.0	0.0		0.0	0.0
Total Delay	13.4	9.9		9.1	12.1	4.4		38.2	0.2		41.1	0.2
LOS	В	Α		Α	В	Α		D	Α		D	Α
Approach Delay		10.4			10.9			10.1			33.3	
Approach LOS		В			В			В			С	
Queue Length 50th (ft)	26	134		30	207	15		4	0		33	0
Queue Length 95th (ft)	60	127		40	223	22		15	0		65	0
Internal Link Dist (ft)		377			273			135			212	
Turn Bay Length (ft)	160			100		100			100			
Base Capacity (vph)	428	2062		467	2109	915		271	367		288	360
Starvation Cap Reductn	0	441		0	281	0		0	0		0	0
Spillback Cap Reductn	0	13		0	0	0		0	0		0	0
Storage Cap Reductn	0	0		0	0	0		0	0		0	0
Reduced v/c Ratio	0.38	0.63		0.34	0.62	0.18		0.02	0.05		0.18	0.03

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 65

MS Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.54 Intersection Signal Delay: 11.2 Intersection Capacity Utilization 72.0% Analysis Period (min) 15 Intersection LOS: B
ICU Level of Service C

Splits and Phases: 6: Brazos St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

Page 8

	۶	→	\rightarrow	•	←	•	1	†	/	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		† }		ሻ	^					7	^	í
Traffic Volume (vph)	0	687	166	337	1207	0	0	0	0	35	50	5
Future Volume (vph)	0	687	166	337	1207	0	0	0	0	35	50	5
Confl. Peds. (#/hr)			52	52						7		4
Confl. Bikes (#/hr)			2									2
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.9
Adj. Flow (vph)	0	739	178	362	1298	0	0	0	0	38	54	5
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	917	0	362	1298	0	0	0	0	38	54	5
Turn Type	Ů	NA		pm+pt	NA				ŭ	Perm	NA	Perr
Protected Phases		2		19	6					. 0	4	
Permitted Phases		_		6						4		
Detector Phase		2		19	6					4	4	
Switch Phase		_										
Minimum Initial (s)		5.0			10.0					10.0	10.0	10.
Minimum Split (s)		30.0			30.0					28.0	28.0	28.
Total Split (s)		62.0			92.0					28.0	28.0	28.
Total Split (%)		51.7%			76.7%					23.3%	23.3%	23.39
Yellow Time (s)		4.0			4.0					4.0	4.0	4.
All-Red Time (s)		1.0			1.0					1.0	1.0	1.
Lost Time Adjust (s)		0.0			0.0					0.0	0.0	0.
Total Lost Time (s)		5.0			5.0					5.0	5.0	5.
Lead/Lag		Lag			3.0					5.0	5.0	J.
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Ma
Act Effct Green (s)		57.0		87.5	87.0					23.0	23.0	23.
Actuated g/C Ratio		0.48		0.73	0.72					0.19	0.19	0.1
v/c Ratio		0.57		0.70	0.72					0.17	0.08	0.1
Control Delay		15.6		19.2	6.0					41.3	40.3	1.8
Queue Delay		0.2		3.8	0.0					0.0	0.0	0.0
Total Delay		15.7		23.0	6.2					41.3	40.3	1.8
LOS		13.7 B		23.0 C	0.2 A					41.3 D	40.3 D	1.0
Approach Delay		15.7		C	9.9					D	25.7	,
Approach LOS		13.7 B			7. 7 A						23.7 C	
Queue Length 50th (ft)		111		85	101					25	18	
Queue Length 95th (ft)		137		m150	130					56	36	
Internal Link Dist (ft)		273		111130	321			343		50	244	
Turn Bay Length (ft)		2/3		120	321			343		100	244	10
Base Capacity (vph)		1623		519	2565					335	678	35
Starvation Cap Reductn		155		89	506					333	0/8	33
Spillback Cap Reductin		0		09	000					0	0	
Spiliback Cap Reductin Storage Cap Reductn		0		0	0					0	0	
Reduced v/c Ratio		0.62		0.84	0.63					0.11	0.08	0.1
Intersection Summary		0.02		0.01	0.00					0.11	0.00	0.1
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced t	n nhase 2	FBT and	6·WRTI	Start of	Green							

Lane Group	Ø1	Ø9
Laneconfigurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	9
Permitted Phases		9
Detector Phase		
Switch Phase	4.0	F.C
Minimum Initial (s)	1.0	5.0
Minimum Split (s)	5.5	9.5
Total Split (s)	15.0	15.0
Total Split (%)	13%	13%
Yellow Time (s)	3.5	3.5
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd **√** Ø9

MS Synchro 9 Report Page 11

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

	٠	→	•	•	←	•	1	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, A	^			↑ ↑		J.	ર્ન	7			
Traffic Volume (vph)	149	502	0	0	1467	57	66	82	86	0	0	0
Future Volume (vph)	149	502	0	0	1467	57	66	82	86	0	0	0
Confl. Peds. (#/hr)			34			57	33		27			
Confl. Bikes (#/hr)						4			4			
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	167	564	0	0	1648	64	74	92	97	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	167	564	0	0	1712	0	67	99	97	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	26.0			5.5		26.0	26.0	26.0			
Total Split (s)	15.0	94.0			79.0		26.0	26.0	26.0			
Total Split (%)	12.5%	78.3%			65.8%		21.7%	21.7%	21.7%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	89.5	89.0			75.3		21.0	21.0	21.0			
Actuated g/C Ratio	0.75	0.74			0.63		0.18	0.18	0.18			
v/c Ratio	0.77	0.21			0.78		0.24	0.32	0.29			
Control Delay	66.7	1.0			4.8		45.7	46.6	12.7			
Queue Delay	0.0	0.1			0.0		0.0	0.0	0.0			
Total Delay	66.7	1.1			4.9		45.7	46.6	12.7			
LOS	Е	Α			Α		D	D	В			
Approach Delay		16.1			4.9			33.9				
Approach LOS		В			Α			С				
Queue Length 50th (ft)	86	13			56		46	69	4			
Queue Length 95th (ft)	#166	15			86		m75	m109	m34			
Internal Link Dist (ft)		321			675			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	229	2624			2205		277	307	339			
Starvation Cap Reductn	0	954			12		0	0	0			
Spillback Cap Reductn	0	0			0		0	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.73	0.34			0.78		0.24	0.32	0.29			
Intersection Summany	20											

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 90

8: Trinity St & Martin Luther King Jr. Blvd

2020 Background Timing Plan: AM

Page 13

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.78

Intersection Signal Delay: 10.7 Intersection LOS: B
Intersection Capacity Utilization 79.9% ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 95

2020 Background Timing Plan: AM

	۶	→	•	•	←	•	4	†	1	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑	7		ર્ન						सीके	
Traffic Volume (vph)	0	14	46	40	9	0	0	0	0	24	1019	18
Future Volume (vph)	0	14	46	40	9	0	0	0	0	24	1019	18
Confl. Peds. (#/hr)			18							44		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)		0										
Adj. Flow (vph)	0	15	50	43	10	0	0	0	0	26	1108	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	15	50	0	53	0	0	0	0	0	1154	(
Turn Type		NA	Perm	Perm	NA					Perm	NA	
Protected Phases		4 12			4 12					. 0	2 10	
Permitted Phases			4 12	4 12						2 10	2.10	
Detector Phase		4 12	4 12	4 12	4 12					2 10	2 10	
Switch Phase										2.10	2.10	
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		20.5	20.5		20.5						84.1	
Actuated g/C Ratio		0.17	0.17		0.17						0.70	
v/c Ratio		0.17	0.17		0.17						0.47	
Control Delay		21.4	3.9		35.2						6.3	
Queue Delay		0.0	0.0		0.0						0.0	
		21.4	3.9		35.2						6.3	
Total Delay		21.4 C	3.9 A		35.2 D						0.3 A	
LOS Approach Dolov		7.9	А		35.2							
Approach LOS		7.9 A			35.2 D						6.3	
Approach LOS			0								A	
Queue Length 50th (ft)		6	0		32						131	
Queue Length 95th (ft)		15	12		64			074			161	
Internal Link Dist (ft)		177			244			271			262	
Turn Bay Length (ft)		700	407		(00						0.140	
Base Capacity (vph)		723	687		608						2440	
Starvation Cap Reductn		0	0		0						0	
Spillback Cap Reductn		0	0		0						0	
Storage Cap Reductn		0	0		0						0	
Reduced v/c Ratio		0.02	0.07		0.09						0.47	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced t	to phase 2:	SBTL, St	art of Gre	en								

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	23.0	23.0	22.5	22.5
Total Split (s)	26.0	43.0	28.0	23.0
Total Split (%)	22%	36%	23%	19%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	2.0	2.0	1.0	1.0
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)	C-IVIAX	None	None	None
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

Synchro 9 Report Page 15 MS

18: Guadalupe St & E. 17th St

2020 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.47 Intersection Signal Delay: 7.6 Intersection Capacity Utilization 70.2% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service C

Splits and Phases: 18: Guadalupe St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	•	€	•	•	1	Ť		-	↓	4
_ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		ર્ન			î»			414	7			
Traffic Volume (vph)	4	18	0	0	16	11	86	644	48	0	0	
uture Volume (vph)	4	18	0	0	16	11	86	644	48	0	0	
Confl. Peds. (#/hr)	30								32			
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.
Parking (#/hr)		0										
Adj. Flow (vph)	5	22	0	0	19	13	104	776	58	0	0	
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	27	0	0	32	0	0	880	58	0	0	
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
ost Time Adjust (s)												
Total Lost Time (s)												
_ead/Lag												
_ead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		20.3			20.3			84.3	84.3			
Actuated g/C Ratio		0.17			0.17			0.70	0.70			
//c Ratio		0.10			0.10			0.25	0.06			
Control Delay		26.6			18.2			7.7	4.0			
Queue Delay		0.0			0.0			0.0	0.0			
Total Delay		26.6			18.2			7.7	4.0			
_OS		С			В			Α	Α			
Approach Delay		26.6			18.2			7.5				
Approach LOS		С			В			Α				
Queue Length 50th (ft)		11			9			165	10			
Queue Length 95th (ft)		m31			26			183	35			
nternal Link Dist (ft)		244			319			272			254	
Furn Bay Length (ft)									100			
Base Capacity (vph)		551			618			3830	1079			
Starvation Cap Reductn		0			0			807	0			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.05			0.05			0.29	0.05			
ntersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced t	o phase 2:	NBTL, Sta	art of Gre	en								

MS Synchro 9 Report Page 17

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations	WZ.	104	טוט	101Z
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	26.0	28.0	22.5	22.5
Total Split (s)	38.0	29.0	27.0	26.0
Total Split (%)	32%	24%	23%	22%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	2.0	2.0	110	110
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
	C-IVIAX	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

19: Lavaca St & E. 17th St

2020 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.25

Intersection Signal Delay: 8.3

Intersection Capacity Utilization 39.2%

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 19: Lavaca St & E. 17th St

MS Synchro 9 Report Page 19

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background
Timing Plan: AM

	۶	-	\rightarrow	•	←	*		†	~	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			1>			414	7			
Traffic Volume (vph)	4	18	0	0	17	14	86	749	48	0	0	0
Future Volume (vph)	4	18	0	0	17	14	86	749	48	0	0	0
Confl. Peds. (#/hr)						10	57					
Confl. Bikes (#/hr)						2						
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Parking (#/hr)					0							
Adj. Flow (vph)	5	21	0	0	20	17	102	892	57	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	26	0	0	37	0	0	994	57	0	0	0
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		19.3			19.3			85.1	85.1			
Actuated g/C Ratio		0.16			0.16			0.71	0.71			
v/c Ratio		0.09			0.14			0.28	0.05			
Control Delay		29.0			16.0			2.7	0.1			
Queue Delay		0.0			0.0			0.1	0.0			
Total Delay		29.0			16.0			2.8	0.1			
LOS		27.0 C			10.0 B			Α.	Α.			
Approach Delay		29.0			16.0			2.7	^\			
Approach LOS		C C			В			Α.				
Queue Length 50th (ft)		12			9			30	0			
Queue Length 95th (ft)		m24			m27			27	1			
Internal Link Dist (ft)		233			60			281	- '		272	
Turn Bay Length (ft)		200			00			201	100		212	
Base Capacity (vph)		631			562			3539	1145			
Starvation Cap Reductn		031			0			1186	0			
Spillback Cap Reductin		0			0			0	0			
Storage Cap Reductin		0			0			0	0			
Reduced v/c Ratio		0.04			0.07			0.42	0.05			
		0.04			0.07			0.42	0.03			
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120		MRTI C+	art of Gro	on								
Offset: 5 (4%), Referenced	to phase 2:	NBTL, Sta	art of Gre	en								

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	28.0	32.0	21.0	20.0
Total Split (s)	42.0	32.0	21.0	25.0
Total Split (%)	35%	27%	18%	21%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

Synchro 9 Report Page 21 MS

28: Lavaca St & E. 16th St

2020 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 105 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.28

Intersection Signal Delay: 3.7 Intersection Capacity Utilization 41.3% ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: A ICU Level of Service A

Splits and Phases: 28: Lavaca St & E. 16th St

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	•	•	•	Ī		-	¥	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		ተተ _ጮ		ሻ	^ ^						416	
Traffic Volume (vph)	0	1487	317	195	947	0	0	0	0	101	662	5
uture Volume (vph)	0	1487	317	195	947	0	0	0	0	101	662	Ę
Confl. Peds. (#/hr)			31	31						29		3
Confl. Bikes (#/hr)						1						2
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.9
Adj. Flow (vph)	0	1517	323	199	966	0	0	0	0	103	676	Ę
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1840	0	199	966	0	0	0	0	0	779	Ę
Turn Type		NA		pm+pt	NA					Perm	NA	Per
Protected Phases		2		13	6						4	
Permitted Phases				6						4		
Detector Phase		2		13	6					4	4	
Switch Phase												
Minimum Initial (s)		10.0			5.0					5.0	5.0	5
Vlinimum Split (s)		25.0			25.0					32.0	32.0	32
Total Split (s)		56.0			84.0					36.0	36.0	36
Total Split (%)		46.7%			70.0%					30.0%	30.0%	30.0
Yellow Time (s)		4.0			4.0					4.0	4.0	4
All-Red Time (s)		1.0			1.0					1.0	1.0	1
ost Time Adjust (s)		0.0			0.0						0.0	0
Total Lost Time (s)		5.0			5.0						5.0	5
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Ma
Act Effct Green (s)		51.2		79.0	79.0						31.0	31
Actuated g/C Ratio		0.43		0.66	0.66						0.26	0.2
v/c Ratio		0.87		0.61	0.29						0.60	0.1
Control Delay		36.1		37.6	3.7						42.6	3
Queue Delay		0.0		10.7	0.1						0.0	0
Total Delay		36.1		48.3	3.8						42.6	3
LOS		D		D	Α						D	
Approach Delay		36.1			11.4						40.1	
Approach LOS		D			В						D	
Queue Length 50th (ft)		458		96	34						216	
Queue Length 95th (ft)		529		171	39						257	
nternal Link Dist (ft)		262			240			197			285	
Turn Bay Length (ft)				50								10
Base Capacity (vph)		2115		327	3347						1297	45
Starvation Cap Reductn		0		99	919						0	
Spillback Cap Reductn		0		0	0						0	
Storage Cap Reductn		0		0	0						0	
Reduced v/c Ratio		0.87		0.87	0.40						0.60	0.1
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced t	o phase 2	:EBT and	6:WBTL	Start of	Green							

Synchro 9 Report Page 23 MS

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases	'	3
Detector Phase		
Switch Phase		
Minimum Initial (s)	8.0	5.0
Minimum Split (s)	13.0	10.0
	14.0	14.0
Total Split (s)	14.0	14.0
Total Split (%)		4.0
Yellow Time (s)	4.0	
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
INCUUCCU WE RAIIU		
Intersection Summary		

Synchro 9 Report Page 24 MS

34: Guadalupe St & W. 15th St

2020 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.87 Intersection Signal Delay: 29.5 Intersection Capacity Utilization 82.1% Analysis Period (min) 15 Intersection LOS: C ICU Level of Service E

Splits and Phases: 34: Guadalupe St & W. 15th St

MS Synchro 9 Report Page 25

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

	۶	→	•	•	←	•	1	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተተ			ተተ _ጉ			416	7			
Traffic Volume (vph)	119	1396	0	0	1024	127	128	606	155	0	0	0
Future Volume (vph)	119	1396	0	0	1024	127	128	606	155	0	0	0
Confl. Peds. (#/hr)	36					36	17		46			
Confl. Bikes (#/hr)									10			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	127	1485	0	0	1089	135	136	645	165	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	127	1485	0	0	1224	0	0	781	165	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0	33.0			
Total Split (s)	19.0	79.0			60.0		41.0	41.0	41.0			
Total Split (%)	15.8%	65.8%			50.0%		34.2%	34.2%	34.2%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			6.0	6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	74.0	74.0			59.9			35.0	35.0			
Actuated g/C Ratio	0.62	0.62			0.50			0.29	0.29			
v/c Ratio	0.45	0.47			0.49			0.53	0.35			
Control Delay	17.4	2.6			9.8			37.3	22.5			
Queue Delay	0.0	0.3			0.1			0.0	0.0			
Total Delay	17.4	2.8			9.9			37.3	22.5			
LOS	В	A 4.0			A 9.9			D	С			
Approach Delay								34.7 C				
Approach LOS	44	A			A							
Queue Length 50th (ft)	11	39			68			185	60			
Queue Length 95th (ft)	m29	55			78			229	122		004	
Internal Link Dist (ft)	Γ0.	240			335			116	100		281	
Turn Bay Length (ft)	50	2125			2400			14/4				
Base Capacity (vph)	345 0	3135 812			2490 185			1464	470 0			
Starvation Cap Reductn								0				
Spillback Cap Reductn	0	0			0			0	0			_
Storage Cap Reductn	0				0				0.35			
Reduced v/c Ratio	0.37	0.64			0.53			0.53	0.35			
Intersection Summary												

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 70

35: Lavaca St & W. 15th St

2020 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.53 Intersection Signal Delay: 13.6 Intersection Capacity Utilization 82.1% Intersection LOS: B ICU Level of Service E Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 35: Lavaca St & W. 15th St

MS Synchro 9 Report Page 27

36: Colorado St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

	۶	-	•	•	•	•	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^		ሻ	ተተ _ጉ			4			ર્ન	7
Traffic Volume (vph)	184	1352	51	70	1086	136	1	21	21	5	19	20
Future Volume (vph)	184	1352	51	70	1086	136	1	21	21	5	19	20
Confl. Peds. (#/hr)	6		80	80		6	4		33	33		4
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	196	1438	54	74	1155	145	1	22	22	5	20	21
Shared Lane Traffic (%)												
Lane Group Flow (vph)	196	1492	0	74	1300	0	0	45	0	0	25	21
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	custom
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		6
Detector Phase	5	2		1	6		4	4		8	8	6
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	15.0
Minimum Split (s)	10.0	22.0		10.0	30.0		32.0	32.0		32.0	32.0	30.0
Total Split (s)	15.0	72.0		15.0	72.0		33.0	33.0		33.0	33.0	72.0
Total Split (%)	12.5%	60.0%		12.5%	60.0%		27.5%	27.5%		27.5%	27.5%	60.0%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	C-Max
Act Effct Green (s)	79.8	72.0		74.8	67.6			28.0			28.0	67.6
Actuated g/C Ratio	0.66	0.60		0.62	0.56			0.23			0.23	0.56
v/c Ratio	0.64	0.50		0.30	0.46			0.11			0.06	0.02
Control Delay	29.8	4.3		9.4	7.0			22.8			36.4	0.1
Queue Delay	0.0	0.1		0.0	0.1			0.0			0.0	0.0
Total Delay	29.8	4.4		9.4	7.1			22.8			36.4	0.1
LOS	С	Α		Α	Α			С			D	Α
Approach Delay		7.3			7.2			22.8			19.8	
Approach LOS		Α			Α			С			В	
Queue Length 50th (ft)	43	73		4	115			14			15	0
Queue Length 95th (ft)	112	96		23	174			46			39	0
Internal Link Dist (ft)		335			362			155			114	
Turn Bay Length (ft)	90			90								100
Base Capacity (vph)	312	3006		285	2819			410			416	904
Starvation Cap Reductn	0	371		0	365			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.63	0.57		0.26	0.53			0.11			0.06	0.02

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 75
Control Type: Actuated-Coordinated

36: Colorado St & W. 15th St

2020 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Maximum v/c Ratio: 0.64 Intersection Signal Delay: 7.7
Intersection Capacity Utilization 79.9%
Analysis Period (min) 15 Intersection LOS: A ICU Level of Service D

Splits and Phases: 36: Colorado St & W. 15th St

ÿ1	→ Ø2 (R)	↑ Ø4
15 s	72 s	33 s
ø ₅	₩ Ø6 (R)	↓ Ø8
15 c	77 e	22 e

MS Synchro 9 Report

37: N. Congress Ave & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

	-	•	•	•	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ተተ _ጉ		*	ተተተ		7
Traffic Volume (vph)	1352	27	18	1379	0	1
Future Volume (vph)	1352	27	18	1379	0	1
Confl. Peds. (#/hr)		29	29		12	20
Confl. Bikes (#/hr)						12
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	1380	28	18	1407	0	1
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1408	0	18	1407	0	1
Turn Type	NA		pm+pt	NA		Perm
Protected Phases	2		1	6		
Permitted Phases			6			4
Detector Phase	2		1	6		4
Switch Phase	_					
Minimum Initial (s)	5.0		5.0	5.0		5.0
Minimum Split (s)	25.0		10.0	25.0		33.0
Total Split (s)	72.0		15.0	87.0		33.0
Total Split (%)	60.0%		12.5%	72.5%		27.5%
Yellow Time (s)	4.0		4.0	4.0		4.0
All-Red Time (s)	1.0		1.0	1.0		1.0
Lost Time Adjust (s)	0.0		0.0	0.0		0.0
Total Lost Time (s)	5.0		5.0	5.0		5.0
Lead/Lag			Lead	5.0		5.0
Lead/Lag Optimize?	Lag Yes		Yes			
Recall Mode	C-Max			C-Max		Max
			None			
Act Effct Green (s)	77.5		82.0	82.0		28.0
Actuated g/C Ratio	0.65		0.68	0.68		0.23
v/c Ratio	0.43		0.07	0.41		0.00
Control Delay	2.7		5.6	7.0		0.0
Queue Delay	0.0		0.0	0.1		0.0
Total Delay	2.8		5.6	7.1		0.0
LOS	Α		Α	A		Α
Approach Delay	2.8			7.1		
Approach LOS	Α			Α		
Queue Length 50th (ft)	19		3	161		0
Queue Length 95th (ft)	43		m5	63		0
Internal Link Dist (ft)	362			356	125	
Turn Bay Length (ft)			100			
Base Capacity (vph)	3270		301	3474		489
Starvation Cap Reductn	166		0	709		0
Spillback Cap Reductn	0		0	0		0
Storage Cap Reductn	0		0	0		0
Reduced v/c Ratio	0.45		0.06	0.51		0.00
	· · ·					
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12	0					

Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 70

MS

Page 29

37: N. Congress Ave & W. 15th St

2020 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.43 Intersection Signal Delay: 5.0 Intersection Capacity Utilization 58.4% Intersection LOS: A ICU Level of Service B Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 37: N. Congress Ave & W. 15th St

MS Synchro 9 Report Page 31

38: Brazos St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

	٠	→	•	•	—	•	1	†	~	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተ _ጉ		ሻ	ተተ _ጉ			ર્ન	7		4	
Traffic Volume (vph)	77	1088	47	26	1400	81	4	2	7	2	0	4
Future Volume (vph)	77	1088	47	26	1400	81	4	2	7	2	0	4
Confl. Peds. (#/hr)	1		9	9		1	9		4	4		9
Confl. Bikes (#/hr)						1						17
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	79	1122	48	27	1443	84	4	2	7	2	0	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	79	1170	0	27	1527	0	0	6	7	0	6	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4		4	8		
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0	32.0	32.0	32.0	
Total Split (s)	15.0	78.0		10.0	73.0		32.0	32.0	32.0	32.0	32.0	
Total Split (%)	12.5%	65.0%		8.3%	60.8%		26.7%	26.7%	26.7%	26.7%	26.7%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Act Effct Green (s)	103.0	105.0		99.6	100.6			10.0	10.0		10.0	
Actuated g/C Ratio	0.86	0.88		0.83	0.84			0.08	0.08		0.08	
v/c Ratio	0.26	0.27		0.07	0.36			0.05	0.03		0.03	
Control Delay	7.1	4.2		2.2	1.9			51.7	0.3		0.2	
Queue Delay	0.0	0.0		0.0	0.1			0.0	0.0		0.0	
Total Delay	7.1	4.3		2.2	1.9			51.7	0.3		0.2	
LOS	Α	A		A	Α			D	А		A	
Approach Delay	**	4.4			1.9			24.0			0.2	
Approach LOS		Α			Α			C			A	
Queue Length 50th (ft)	12	98		1	17			4	0		0	
Queue Length 95th (ft)	37	114		4	123			18	0		0	
Internal Link Dist (ft)	0,	356		•	297			199	Ū		273	
Turn Bay Length (ft)	100	000		40	2				50		2.0	
Base Capacity (vph)	348	4414		409	4225			346	434		413	
Starvation Cap Reductn	0	1121		0	872			0.0	0		0	
Spillback Cap Reductn	0	0		0	0			0	0		0	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.23	0.36		0.07	0.46			0.02	0.02		0.01	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 65

38: Brazos St & W. 15th St

2020 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.36

Intersection Signal Delay: 3.1 Intersection LOS: A

Intersection Capacity Utilization 57.6% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 38: Brazos St & W. 15th St

MS Synchro 9 Report Page 33

39: San Jacinto Blvd & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background
Timing Plan: AM

	•	-	\rightarrow	•	•	•	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተኈ		ሻ	ተተተ						ተተቡ	7
Traffic Volume (vph)	0	830	343	157	1486	0	0	0	0	56	175	43
Future Volume (vph)	0	830	343	157	1486	0	0	0	0	56	175	43
Confl. Peds. (#/hr)			22	22						9		7
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	0	838	346	159	1501	0	0	0	0	57	177	43
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1184	0	159	1501	0	0	0	0	0	234	43
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		1	6						4	
Permitted Phases				6						4		4
Detector Phase		2		1	6					4	4	4
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					7.0	7.0	7.0
Minimum Split (s)		28.0		8.0	28.0					32.0	32.0	32.0
Total Split (s)		68.0		20.0	88.0					32.0	32.0	32.0
Total Split (%)		56.7%		16.7%	73.3%					26.7%	26.7%	26.7%
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0						0.0	0.0
Total Lost Time (s)		5.0		5.0	5.0						5.0	5.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					None	None	None
Act Effct Green (s)		86.4		99.0	99.0					110110	11.0	11.0
Actuated g/C Ratio		0.72		0.82	0.82						0.09	0.09
v/c Ratio		0.34		0.40	0.36						0.51	0.22
Control Delay		2.2		6.8	3.4						55.7	8.0
Queue Delay		0.1		0.0	0.2						0.0	0.0
Total Delay		2.3		6.8	3.6						55.7	8.0
LOS		A		A	A						E	A
Approach Delay		2.3		- / \	3.9						48.3	- '
Approach LOS		A			A						D	
Queue Length 50th (ft)		0		26	101						64	0
Queue Length 95th (ft)		0		m37	98						91	20
Internal Link Dist (ft)		297		11107	282			125			272	20
Turn Bay Length (ft)		2//		70	202			120			212	50
Base Capacity (vph)		3491		480	4196						1127	398
Starvation Cap Reductn		1030		0	1515						0	0
Spillback Cap Reductn		0		0	0						0	0
Storage Cap Reductn		0		0	0						0	0
Reduced v/c Ratio		0.48		0.33	0.56						0.21	0.11
Intersection Summary		0.10		0.55	0.00						0.21	0.11
Cycle Length: 120												
Actuated Cycle Length: 120 Offset: 0 (0%), Referenced t	n nhasa 2	FRT and	6·WRTI	Start of	Groon							
Natural Cycle: 70	o pilase 2.	וום ומבוע	O.VVD1L	Jian Ul	OLCCII							
Natural Cycle: 70 Control Type: Actuated-Coo	rdinatod											
Control Type: Actuated-Coo	rumated											

39: San Jacinto Blvd & W. 15th St

2020 Background Timing Plan: AM

Page 35

TIA for Texas Capitol Complex Master Plan 2018 Update

Maximum v/c Ratio: 0.51 Intersection Signal Delay: 7.3 Intersection LOS: A Intersection Capacity Utilization 82.2%

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. ICU Level of Service E

Splits and Phases: 39: San Jacinto Blvd & W. 15th St

MS Synchro 9 Report

40: Trinity St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

	۶	→	•	•	←	•	1	†	/	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	^			ተተ _ጉ			414	7			
Traffic Volume (vph)	218	717	0	0	1593	382	58	164	11	0	0	0
Future Volume (vph)	218	717	0	0	1593	382	58	164	11	0	0	0
Confl. Peds. (#/hr)	1					1	3		6			
Confl. Bikes (#/hr)									2			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	225	739	0	0	1642	394	60	169	11	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	225	739	0	0	2036	0	0	229	11	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	28.0			5.5		28.0	28.0	28.0			
Total Split (s)	20.0	92.0			72.0		28.0	28.0	28.0			
Total Split (%)	16.7%	76.7%			60.0%		23.3%	23.3%	23.3%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5			5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	87.5	87.0			69.1			23.0	23.0			
Actuated g/C Ratio	0.73	0.72			0.58			0.19	0.19			
v/c Ratio	0.84	0.20			0.71			0.34	0.03			
Control Delay	63.7	3.0			6.2			43.7	0.2			
Queue Delay	0.0	0.1			0.1			0.0	0.0			
Total Delay	63.7	3.1			6.3			43.7	0.2			
LOS	Е	Α			Α			D	Α			
Approach Delay		17.2			6.3			41.7				
Approach LOS		В			Α			D				
Queue Length 50th (ft)	119	27			50			81	0			
Queue Length 95th (ft)	#237	31			143			121	0			
Internal Link Dist (ft)	# E 0 7	282			657			149	Ü		621	
Turn Bay Length (ft)	100	LOL			007						OZ.	
Base Capacity (vph)	289	3686			2869			668	344			
Starvation Cap Reductn	0	1699			74			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.78	0.37			0.73			0.34	0.03			
NCUUCCU WC NAIIO	0.70	0.57			0.73			0.34	0.03			

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 80

40: Trinity St & W. 15th St

2020 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.84
Intersection Signal Delay: 12.2 Intersection LOS: B
Intersection Capacity Utilization 82.2% ICU Level of Service E
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 40: Trinity St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

ntersection	
ntersection Delay, s/veh	8.6
ntersection LOS	Α

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	4	26	34	0	21	7	5	0	15	20	44
Future Vol, veh/h	0	4	26	34	0	21	7	5	0	15	20	44
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	5	30	39	0	24	8	6	0	17	23	50
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		7.9				8.1				7.7		
HCM LOS		Α				Α				Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	19%	6%	64%	2%	
Vol Thru, %	25%	41%	21%	91%	
Vol Right, %	56%	53%	15%	7%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	79	64	33	227	
LT Vol	15	4	21	4	
Through Vol	20	26	7	207	
RT Vol	44	34	5	16	
Lane Flow Rate	90	73	38	258	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.104	0.09	0.05	0.305	
Departure Headway (Hd)	4.163	4.435	4.819	4.26	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	862	809	744	849	
Service Time	2.182	2.457	2.844	2.26	
HCM Lane V/C Ratio	0.104	0.09	0.051	0.304	
HCM Control Delay	7.7	7.9	8.1	9.1	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.3	0.3	0.2	1.3	

MS Synchro 9 Report Page 1

11: Colorado St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background Timing Plan: AM

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBI	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	4	207	16
Future Vol, veh/h	0	4	207	16
Peak Hour Factor	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	5	235	18
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		9.1		
HCM LOS		Α		

Intersection
Intersection Delay, s/veh 7.3
Intersection LOS A

Movement	FRU	EBL	EBI	EBR	WBU	WBL	WBI	WBR	NBU	NBL	NRI	NBK
Lane Configurations			ર્ન				ĵ.				↑	
Traffic Vol, veh/h	0	0	76	0	0	0	30	0	0	0	0	0
Future Vol, veh/h	0	0	76	0	0	0	30	0	0	0	0	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	87	0	0	0	34	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach			EB				WB				NB	
Opposing Approach			WB				EB				SB	
Opposing Lanes			1				1				1	
Conflicting Approach Left			SB				NB				EB	
Conflicting Lanes Left			1				1				1	
Conflicting Approach Right			NB				SB				WB	
Conflicting Lanes Right			1				1				1	
HCM Control Delay			7.4				7.2				0	
HCM LOS			Α				Α				-	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	0%	
Vol Right, %	0%	0%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	76	30	8	
LT Vol	0	0	0	0	
Through Vol	0	76	30	0	
RT Vol	0	0	0	8	
Lane Flow Rate	0	87	34	9	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0.096	0.038	0.009	
Departure Headway (Hd)	4.153	3.976	4.015	3.544	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	905	893	1002	
Service Time	2.202	1.984	2.032	1.592	
HCM Lane V/C Ratio	0	0.096	0.038	0.009	
HCM Control Delay	7.2	7.4	7.2	6.6	
HCM Lane LOS	N	Α	Α	Α	
HCM 95th-tile Q	0	0.3	0.1	0	

MS Synchro 9 Report Page 3

12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background Timing Plan: AM

ntersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations				#
Traffic Vol, veh/h	0	0	0	8
Future Vol, veh/h	0	0	0	8
Peak Hour Factor	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	0	9
Number of Lanes	0	0	0	1
Approach				SB
Opposing Approach				NB
Opposing Lanes				1
Conflicting Approach Left				WB
Conflicting Lanes Left				1
Conflicting Approach Right				EB
Conflicting Lanes Right				1
HCM Control Delay				6.6
HCM LOS				Α

14: Brazos St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background Timing Plan: AM

ntersection	
ntersection Delay, s/veh	9.7
ntersection LOS	Α

Movement	FBU	FBL	FRI	FBR	WBU	WBL	WBI	WBR	NRO	NBL	NRI	NRK
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	66	65	7	0	17	12	3	0	20	0	0
Future Vol, veh/h	0	66	65	7	0	17	12	3	0	20	0	0
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	84	82	9	0	22	15	4	0	25	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		9.3				8.3				8.2		
HCM LOS		Α				Α				Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	100%	48%	53%	0%	
Vol Thru, %	0%	47%	38%	93%	
Vol Right, %	0%	5%	9%	7%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	20	138	32	241	
LT Vol	20	66	17	0	
Through Vol	0	65	12	224	
RT Vol	0	7	3	17	
Lane Flow Rate	25	175	41	305	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.035	0.234	0.056	0.378	
Departure Headway (Hd)	5.019	4.822	4.979	4.456	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	711	744	717	808	
Service Time	3.063	2.858	3.025	2.485	
HCM Lane V/C Ratio	0.035	0.235	0.057	0.377	
HCM Control Delay	8.2	9.3	8.3	10.2	
HCM Lane LOS	Α	Α	Α	В	
HCM 95th-tile Q	0.1	0.9	0.2	1.8	

Intersection					I
Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Lane Configurations			4		
Traffic Vol, veh/h	0	0	224	17	
Future Vol, veh/h	0	0	224	17	
Peak Hour Factor	0.79	0.79	0.79	0.79	
Heavy Vehicles, %	2	2	2	2	
Mymt Flow	0	0	284	22	
Number of Lanes	0	0	1	0	
Approach			SB		
Opposing Approach			NB		
Opposing Lanes			1		
Conflicting Approach Left			WB		
Conflicting Lanes Left			1		
Conflicting Approach Right			EB		
Conflicting Lanes Right			1		
HCM Control Delay			10.2		
HCM LOS			В		

ntersection		

ntersection	
ntersection Delay, s/veh	10.6
ntersection LOS	В

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ĵ.				ર્ન					
Traffic Vol, veh/h	0	0	6	74	0	71	18	0	0	0	0	0
Future Vol, veh/h	0	0	6	74	0	71	18	0	0	0	0	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	6	79	0	76	19	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	0	0
Approach			EB			WB						
Opposing Approach			WB			EB						
Opposing Lanes			1			1						
Conflicting Approach Left			SB									
Conflicting Lanes Left			3			0						
Conflicting Approach Right						SB						
Conflicting Lanes Right			0			3						
HCM Control Delay			8.9			10.4						
HCM LOS			Α			В						

Lane	EBLn1	WBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	0%	80%	0%	0%	0%
Vol Thru, %	7%	20%	100%	100%	0%
Vol Right, %	93%	0%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	80	89	266	266	17
LT Vol	0	71	0	0	0
Through Vol	6	18	266	266	0
RT Vol	74	0	0	0	17
Lane Flow Rate	85	95	283	283	18
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.126	0.167	0.397	0.397	0.013
Departure Headway (Hd)	5.329	6.344	5.052	5.052	2.608
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	669	563	710	710	1359
Service Time	3.09	4.104	2.795	2.795	0.35
HCM Lane V/C Ratio	0.127	0.169	0.399	0.399	0.013
HCM Control Delay	8.9	10.4	11.1	11.1	5.4
HCM Lane LOS	А	В	В	В	Α
HCM 95th-tile Q	0.4	0.6	1.9	1.9	0

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			414	7
Traffic Vol, veh/h	0	0	532	17
Future Vol, veh/h	0	0	532	17
Peak Hour Factor	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	566	18
Number of Lanes	0	0	2	1
Approach			SB	
Opposing Approach				
Opposing Lanes			0	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			10.9	
HCM LOS			В	

16: San Jacinto Blvd & W. 18th St

TIA for Texas Capitol Complex Master Plan 2018 Update

tersection	
CISCULOTI	
tersection Delay, s/veh	8.5
tersection LOS	Α

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	30	0	34	0	0	0	0	0	15	41	0
Future Vol, veh/h	0	30	0	34	0	0	0	0	0	15	41	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	34	0	39	0	0	0	0	0	17	47	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB					WB			NB		
Opposing Approach		WB					EB			SB		
Opposing Lanes		1					1			1		
Conflicting Approach Left		SB					NB			EB		
Conflicting Lanes Left		1					1			1		
Conflicting Approach Right		NB					SB			WB		
Conflicting Lanes Right		1					1			1		
HCM Control Delay		7.9					0			7.8		
HCM LOS		Α					-			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	27%	47%	0%	0%	
Vol Thru, %	73%	0%	100%	88%	
Vol Right, %	0%	53%	0%	12%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	56	64	0	233	
LT Vol	15	30	0	0	
Through Vol	41	0	0	206	
RT Vol	0	34	0	27	
Lane Flow Rate	64	73	0	265	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.078	0.089	0	0.297	
Departure Headway (Hd)	4.422	4.421	4.737	4.042	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	815	815	0	879	
Service Time	2.422	2.424	2.744	2.108	
HCM Lane V/C Ratio	0.079	0.09	0	0.301	
HCM Control Delay	7.8	7.9	7.7	8.8	
HCM Lane LOS	Α	Α	N	Α	
HCM 95th-tile Q	0.3	0.3	0	1.2	

-				
Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	0	206	27
Future Vol, veh/h	0	0	206	27
Peak Hour Factor	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	234	31
Number of Lanes	0	0	1	0
Approach			SB	
Opposing Approach			NB	
Opposing Lanes			1	
Conflicting Approach Left			WB	
Conflicting Lanes Left			_1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			8.8	
HCM LOS			Α	

20: Colorado St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

24: E. 17th St & Brazos St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: AM

Intersection	
Intersection Delay, s/veh	7.1
Intersection LOS	Α

Movement	EBU	EBL	EBT	WBU	WBT	WBR	SBU	SBL	SBR
Lane Configurations			ર્ની		4			Y	
Traffic Vol, veh/h	0	0	0	0	0	16	0	37	0
Future Vol, veh/h	0	0	0	0	0	16	0	37	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	18	0	42	0
Number of Lanes	0	0	1	0	1	0	0	1	0
Approach			EB		WB			SB	
Opposing Approach			WB		EB				
Opposing Lanes			1		1			0	
Conflicting Approach Left			SB					WB	
Conflicting Lanes Left			1		0			1	
Conflicting Approach Right					SB			EB	
Conflicting Lanes Right			0		1			1	
HCM Control Delay			0		6.5			7.4	
HCM LOS			-		A			Α	

Lane	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	100%	
Vol Thru, %	100%	0%	0%	
Vol Right, %	0%	100%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	0	16	37	
LT Vol	0	0	37	
Through Vol	0	0	0	
RT Vol	0	16	0	
Lane Flow Rate	0	18	42	
Geometry Grp	1	1	1	
Degree of Util (X)	0	0.017	0.049	
Departure Headway (Hd)	4.021	3.406	4.166	
Convergence, Y/N	Yes	Yes	Yes	
Cap	0	1050	864	
Service Time	2.045	1.43	2.167	
HCM Lane V/C Ratio	0	0.017	0.049	
HCM Control Delay	7	6.5	7.4	
HCM Lane LOS	N	Α	Α	
HCM 95th-tile Q	0	0.1	0.2	

Intersection	1.2						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	† }		ሻ	^	¥		
Traffic Vol, veh/h	978	92	144	747	0	21	
Future Vol, veh/h	978	92	144	747	0	21	
Conflicting Peds, #/hr	0	1	1	0	0	5	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None		None	-	None	
Storage Length			40	-	0	-	
Veh in Median Storage, #	0	-		0	0	-	
Grade, %	0			0	0	-	
Peak Hour Factor	87	87	87	87	87	87	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	1124	106	166	859	0	24	
//ajor/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	1231	0	1938	621	
Stage 1				-	1178	-	
Stage 2					760		
Critical Hdwy			4.14	-	6.84	6.94	
Critical Hdwy Stg 1			-		5.84	-	
Critical Hdwy Stg 2					5.84		
ollow-up Hdwy			2.22	-	3.52	3.32	
Pot Cap-1 Maneuver	_		562		57	430	
Stage 1			- 502		255	100	
Stage 2					422	_	
Platoon blocked. %				-	722		
Mov Cap-1 Maneuver			559	-	40	428	
Mov Cap-2 Maneuver			-	-	40	120	
Stage 1				-	255		
Stage 2					297	-	
Stage 2					271		
Approach	EB		WB		NB		
HCM Control Delay, s	0		2.3		13.9		
HCM LOS	-				В		
					_		
/linor Lane/Major Mvmt	NBLn1 EBT	EBR W	BL WBT				
Capacity (veh/h)	428 -	- 5	59 -				
ICM Lane V/C Ratio	0.056 -	- 0.2	96 -				
HCM Control Delay (s)	13.9 -	- 14	1.1 -				
HCM Lane LOS	В -		В -				
HCM 95th %tile Q(veh)	0.2 -	'	1.2 -				

Intersection	4.7												
Int Delay, s/veh	1.7												
Movement	EBL	EBT	EBR	V	/BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		•	7			ની						414	
Traffic Vol, veh/h	0	12	46		43	9	0	0	0	0	23	971	1
Future Vol, veh/h	0	12	46		43	9	0	0	0	0	23	971	1
Conflicting Peds, #/hr	0	0	0		12	0	0	0	0	0	0	0	3
Sign Control	Stop	Stop	Stop	S	top	Stop	Stop	Stop	Stop	Stop	Free	Free	Fre
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	Nor
Storage Length	-	-	0		-	-	-	-	-	-	-	-	
Veh in Median Storage, #		0	-		-	0		-		-	-	0	
Grade, %	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	95	95	95		95	95	95	95	95	95	95	95	9
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	
Mvmt Flow	0	13	48		45	9	0	0	0	0	24	1022	1
Major/Minor	Minor2			Min	or1						Major2		
Conflicting Flow All		1116	569	į	578	1125	-				0	0	
Stage 1		1116	-		0	0					-		
Stage 2		0	-		578	1125	-						
Critical Hdwy	-	6.54	6.94	7	.54	6.54					4.14		
Critical Hdwy Stg 1		5.54	-		-	-					-		
Critical Hdwy Stg 2		-	-	6	.54	5.54					-	-	
Follow-up Hdwy	-	4.02	3.32	3	.52	4.02	-				2.22	-	
Pot Cap-1 Maneuver	0	206	465	3	399	204	0				-	-	
Stage 1	0	281	-		-	-	0				-	-	
Stage 2	0	-	-	1	468	278	0				-	-	
Platoon blocked, %												-	
Mov Cap-1 Maneuver	-	199	449	3	339	197	-				-	-	
Mov Cap-2 Maneuver	-	199	-	3	339	197	-				-	-	
Stage 1	-	271	-		-	-	-				-	-	
Stage 2	-	-	-	3	398	268	-				-	-	
Approach	EB			١	WB						SB		
HCM Control Delay, s	16.1			1	9.6								
HCM LOS	С			•	С								
Minor Long/Major Mumt	FDI n1	EDI 50	MDI n1	CDI C	'DT	CDD							
Minor Lane/Major Mvmt	EBLn1				BT	SBR							
Capacity (veh/h)	199	449	301	-	-	-							
HCM Cantrol Doloy (s)		0.108	0.182	-	-	-							
HCM Control Delay (s)	24.3 C	14 B	19.6 C	-	-	-							
HCM Lane LOS				-	-	-							
HCM 95th %tile Q(veh)	0.2	0.4	0.7	-	-	-							

Intersection	0.0											
Int Delay, s/veh	2.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ની			î		ሻ	ተ ተኈ				
Traffic Vol, veh/h	4	18	0	0	17	11	86	516	48	0	0	0
Future Vol, veh/h	4	18	0	0	17	11	86	516	48	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	28	17	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	0	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	-	-
Grade, %	-	0	-	-	0	-	-	0	-	-		-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	19	0	0	18	12	91	549	51	0	0	0
Major/Minor	Minor2			Minor1			Major1					
Conflicting Flow All	457	800	-	-	774	328	17	0	0			
Stage 1	17	17	-	-	757	-	-		-			
Stage 2	440	783	-	-	17	-	-	-	-			
Critical Hdwy	6.44	6.54	-	-	6.54	7.14	5.34	-	-			
Critical Hdwy Stg 1		-	-	-	5.54	-	-	-	-			
Critical Hdwy Stg 2	6.74	5.54	-	-	-	-	-	-	-			
Follow-up Hdwy	3.82	4.02	-	-	4.02	3.92	3.12	-	-			
Pot Cap-1 Maneuver	525	317	0	0	328	570	1133	-	-			
Stage 1	-	-	0	0	414	-	-	-	-			
Stage 2	518	403	0	0	-	-	-	-	-			
Platoon blocked, %								-	-			
Mov Cap-1 Maneuver	453	287	-	-	297	570	1133	-	-			
Mov Cap-2 Maneuver	453	287	-	-	297	-	-	-	-			
Stage 1		-	-	-	381	-	-	-	-			
Stage 2	444	371	-	-	-	-	-	-	-			
Approach	EB			WB			NB					
HCM Control Delay, s	17.7			15.7			1.1					
HCM LOS	С			С								
Minor Lane/Major Mvmt	NBL	NBT	NBR EBLn1	WBLn1								
Capacity (veh/h)	1133	-	- 307	366								
HCM Lane V/C Ratio	0.081		- 0.076									
HCM Control Delay (s)	8.5		- 17.7	15.7								
HCM Lane LOS	A	-	- C	С								
HCM 95th %tile Q(veh)	0.3		- 0.2									
-,,												

Intersection	4.1											
Int Delay, s/veh	4.1											
Movement	EBL	EBT	EBR	WE			NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ની			1	•	ሻ	^				
Traffic Vol, veh/h	20	0	0		0 (186	205	0	0	0	0
Future Vol, veh/h	20	0	0		0 (186	205	0	0	0	0
Conflicting Peds, #/hr	0	0	5		0 (0	6	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Fre	e Fre	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized		-	None		-	- None	-	-	None	-	-	None
Storage Length	-	-	-				115	-	-	-	-	-
Veh in Median Storage, #		0	-		- (-	0	-	-	-	-
Grade, %	-	0	-		- () -	-	0	-	-	0	-
Peak Hour Factor	88	88	88	8	88 8		88	88	88	88	88	88
Heavy Vehicles, %	2	2	2		2		2	2	2	2	2	2
Mvmt Flow	23	0	0		0 () 0	211	233	0	0	0	0
Maine/Mines	Minar			Maia	-2		Maine1					
Major/Minor	Minor2	//0		Majo			Major1					
Conflicting Flow All	523	663	-		-	- 0	7	0	-			
Stage 1	7	7	-		-		-	-	-			
Stage 2	516	656	-				-	-	-			
Critical Hdwy	6.08	6.53	-				4.13	-	-			
Critical Hdwy Stg 1	5.43	5.53					-		-			
Critical Hdwy Stg 2	6.03	5.53	-			-	- 0.010	-	-			
Follow-up Hdwy		4.019	-				2.219	-	-			
Pot Cap-1 Maneuver	523	381	0		0		1613	-	0			
Stage 1	974	890	0		•		-	-	0			
Stage 2	532	461	0		U		-	-	0			
Platoon blocked, %	110						4140	-				
Mov Cap-1 Maneuver	449	0	-		-		1613	-	-			
Mov Cap-2 Maneuver	449	0	-				-	-	-			
Stage 1	968	0	-			-	-	-	-			
Stage 2	460	0	-		-		-	-				
Approach	EB			W	'R		NB					
HCM Control Delay, s	13.4			V	0		3.6					
HCM LOS	13.4 B				U		3.0					
TIGINI EUS	D											
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	WBT WE	R							
Capacity (veh/h)	1613	-	449	-	-							
HCM Lane V/C Ratio	0.131		0.051		-							
HCM Control Delay (s)	7.6		13.4	-	-							
HCM Lane LOS	A		В		-							
HCM 95th %tile Q(veh)	0.5	-	0.2	-	-							

20	Background	
	Timing Plan: AM	

Int Delay, s/veh	3.3												
Movement	EBL	EBT	EBR	W	/BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		↑	1			ની						414	i
Traffic Vol, veh/h	0	6	44		70	18	0	0	0	0	46	517	
Future Vol, veh/h	0	6	44		70	18	0	0	0	0	46	517	
Conflicting Peds, #/hr	0	0	22		0	0	0	0	0	0	4	0	
Sign Control	Stop	Stop	Stop	S	top	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	Non
Storage Length		-	40		-	-	-	-		-		-	5
Veh in Median Storage, #	-	0	-		-	0	-	-	-	-	-	0	
Grade, %	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92		92	92	92	92	92	92	92	92	9
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	
Mvmt Flow	0	7	48		76	20	0	0	0	0	50	562	
Major/Minor	Minor2			Min	or1						Major2		
Conflicting Flow All	-	666	303	4	110	666	-				4	0	
Stage 1		662	-		4	4	-				-	-	
Stage 2	-	4	-		106	662	-				-	-	
Critical Hdwy		6.54	6.94	7	.54	6.54	-				4.14	-	
Critical Hdwy Stg 1	-	5.54	-		-	-	-				-	-	
Critical Hdwy Stg 2	-	-	-	-	.54	5.54	-					-	
Follow-up Hdwy	-	4.02	3.32	3	.52	4.02	-				2.22	-	
Pot Cap-1 Maneuver	0	379	693		526	379	0				1616	-	
Stage 1	0	457	-		-	-	0				-	-	
Stage 2	0	-	-		593	457	0					-	
Platoon blocked, %												-	
Mov Cap-1 Maneuver	-	361	693		465	361	-				1616	-	
Mov Cap-2 Maneuver	-	361	-	4	165	361	-				-	-	
Stage 1		436	-		-	-	-				-	-	
Stage 2	-	-	-		519	436	-				-	-	
A	ED			,	MD						CD		
Approach	11.2				WB						SB		
HCM Control Delay, s				1	5.5 C						0.7		
HCM LOS	В				C								
Minor Lane/Major Mvmt	EBLn1	FBI n2\	NBI n1	SBL S	BT	SBR							
Capacity (veh/h)	361	693	439	1616		-							
HCM Lane V/C Ratio		0.069		0.031									
HCM Control Delay (s)	15.2	10.6	15.5		0.1								
HCM Lane LOS	C	В	C	7.5 A	A								

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ኘ	LDIX	INDL	441	301	JUIN
Traffic Vol, veh/h	21	0	0	373	0	0
Future Vol. veh/h	21	0	0	373	0	0
Conflicting Peds, #/hr	3	0	0	0,0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Ü
RT Channelized	-	None		None	-	
Storage Length	0	-	-	-		-
Veh in Median Storage, #	# O	-		0		
Grade, %	0	-		0	0	
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	24	0	0	429	0	0
Major/Minor	Minor2		Major1			
Conflicting Flow All	174		0	0		
Stage 1	0		-	-		
Stage 2	174					
Critical Hdwy	5.74	-	5.34			
Critical Hdwy Stg 1	-	-	-			
Critical Hdwy Stg 2	6.04	-				
Follow-up Hdwy	3.82	-	3.12	-		
Pot Cap-1 Maneuver	782	0				
Stage 1		0	-	-		
Stage 2	771	0	-	-		
Platoon blocked, %				-		
Mov Cap-1 Maneuver	782	-	-	-		
Mov Cap-2 Maneuver	782	-	-	-		
Stage 1	-	-	-	-		
Stage 2	771			-		
Approach	EB		NB			
HCM Control Delay, s	9.8		0			
HCM LOS	A					
Minor Lane/Major Mvmt	NBL	NBT EBLn1				
Capacity (veh/h)	- INDL	- 782				
HCM Lane V/C Ratio		- 0.031				
HCM Control Delay (s)	0	- 9.8				
HCM Lane LOS	A	- 7.0				
HCM 95th %tile Q(veh)	-	- 0.1				
rour route Q(VCII)		0.1				

26: Trinity St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection												
Int Delay, s/veh 1	.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ĵ.			ની						4₽	7
Traffic Vol, veh/h	0	12	46	40	8	0	0	0	0	23	1058	18
Future Vol, veh/h	0	12	46	40	8	0	0	0	0	23	1058	18
Conflicting Peds, #/hr	0	0	0	20	0	0	0	0	0	0	0	24
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	0
Veh in Median Storage, #	-	0	-	-	0	-	-	-	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	13	50	43	9	0	0	0	0	25	1150	20
Major/Minor	Minor2			Minor1						Major2		
Conflicting Flow All	-	1224	619	652	1224	-				0	0	0
Stage 1		1224	-	0	0	-				-	-	-
Stage 2	-	0		652	1224	-				-	-	-
Critical Lidus		4 5 4	4.04	754	4 5 4					111		

majorrimnor							major 2		
Conflicting Flow All	-	1224	619	652	1224	-	0	0	0
Stage 1	-	1224	-	0	0	-	-	-	-
Stage 2	-	0	-	652	1224	-	-	-	-
Critical Hdwy	-	6.54	6.94	7.54	6.54	-	4.14	-	-
Critical Hdwy Stg 1	-	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	6.54	5.54	-		-	-
Follow-up Hdwy	-	4.02	3.32	3.52	4.02	-	2.22	-	-
Pot Cap-1 Maneuver	0	178	432	353	178	0	-	-	-
Stage 1	0	250	-	-	-	0	-	-	-
Stage 2	0	-	-	423	250	0	·	-	-
Platoon blocked, %								-	-
Mov Cap-1 Maneuver	-	174	422	293	174	-		-	-
Mov Cap-2 Maneuver	-	174	-	293	174	-	-	-	-
Stage 1	-	244	-	-	-	-	-	-	-
Stage 2	-	-	-	353	244	-		-	-
Approach	EB			WB			SB		
HCM Control Delay, s	18.7			22					
HCM LOS	С			С					

Minor Lane/Major Mvmt	EBLn1\	WBLn1	SBL	SBT	SBR
Capacity (veh/h)	326	263	-	-	-
HCM Lane V/C Ratio	0.193	0.198	-	-	-
HCM Control Delay (s)	18.7	22	-	-	-
HCM Lane LOS	С	С	-	-	-
HCM 95th %tile Q(veh)	0.7	0.7	-	-	-

Intersection												
Int Delay, s/veh	2.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	3	25	33	9	7	5	15	280	8	2	46	16
Future Vol, veh/h	3	25	33	9	7	5	15	280	8	2	46	16
Conflicting Peds, #/hr	0	0	0	0	0	15	3	0	0	0	0	3
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	32	42	11	9	6	19	354	10	3	58	20
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	496	479	71	507	484	374	81	0	0	365	0	C
Stage 1	76	76	-	397	397	-	-	-	-	-		
Stage 2	420	403	-	110	87	-	-	-	-	-		
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12		
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-		
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-		
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218		
Pot Cap-1 Maneuver	484	486	991	476	483	672	1517	-	-	1194		
Stage 1	933	832	-	629	603	-	-	-	-	-		
Stage 2	611	600	-	895		-	-	-	-	-		
Platoon blocked, %								-	-			
Mov Cap-1 Maneuver	458	475	988	426	472	662	1517	-		1177		
Mov Cap-2 Maneuver	458	475		426		-	-	-		-		
Stage 1	915	827	-	619		-	-			-		
Stage 2	578	590	-	822					-	-		
J. J.												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	11.2			12.9			0.4			0.3		
HCM LOS	В			12.7 B			۳.0			0.5		
THOM EGG												
Minor Lane/Major Mvmt	NBL	NBT	NBR F	BLn1WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	1517			659 483								
HCM Lane V/C Ratio	0.013			0.117 0.055								
HCM Control Delay (s)	7.4	0	-	11.2 12.9		0						
HCM Lane LOS	7.4 A	A		B B	Α.	A						
LICM DETA (/tile O(vob)	^	^		04 02		А	-					

29: Colorado St & E. 16th St

HCM 95th %tile Q(veh)

TIA for Texas Capitol Complex Master Plan 2018 Update

EBL EBT EBR

35

0

0

92 92

2 2

0

- 6.52

- 5.52

- 5.52

- 4.018

0 895

0 895

895

895

NBT EBLn1WBLn1 SBT

895 895

- 0.043 0.022

- 9.2 9.1

- 0.1 0.1

A A

- 895

EB

9.2

0

- None

Stop Stop Stop

0 35 0

0 38 0

Minor2

WBL WBT WBR

18

Stop Stop Stop

- - None

0

20 0

- 6.52

- 5.52

- 5.52

- 4.018

0 895

- 895

- 895

9.1

0 -

0 895 0

0

0 18

10 0 10

92 92 92

2 2 2

Minor1

NBL NBT NBR

Free Free Free

- None

0

0

0

0 0 0

92 92 92

2 2

0 0

0

Intersection
Int Delay, s/veh
Movement

Lane Configurations Traffic Vol, veh/h

Conflicting Peds, #/hr

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length Veh in Median Storage, # Grade, %

Peak Hour Factor

Mymt Flow

Major/Minor

Critical Hdwy

Heavy Vehicles, %

Conflicting Flow All

Stage 1 Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Capacity (veh/h)

HCM Lane LOS

Approach
HCM Control Delay, s

HCM LOS

Follow-up Hdwy

2020 Background Timing Plan: AM

SBL SBT

Free Free Free - None

0

92 92

0

0 0 0

92

2 2 2

2020 Background

Timing Plan: AM

31: Brazos St & E. 16th St	
TIA for Texas Capitol Complex Master Plan 2018 Update	

Int Delay, s/veh 2	.4					
Movement	EBT	EBR	WBI	WBT	NBL	NBR
Lane Configurations	र्भ			ર્ન	¥	
Traffic Vol, veh/h	34	0	3	12	14	0
Future Vol, veh/h	34	0	3	12	14	0
Conflicting Peds, #/hr	0	0	25	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		- None	-	None
Storage Length	-	-			0	-
Veh in Median Storage, #	0	-		- 0	0	-
Grade, %	0	-			0	-
Peak Hour Factor	83	83	83		83	83
Heavy Vehicles, %	2	2	2		2	2
Mvmt Flow	41	0	1	14	17	0
Major/Minor	Major1		Major2)	Minor1	
Conflicting Flow All	0	0	66	0	88	66
Stage 1	-	-			66	-
Stage 2	-	-			22	-
Critical Hdwy	-	-	4.12	_	7.12	6.22
Critical Hdwy Stg 1	-	-			6.12	-
Critical Hdwy Stg 2		-		-	6.12	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1536	-	897	998
Stage 1	-	-			945	-
Stage 2		-			996	
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1536	-	874	974
Mov Cap-2 Maneuver	-	-			874	-
Stage 1	-	-			945	-
Stage 2	-	-			993	-
Approach	EB		WE	3	NB	
HCM Control Delay, s	0		1.5	5	9.2	
HCM LOS					Α	
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL WB1			
Capacity (veh/h)	874 -	-	1536			
HCM Lane V/C Ratio	0.019 -					
HCM Control Delay (s)	9.2 -		7.3 (
HCM Lane LOS	Α -		Α Α			
HOW LANG LOS	Α -	-	A F	١.		

MS	Synchro 9 Repor
	Page 9

Intersection							
Int Delay, s/veh	1.5						
Movement	EBL		EBR	NBL	NBT	SBT	SBR
Lane Configurations			7	1102	1101	^	7
Traffic Vol, veh/h	0		44	0	0	298	33
Future Vol, veh/h	0		44	0	0	298	33
Conflicting Peds, #/hr	0		0	0	0	0	120
Sign Control	Stop		Stop	Free	Free	Free	Free
RT Channelized			None	-	None		
Storage Length			0	-	-		50
Veh in Median Storage, #	0		-	-	-	0	-
Grade, %	0		-	-	0	0	-
Peak Hour Factor	83		83	83	83	83	83
Heavy Vehicles, %	2		2	2	2	2	2
Mvmt Flow	0		53	0	0	359	40
Major/Minor	Minor2					Major2	
Conflicting Flow All	WIIIIOI Z		300			- Wajorz	0
Stage 1			-				-
Stage 2							
Critical Hdwy			7.14				-
Critical Hdwy Stg 1			-				
Critical Hdwy Stg 2	-						
Follow-up Hdwy			3.92				-
Pot Cap-1 Maneuver	0		594			-	-
Stage 1	0		-				-
Stage 2	0		-				-
Platoon blocked, %						-	-
Mov Cap-1 Maneuver	-		526				-
Mov Cap-2 Maneuver	-		-				-
Stage 1	-		-				-
Stage 2	-		-			-	-
Approach	EB					SB	
HCM Control Delay, s	12.6					0	
HCM LOS	В						
Minor Lane/Major Mvmt	EBLn1	SBT	SBR				
Capacity (veh/h)	526	ODI -	SBK				
HCM Lane V/C Ratio	0.101	-	-				
HCM Control Delay (s)	12.6						
HCM Lane LOS	12.0 B						
HCM 95th %tile Q(veh)	0.3						
HOW April write (Act)	0.3	-	-				

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	•	•	1	†	1	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† 1>			^	7				ሻ	^	7
Traffic Volume (vph)	149	352	99	0	970	620	0	0	0	177	619	228
Future Volume (vph)	149	352	99	0	970	620	0	0	0	177	619	228
Confl. Peds. (#/hr)	29		68	68		29				41		68
Confl. Bikes (#/hr)			1			6						3
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	159	374	105	0	1032	660	0	0	0	188	659	243
Shared Lane Traffic (%)												
Lane Group Flow (vph)	159	479	0	0	1032	660	0	0	0	188	659	243
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases						6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase												
Minimum Initial (s)	2.0	15.0			15.0	10.0				10.0	5.0	5.0
Minimum Split (s)	7.0	27.0			34.0	15.0				15.0	32.0	32.0
Total Split (s)	25.0	92.0			67.0	43.0				43.0	43.0	43.0
Total Split (%)	18.5%	68.1%			49.6%	31.9%				31.9%	31.9%	31.9%
Yellow Time (s)	4.0	4.0			4.0	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag	0.0			Lead	0.0				0.0	0.0	0.0
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max	None				None	Max	Max
Act Effct Green (s)	20.0	87.0			62.0	100.0				38.0	38.0	38.0
Actuated g/C Ratio	0.15	0.64			0.46	0.74				0.28	0.28	0.28
v/c Ratio	0.61	0.22			0.64	0.56				0.38	0.66	0.48
Control Delay	64.6	9.7			21.7	2.4				41.7	46.6	18.6
Queue Delay	0.0	0.0			1.9	0.1				0.0	0.0	0.0
Total Delay	64.6	9.7			23.6	2.6				41.7	46.6	18.6
LOS	E	Α.,			C	Α.				D	D	В
Approach Delay	_	23.4			15.4	,,					39.5	J
Approach LOS		C			В						D	
Queue Length 50th (ft)	132	81			268	24				133	268	63
Queue Length 95th (ft)	209	107			335	48				205	337	147
Internal Link Dist (ft)	207	228			45	10		159		200	210	1.17
Turn Bay Length (ft)	160	220			10			107		130	210	120
Base Capacity (vph)	262	2148			1625	1177				498	996	503
Starvation Cap Reductn	0	0			417	70				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.61	0.22			0.85	0.60				0.38	0.66	0.48
	0.01	0.22			0.00	0.00				0.50	0.00	0.70
Intersection Summary												

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 75

MS Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: PM

Splits and Phases: 1: Martin Luther King Jr. Blvd & Guadalupe St

MS Synchro 9 Report

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: PM

	-	•	1	+	4	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	*	LUIK		*	ሻሻ	TVDIC
Traffic Volume (vph)	508	0	0	1200	712	238
Future Volume (vph)	508	0	0	1200	712	238
Confl. Peds. (#/hr)	506	U	0	1200	/12	79
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
	558	0.91		1319	782	262
Adj. Flow (vph)	558	U	0	1319	782	202
Shared Lane Traffic (%)	550	0	0	1010	700	2/2
Lane Group Flow (vph)	558	0	0	1319	782	262
Turn Type	NA			NA	Prot	Perm
Protected Phases	2			6	8	_
Permitted Phases						3
Detector Phase	2			6	8	3
Switch Phase						
Minimum Initial (s)	10.0			10.0	5.0	5.0
Minimum Split (s)	30.0			15.0	10.0	10.0
Total Split (s)	86.0			86.0	49.0	49.0
Total Split (%)	63.7%			63.7%	36.3%	36.3%
Yellow Time (s)	4.0			4.0	4.0	4.0
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	5.0			5.0	5.0	5.0
	3.0			5.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?	0.14			0.14		
Recall Mode	C-Max			C-Max	Max	Max
Act Effct Green (s)	81.0			81.0	44.0	44.0
Actuated g/C Ratio	0.60			0.60	0.33	0.33
v/c Ratio	0.26			0.62	0.70	0.40
Control Delay	14.8			11.6	60.2	23.0
Queue Delay	0.0			0.2	0.0	0.0
Total Delay	14.8			11.7	60.2	23.0
LOS	В			В	E	С
Approach Delay	14.8			11.7	50.8	
Approach LOS	B			B	D.0	
Queue Length 50th (ft)	111			178	295	106
Queue Length 95th (ft)	135			220	438	156
						100
Internal Link Dist (ft)	272			277	337	
Turn Bay Length (ft)						
Base Capacity (vph)	2123			2123	1118	649
Starvation Cap Reductn	0			183	0	0
Spillback Cap Reductn	0			20	0	0
Storage Cap Reductn	0			0	0	0
Reduced v/c Ratio	0.26			0.68	0.70	0.40
Intersection Summary						
Cycle Length: 135	_					
Actuated Cycle Length: 13			LUDT	0		
Offset: 5 (4%), Referenced	to phase 2:1	FR1 and	6:WBf,	Start of G	reen	
Natural Cycle: 50						
Control Type: Actuated-Co	ordinated					

MS Synchro 9 Report
Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: PM

Maximum v/c Ratio: 0.70
Intersection Signal Delay: 26.3 Intersection LOS: C
Intersection Capacity Utilization 61.8% ICU Level of Service B
Analysis Period (min) 15

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	-	•	•	•	1	
ane Group	EBT	EBR	WBL	WBT	NBL	NBR
ane Configurations	↑ ↑		ሻ	^		
Fraffic Volume (vph)	718	0	12	1146	0	0
uture Volume (vph)	718	0	12	1146	0	0
Confl. Peds. (#/hr)		32	32		34	
Confl. Bikes (#/hr)		4				
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	764	0	13	1219	0	0
Shared Lane Traffic (%)			.0	,		
ane Group Flow (vph)	764	0	13	1219	0	0
Furn Type	NA	3	pm+pt	NA		,
Protected Phases	2		1	6		
Permitted Phases	_		6			
Detector Phase	2		1	6		
Switch Phase				· ·		
Minimum Initial (s)	15.0		3.0	15.0		
Minimum Split (s)	34.0		8.0	20.0		
	119.0		16.0	135.0		
Fotal Split (s) Fotal Split (%)	88.1%			100.0%		
	4.0		4.0	4.0		
/ellow Time (s)	1.0		1.0	1.0		
All-Red Time (s)						
Lost Time Adjust (s)	0.0		0.0	0.0		
Fotal Lost Time (s)	5.0		5.0	5.0		
_ead/Lag	Lead		Lag			
_ead-Lag Optimize?	Yes		Yes	0.14		
Recall Mode	C-Max		None			
Act Effct Green (s)	126.6		133.0	135.0		
Actuated g/C Ratio	0.94		0.99	1.00		
/c Ratio	0.23		0.02	0.34		
Control Delay	0.9		0.1	0.3		
Queue Delay	0.0		0.0	0.0		
Total Delay	0.9		0.1	0.3		
_OS	Α		Α	Α		
Approach Delay	0.9			0.3		
Approach LOS	Α			Α		
Queue Length 50th (ft)	0		0	3		
Queue Length 95th (ft)	54		m0	0		
nternal Link Dist (ft)	366			377	331	
Furn Bay Length (ft)			115			
Base Capacity (vph)	3319		723	3539		
	0		0	0		
	0		0	0		
	0		0	0		
Reduced v/c Ratio	0.23		0.02	0.34		
ntersection Summarv						
Cycle Length: 135						
	5					
		FRT and	6·WRTI	Start of C	Green	
Queue Length 95th (ft) Internal Link Dist (ft) Irum Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio Intersection Summary	54 366 3319 0 0 0 0.23	EBT and	m0 115 723 0 0 0 0.02	0 377 3539 0 0 0 0.34		

MS Synchro 9 Report
Page 5

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: PM

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.34

Intersection Signal Delay: 0.5 Intersection LOS: A

Intersection Capacity Utilization 35.8% ICU Level of Service A

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 5: N. Congress Ave & Martin Luther King Jr. Blvd

MS Synchro 9 Report

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	•	•	•	•	1	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† î>		ሻ	^	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	87	731	11	15	870	131	27	23	155	96	25	244
Future Volume (vph)	87	731	11	15	870	131	27	23	155	96	25	244
Confl. Peds. (#/hr)	43		7	7		43	22		23	23		22
Confl. Bikes (#/hr)			4			3						
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	90	754	11	15	897	135	28	24	160	99	26	252
Shared Lane Traffic (%)												
Lane Group Flow (vph)	90	765	0	15	897	135	0	52	160	0	125	252
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	3.0	10.0		3.0	10.0	10.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	8.0	22.0		8.0	28.0	28.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (s)	15.0	89.0		15.0	89.0	89.0	31.0	31.0	31.0	31.0	31.0	31.0
Total Split (%)	11.1%	65.9%		11.1%	65.9%	65.9%	23.0%	23.0%	23.0%	23.0%	23.0%	23.0%
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	97.9	94.5		92.4	86.6	86.6		26.0	26.0		26.0	26.0
Actuated g/C Ratio	0.73	0.70		0.68	0.64	0.64		0.19	0.19		0.19	0.19
v/c Ratio	0.22	0.31		0.03	0.40	0.15		0.18	0.38		0.49	0.52
Control Delay	5.2	6.0		1.9	5.5	2.0		47.6	9.5		56.0	11.3
Queue Delay	0.0	0.3		0.0	0.3	0.0		0.0	0.0		0.0	0.0
Total Delay	5.2	6.3		1.9	5.7	2.0		47.6	9.5		56.0	11.3
LOS	А	Α		Α	Α	Α		D	Α		Е	В
Approach Delay		6.2			5.2			18.8			26.1	
Approach LOS		Α			Α			В			С	
Queue Length 50th (ft)	16	81		1	116	10		39	0		99	11
Queue Length 95th (ft)	26	105		m2	157	29		78	60		166	90
Internal Link Dist (ft)		377			273			135			212	
Turn Bay Length (ft)	160			100		100			100			
Base Capacity (vph)	438	2472		547	2269	904		288	419		256	481
Starvation Cap Reductn	0	958		0	668	0		0	0		0	0
Spillback Cap Reductn	0	125		0	0	0		0	5		0	0
Storage Cap Reductn	0	0		0	0	0		0	0		0	0
Reduced v/c Ratio	0.21	0.51		0.03	0.56	0.15		0.18	0.39		0.49	0.52

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 70

MS Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: PM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.52 Intersection Signal Delay: 9.9 Intersection Capacity Utilization 78.2% Intersection LOS: A ICU Level of Service D Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Brazos St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	←	•	1	†	-	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑ ↑		*	^					ሻ	^	1
Traffic Volume (vph)	0	921	29	306	1073	0	0	0	0	37	196	138
Future Volume (vph)	0	921	29	306	1073	0	0	0	0	37	196	138
Confl. Peds. (#/hr)			36	36						71		17
Confl. Bikes (#/hr)			7									14
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	990	31	329	1154	0	0	0	0	40	211	148
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1021	0	329	1154	0	0	0	0	40	211	148
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		1	6						4	
Permitted Phases				6						4		4
Detector Phase		2		1	6					4	4	4
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					5.0	5.0	5.0
Minimum Split (s)		32.0		8.0	30.0					30.0	30.0	30.0
Total Split (s)		78.0		25.0	103.0					32.0	32.0	32.0
Total Split (%)		57.8%		18.5%	76.3%					23.7%	23.7%	23.7%
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					Max	Max	Max
Act Effct Green (s)		78.2		98.0	98.0					27.0	27.0	27.0
Actuated g/C Ratio		0.58		0.73	0.73					0.20	0.20	0.20
v/c Ratio		0.50		0.78	0.45					0.13	0.30	0.36
Control Delay		12.8		35.1	4.5					45.8	47.3	12.1
Queue Delay		0.5		0.5	0.2					0.0	0.0	0.0
Total Delay		13.3		35.6	4.7					45.8	47.3	12.1
LOS		В		D	Α					D	D	В
Approach Delay		13.3			11.5						34.1	
Approach LOS		В			В						С	
Queue Length 50th (ft)		228		130	125					29	83	10
Queue Length 95th (ft)		272		m234	m130					64	122	70
Internal Link Dist (ft)		273			321			343			244	
Turn Bay Length (ft)				120						100		100
Base Capacity (vph)		2036		474	2569					313	707	406
Starvation Cap Reductn		532		19	613					0	0	0
Spillback Cap Reductn		0		0	0					0	0	0
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.68		0.72	0.59					0.13	0.30	0.36
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 80

MS Synchro 9 Report Page 9

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: PM

Ø1 ₩ Ø6 (R)

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	\rightarrow	•	←	•	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^			ħβ		7	4	7			
Traffic Volume (vph)	83	952	0	0	1116	51	214	314	337	0	0	0
Future Volume (vph)	83	952	0	0	1116	51	214	314	337	0	0	0
Confl. Peds. (#/hr)			33			87	17		148			
Confl. Bikes (#/hr)						4			12			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	86	981	0	0	1151	53	221	324	347	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	86	981	0	0	1204	0	199	346	347	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	104.0			89.0		31.0	31.0	31.0			
Total Split (%)	11.1%	77.0%			65.9%		23.0%	23.0%	23.0%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	99.0	99.0			86.7		26.0	26.0	26.0			
Actuated g/C Ratio	0.73	0.73			0.64		0.19	0.19	0.19			
v/c Ratio	0.28	0.38			0.54		0.64	1.02	1.00			
Control Delay	4.2	1.5			7.1		70.2	115.9	84.6			
Queue Delay	0.0	0.0			0.5		0.0	0.0	0.0			
Total Delay	4.2	1.6			7.6		70.2	115.9	84.6			
LOS	Α	A			A		Ε	F	F			
Approach Delay		1.8			7.6			93.5				
Approach LOS		A			A		47/	F	407			
Queue Length 50th (ft)	4	23			108		176	~342	187			
Queue Length 95th (ft)	15	25			124		270	#551	#393		10/	
Internal Link Dist (ft)	100	321			699			350			106	
Turn Bay Length (ft)	120	2505			2220		212	220	240			
Base Capacity (vph)	336	2595			2229		313	339	348			
Starvation Cap Reductn	0	257			535		0	0	0			
Spillback Cap Reductn	0	0			0		0	0	0			
Storage Cap Reductn	0	0			0 71		0	1.00	1.00			
Reduced v/c Ratio	0.26	0.42			0.71		0.64	1.02	1.00			

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 60

Synchro 9 Report Page 11 MS

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: PM

С	ontrol Type: Actuated-Coordinated	
N	faximum v/c Ratio: 1.02	
Ir	ntersection Signal Delay: 29.9	Intersection LOS: C
Ir	ntersection Capacity Utilization 76.8%	ICU Level of Service D
Α	nalysis Period (min) 15	
~	Volume exceeds capacity, queue is theoretically infinite.	
	Queue shown is maximum after two cycles.	
#	95th percentile volume exceeds capacity, queue may be lor	nger.
	Oueue shown is maximum after two cycles	

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd

Synchro 9 Report Page 12 MS

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	\rightarrow	•	•	←	•	1	Ť		-	ţ	4
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations		†	7		ર્ન						413	
raffic Volume (vph)	0	20	11	85	94	0	0	0	0	27	1020	2
uture Volume (vph)	0	20	11	85	94	0	0	0	0	27	1020	2
Confl. Peds. (#/hr)			67							43		
Confl. Bikes (#/hr)									2			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.9
Parking (#/hr)		0										
Adj. Flow (vph)	0	21	11	89	98	0	0	0	0	28	1063	2
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	21	11	0	187	0	0	0	0	0	1114	
Turn Type		NA	Perm	Perm	NA	Ü	Ü	Ü	Ū	Perm	NA	
Protected Phases		4 12			4 12						2 10	
Permitted Phases			4 12	4 12						2 10	2 10	
Detector Phase		4 12	4 12	4 12	4 12					2 10	2 10	
Switch Phase		1 12	1 12	1 12	1 12					2 10	2 10	
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
otal Split (%)												
rellow Time (s)												
All-Red Time (s)												
ost Time Adjust (s)												
Total Lost Time (s)												
.ead/Lag .ead-Lag Optimize?												
Recall Mode		25.4	25.4		25.4						85.6	
Act Effct Green (s)			25.4									
Actuated g/C Ratio		0.19	0.19		0.19						0.63	
/c Ratio		0.07	0.03		0.64						0.50	
Control Delay		24.9	0.2		42.3						7.9	
Queue Delay		0.0	0.0		0.0						0.0	
Total Delay		24.9	0.2		42.3						7.9	
.OS		С	Α		D						Α	
Approach Delay		16.4			42.3						7.9	
Approach LOS		В			D						Α	
Queue Length 50th (ft)		10	0		101						131	
Queue Length 95th (ft)		25	0		120						192	
nternal Link Dist (ft)		177			244			271			262	
urn Bay Length (ft)												
Base Capacity (vph)		533	509		497						2242	
Starvation Cap Reductn		0	0		0						0	
Spillback Cap Reductn		0	0		0						0	
Storage Cap Reductn		0	0		0						0	
Reduced v/c Ratio		0.04	0.02		0.38						0.50	
ntersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135 Offset: 0 (0%), Referenced to	nhaca 2.0	CDTI C	art of Cro	on								

Synchro 9 Report Page 13 MS

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases	_	•		
Detector Phase				
Switch Phase				
	45.0	15.0	Ε 0	г о
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	21.0	21.0	22.5	22.5
Total Split (s)	56.0	29.0	24.0	26.0
Total Split (%)	41%	21%	18%	19%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Cummany				
ntersection Summary				

18: Guadalupe St & E. 17th St

2020 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 90 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.64 Intersection Signal Delay: 12.9 Intersection Capacity Utilization 69.7% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service C

Splits and Phases: 18: Guadalupe St & E. 17th St

Synchro 9 Report Page 15 MS

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background
Timing Plan: PM

	•	-	•	•	•	•	4	†	~	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			f)			416	7			
Traffic Volume (vph)	10	44	0	0	54	26	63	997	52	0	0	C
Future Volume (vph)	10	44	0	0	54	26	63	997	52	0	0	C
Confl. Peds. (#/hr)	33								46			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)		0										
Adj. Flow (vph)	11	48	0	0	59	28	68	1084	57	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	59	0	0	87	0	0	1152	57	0	0	C
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		22.3			22.3			88.7	88.7			
Actuated g/C Ratio		0.17			0.17			0.66	0.66			
v/c Ratio		0.23			0.28			0.35	0.06			
Control Delay		33.3			24.8			10.6	4.7			
Queue Delay		0.0			0.0			0.1	0.0			
Total Delay		33.3			24.8			10.7	4.7			
LOS		С			С			В	Α			
Approach Delay		33.3			24.8			10.4				
Approach LOS		С			С			В				
Queue Length 50th (ft)		28			38			183	13			
Queue Length 95th (ft)		50			66			135	17			
Internal Link Dist (ft)		244			319			272			254	
Turn Bay Length (ft)									100			
Base Capacity (vph)		524			609			3435	908			
Starvation Cap Reductn		0			0			642	0			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.11			0.14			0.41	0.06			
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												
Offset: 0 (0%), Referenced	to phase 2:	NBTL, St	art of Gre	en								

Natural Cycle: 100

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases			10	12
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
	26.0	28.0	22.5	22.5
Minimum Split (s)	54.0	28.0	25.0	28.0
Total Split (s)		21%	19%	21%
Total Split (%)	40%			
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
NEUGLEG WE RAIIU				
Intersection Summary				

Synchro 9 Report Page 17 MS

19: Lavaca St & E. 17th St

2020 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.35 Intersection Signal Delay: 12.3 Intersection Capacity Utilization 43.0% Analysis Period (min) 15 Intersection LOS: B
ICU Level of Service A

Splits and Phases: 19: Lavaca St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	€	-	•	1	Ť		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		ર્ન			ĵ»			414	7			
Fraffic Volume (vph)	10	43	0	0	54	27	62	1062	51	0	0	
uture Volume (vph)	10	43	0	0	54	27	62	1062	51	0	0	
Confl. Peds. (#/hr)						163	85					
Confl. Bikes (#/hr)						2						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.
Parking (#/hr)					0							
Adj. Flow (vph)	11	45	0	0	57	28	65	1118	54	0	0	
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	56	0	0	85	0	0	1183	54	0	0	
Turn Type	Perm	NA	Ū	Ü	NA	·	Perm	NA	Perm	Ü	Ü	
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10	2 10	2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase	1 12	1 12			1 12		2 10	2 10	2 10			
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode		20.7			20.7			00.4	00.4			
Act Effct Green (s)		20.6			20.6			90.4	90.4			
Actuated g/C Ratio		0.15			0.15			0.67	0.67			
v/c Ratio		0.21			0.35			0.35	0.05			
Control Delay		28.7			26.6			6.2	2.3			
Queue Delay		0.0			0.0			0.4	0.0			
Total Delay		28.7			26.6			6.6	2.3			
_OS		С			С			Α	Α			
Approach Delay		28.7			26.6			6.4				
Approach LOS		С			С			Α				
Queue Length 50th (ft)		30			38			145	6			
Queue Length 95th (ft)		54			66			138	m7			
nternal Link Dist (ft)		233			60			281			272	
Turn Bay Length (ft)									100			
Base Capacity (vph)		570			490			3376	1089			
Starvation Cap Reductn		0			0			1523	0			
Spillback Cap Reductn		0			0			106	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.10			0.17			0.64	0.05			
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135			art of Gre									

MS Synchro 9 Report Page 19

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	28.0	32.0	21.0	20.0
Total Split (s)	55.0	32.0	24.0	24.0
Total Split (%)	41%	24%	18%	18%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
	C-IVIAX	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Neuded We Rallo				
Intersection Summary				

MS Synchro 9 Report Page 20

28: Lavaca St & E. 16th St

2020 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 105 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.35 Intersection Signal Delay: 8.6 Intersection Capacity Utilization 53.4% ICU L
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: A ICU Level of Service A

Splits and Phases: 28: Lavaca St & E. 16th St <u>≠</u> Ø4 **1**Ø10 <u>≠</u> Ø12

MS Synchro 9 Report Page 21

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: PM

0 0 0.86 0	EBT ************************************	95 95 18	WBL 212 212 18	WBT ↑↑↑ 1707 1707	WBR 0	NBL 0	NBT	NBR	SBL	SBT €1↑↑	SBF
0.86	871 871 0.86	95 18	212 212	1707		0				414	7
0.86	0.86	95 18	212	1707		0					
0.86	0.86	18		1707			0	0	149	841	26
0			18		0	0	0	0	149	841	267
0		0.86							20		27
0		0.86									2
	1013	0.00	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
0		110	247	1985	0	0	0	0	173	978	310
0											
	1123	0	247	1985	0	0	0	0	0	1151	310
	NA		pm+pt	NA					Perm	NA	Pern
	2		13	6						4	
			6						4		4
	2		13	6					4	4	4
	10.0			5.0					5.0	5.0	5.0
	25.0			25.0					32.0	32.0	32.0
	58.0			88.0					47.0	47.0	47.0
	43.0%			65.2%					34.8%	34.8%	34.8%
									4.0	4.0	4.0
									1.0		1.0
											0.0
											5.0
	Lag										
	Yes										
	C-Max			C-Max					Max	Max	Max
	53.0		83.0	83.0						42.0	42.0
	0.39		0.61	0.61						0.31	0.31
	0.57		0.63	0.63						0.74	0.59
	33.0		24.0	7.3						41.6	29.3
	0.0		5.5	0.2						0.0	0.0
	33.0		29.5	7.5						41.6	29.3
	С		С	A						D	(
	33.0			9.9						39.0	
	С			Α						D	
	275		70	134						277	124
	304		m130	136						316	209
	262			240			197			285	
			50								100
	1967		391	3126						1563	525
	0		92	392						0	(
	0		0	0						0	(
	0		0	0						0	(
	0.57		0.83	0.73						0.74	0.59
	ase 2:	2 10.0 25.0 58.0 43.0% 4.0 1.0 0.0 5.0 Lag Yes C-Max 53.0 0.39 0.57 33.0 C 275 304 262 1967 0 0 0 0.57	2 10.0 25.0 58.0 43.0% 4.0 1.0 0.0 5.0 Lag Yes C-Max 53.0 0.39 0.57 33.0 0.0 33.0 C 275 304 262 1967 0 0 0 0.57	6 2 13 10.0 25.0 58.0 43.0% 4.0 1.0 0.0 5.0 Lag Yes C-Max 53.0 83.0 0.39 0.61 0.57 0.63 33.0 29.5 C C C 275 70 304 m130 262 50 1967 391 0 92 0 0 0 0 0 0.57 0.83	2 13 6 10.0 5.0 25.0 25.0 88.0 43.0% 65.2% 4.0 4.0 1.0 0.0 0.0 5.0 5.0 Lag Yes C-Max C-Max 53.0 83.0 83.0 0.39 0.61 0.61 0.57 0.63 0.63 33.0 24.0 7.3 0.0 5.5 0.2 33.0 29.5 7.5 C C C A 33.0 9.9 C A 275 70 134 304 m130 136 262 240 50 1967 391 3126 0 92 392 0 0 0 0	2 13 6 10.0 5.0 25.0 25.0 58.0 88.0 43.0% 65.2% 4.0 4.0 1.0 1.0 0.0 0.0 5.0 5.0 Lag Yes C-Max C-Max 53.0 83.0 83.0 0.39 0.61 0.61 0.57 0.63 0.63 33.0 24.0 7.3 0.0 5.5 0.2 33.0 29.5 7.5 C C A 275 70 134 304 m130 136 262 240 50 1967 391 3126 0 92 392 0 0 0 0 0 0.57 0.83 0.73	2 13 6 10.0 5.0 25.0 25.0 88.0 58.0 88.0 43.0% 65.2% 4.0 4.0 1.0 1.0 0.0 0.0 5.0 5.0 Lag Yes C-Max C-Max 53.0 83.0 83.0 0.39 0.61 0.61 0.57 0.63 0.63 33.0 24.0 7.3 0.0 5.5 0.2 33.0 29.5 7.5 C C A 275 70 134 330 9.9 C A 275 70 134 304 m130 136 262 240 50 1967 391 3126 0 92 392 0 0 0 0 0 0.57 0.83 0.73	6 2 13 6 10.0 5.0 25.0 25.0 88.0 58.0 88.0 43.0% 65.2% 4.0 4.0 1.0 1.0 0.0 0.0 5.0 5.0 Lag Yes C-Max C-Max 53.0 83.0 83.0 0.39 0.61 0.61 0.57 0.63 0.63 33.0 24.0 7.3 0.0 5.5 0.2 33.0 29.5 7.5 C C A 33.0 9.9 C A 275 70 134 304 m130 136 262 240 197 50 1967 391 3126 0 92 392 0 0 0 0 0 0.57 0.83 0.73	6 2 13 6 10.0 5.0 25.0 25.0 88.0 58.0 88.0 43.0% 65.2% 4.0 4.0 1.0 1.0 0.0 0.0 5.0 5.0 Lag Yes C-Max C-Max 53.0 83.0 83.0 0.39 0.61 0.61 0.57 0.63 0.63 33.0 24.0 7.3 0.0 5.5 0.2 33.0 29.5 7.5 C C A 275 70 134 304 m130 136 262 240 197 1967 391 3126 0 92 392 0 0 0 0 0 0 0 0 0.57 0.83 0.73	6 4 2 13 6 4 10.0 5.0 5.0 25.0 25.0 32.0 58.0 88.0 47.0 43.0% 65.2% 34.8% 4.0 4.0 4.0 1.0 0.0 0.0 5.0 5.0 Lag Yes C-Max C-Max Max 53.0 83.0 83.0 0.39 0.61 0.61 0.57 0.63 0.63 33.0 24.0 7.3 0.0 5.5 0.2 33.0 29.5 7.5 C C A 275 70 134 33.0 9.9 C A 275 70 134 304 m130 136 262 240 197 50 1967 391 3126 0 92 392 0 0 0 0 0 0.57 0.83 0.73	6 4 4 4 4 1 10.0 2 11.3 6 5.0 5.0 5.0 5.0 25.0 25.0 32.0 32.0 32.0 58.0 88.0 47.0 47.0 47.0 43.0% 65.2% 34.8% 34.8% 4.0 4.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1

MS Synchro 9 Report Page 22

Natural Cycle: 80

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: PM

Lane Group Ø1 Ø3
LaneConfigurations
Traffic Volume (vph)
Future Volume (vph)
Confl. Peds. (#/hr)
Confl. Bikes (#/hr)
Peak Hour Factor
Adj. Flow (vph)
Shared Lane Traffic (%)
Lane Group Flow (vph)
Turn Type
Protected Phases 1 3
Permitted Phases
Detector Phase
Switch Phase
Minimum Initial (s) 5.0 8.0
Minimum Split (s) 10.0 13.0
Total Split (s) 15.0 15.0
Total Split (%) 11% 11%
Yellow Time (s) 4.0 4.0
All-Red Time (s) 1.0 1.0
Lost Time Adjust (s)
Total Lost Time (s)
Lead/Lag Lead
Lead-Lag Optimize? Yes
Recall Mode Min None
Act Effct Green (s)
Actuated g/C Ratio
v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS
Queue Length 50th (ft)
Queue Length 95th (ft)
Internal Link Dist (ft)
Turn Bay Length (ft)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

Synchro 9 Report Page 23 MS

34: Guadalupe St & W. 15th St

2020 Background
Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.74

Intersection Signal Delay: 24.1 Intersection Capacity Utilization 75.3% ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: C ICU Level of Service D

Splits and Phases: 34: Guadalupe St & W. 15th St

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	*	1	←	•	1	Ť	_	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተተ			ተተኈ			414	7			
Traffic Volume (vph)	88	900	0	0	1606	66	385	862	157	0	0	0
Future Volume (vph)	88	900	0	0	1606	66	385	862	157	0	0	0
Confl. Peds. (#/hr)	47					47	30		18			
Confl. Bikes (#/hr)			2						27			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	98	1000	0	0	1784	73	428	958	174	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	98	1000	0	0	1857	0	0	1386	174	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0	33.0			
Total Split (s)	20.0	86.0			66.0		49.0	49.0	49.0			
Total Split (%)	14.8%	63.7%			48.9%		36.3%	36.3%	36.3%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			6.0	6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	81.0	81.0			66.8			43.0	43.0			
Actuated g/C Ratio	0.60	0.60			0.49			0.32	0.32			
v/c Ratio	0.56	0.33			0.74			0.88	0.31			
Control Delay	58.9	3.5			11.9			51.3	13.1			
Queue Delay	0.0	0.1			0.0			0.0	0.0			
Total Delay	58.9	3.6			11.9			51.3	13.1			
LOS	E	Α			В			D	В			
Approach Delay		8.5			11.9			47.0				
Approach LOS		Α			В			D				
Queue Length 50th (ft)	51	48			117			421	33			
Queue Length 95th (ft)	m108	51			116			485	92		004	
Internal Link Dist (ft)	F0	240			335			116			281	
Turn Bay Length (ft)	50	2054			0.405			4570	550			
Base Capacity (vph)	247	3051			2495			1573	558			
Starvation Cap Reductn	0	837			0			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0	0			0 74			0	0			
Reduced v/c Ratio	0.40	0.45			0.74			0.88	0.31			

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

MS Synchro 9 Report Page 25

35: Lavaca St & W. 15th St

2020 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.88 Intersection Signal Delay: 23.2 Intersection Capacity Utilization 75.3% Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 35: Lavaca St & W. 15th St

MS Synchro 9 Report

36: Colorado St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	—	•	4	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, j	ተ ተጉ		٦	† †			4			ર્ન	7
Traffic Volume (vph)	27	1060	21	22	1374	14	8	26	108	127	6	267
Future Volume (vph)	27	1060	21	22	1374	14	8	26	108	127	6	267
Confl. Peds. (#/hr)	32		34	34		32	96		6	6		96
Confl. Bikes (#/hr)			1			2			2			1
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	31	1218	24	25	1579	16	9	30	124	146	7	307
Shared Lane Traffic (%)												
Lane Group Flow (vph)	31	1242	0	25	1595	0	0	163	0	0	153	307
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	custom
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		6
Detector Phase	5	2		1	6		4	4		8	8	6
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	15.0
Minimum Split (s)	10.0	20.0		10.0	22.0		36.0	36.0		10.0	10.0	22.0
Total Split (s)	10.0	79.0		10.0	79.0		46.0	46.0		46.0	46.0	79.0
Total Split (%)	7.4%	58.5%		7.4%	58.5%		34.1%	34.1%		34.1%	34.1%	58.5%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	C-Max
Act Effct Green (s)	81.0	78.0		81.0	78.0			41.0			41.0	78.0
Actuated g/C Ratio	0.60	0.58		0.60	0.58			0.30			0.30	0.58
v/c Ratio	0.18	0.42		0.10	0.54			0.29			0.49	0.37
Control Delay	6.2	6.3		5.1	8.7			13.5			45.1	2.9
Queue Delay	0.0	0.2		0.0	0.1			0.0			0.0	0.0
Total Delay	6.2	6.5		5.1	8.9			13.5			45.1	2.9
LOS	А	Α		Α	Α			В			D	Α
Approach Delay		6.5			8.8			13.5			17.0	
Approach LOS		Α			Α			В			В	
Queue Length 50th (ft)	0	102		3	345			32			110	0
Queue Length 95th (ft)	0	118		6	157			83			175	37
Internal Link Dist (ft)		335			362			155			114	
Turn Bay Length (ft)	90			90								100
Base Capacity (vph)	172	2927		242	2928			567			310	828
Starvation Cap Reductn	0	687		0	352			0			0	0
Spillback Cap Reductn	0	0		0	37			0			0	8
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.18	0.55		0.10	0.62			0.29			0.49	0.37
1.1												

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 75

Synchro 9 Report Page 27 MS

36: Colorado St & W. 15th St

2020 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.54 Intersection Signal Delay. 9.2 Intersection Capacity Utilization 87.6% Analysis Period (min) 15

Intersection LOS: A ICU Level of Service E

Splits and Phases: 36: Colorado St & W. 15th St

MS Synchro 9 Report

37: N. Congress Ave & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	-	•	•	_	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ተተ _ጉ		ሻ	ተተተ		7
Traffic Volume (vph)	1353	0	0	1175	0	1
Future Volume (vph)	1353	0	0	1175	0	1
Confl. Peds. (#/hr)		48	48		40	14
Confl. Bikes (#/hr)						4
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	1573	0	0	1366	0	1
Shared Lane Traffic (%)	· · ·					
Lane Group Flow (vph)	1573	0	0	1366	0	1
Turn Type	NA		pm+pt	NA	J	Perm
Protected Phases	2		1	6		I GIIII
Permitted Phases			6	J		4
Detector Phase	2		1	6		4
Switch Phase	2			J		7
Minimum Initial (s)	5.0		5.0	5.0		5.0
	25.0		10.0	25.0		33.0
Minimum Split (s)	92.0		10.0	102.0		33.0
Total Split (s)						
Total Split (%)	68.1%		7.4%	75.6%		24.4%
Yellow Time (s)	4.0		4.0	4.0		4.0
All-Red Time (s)	1.0		1.0	1.0		1.0
Lost Time Adjust (s)	0.0		0.0	0.0		0.0
Total Lost Time (s)	5.0		5.0	5.0		5.0
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		Max
Act Effct Green (s)	97.0			97.0		28.0
Actuated g/C Ratio	0.72			0.72		0.21
v/c Ratio	0.43			0.37		0.00
Control Delay	4.5			10.3		0.0
Queue Delay	0.0			0.1		0.0
Total Delay	4.5			10.5		0.0
LOS	A			В		Α
Approach Delay	4.5			10.5		
Approach LOS	A			В		
Queue Length 50th (ft)	78			321		0
Queue Length 95th (ft)	90			77		0
Internal Link Dist (ft)	362			356	125	J
Turn Bay Length (ft)	302			330	123	
Base Capacity (vph)	3653			3653		394
	408			1059		394
Starvation Cap Reductn						0
Spillback Cap Reductn	0			292		
Storage Cap Reductn	0 40			0		0
Reduced v/c Ratio	0.48			0.53		0.00
Intersection Summary						
Cycle Length: 135						
Actuated Cycle Length: 13	5					
Offset: 0 (0%), Referenced	to phase 2:1	EBT and	6:WBTL	Start of G	reen	
Natural Cycle: 70	p					

MS Synchro 9 Report Page 29

37: N. Congress Ave & W. 15th St

2020 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.43 Intersection Signal Delay: 7.3 Intersection Capacity Utilization 57.8% Analysis Period (min) 15

Intersection LOS: A ICU Level of Service B

Splits and Phases: 37: N. Congress Ave & W. 15th St

MS Synchro 9 Report

38: Brazos St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	•	•	1	Ť	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ _ጉ		ሻ	ተ ተ ጮ			ર્ની	7		4	
Traffic Volume (vph)	5	1341	37	9	1034	5	130	3	114	63	3	85
Future Volume (vph)	5	1341	37	9	1034	5	130	3	114	63	3	85
Confl. Peds. (#/hr)	8		9	9		8	5		19	19		5
Confl. Bikes (#/hr)						1						1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	5	1442	40	10	1112	5	140	3	123	68	3	91
Shared Lane Traffic (%)												
Lane Group Flow (vph)	5	1482	0	10	1117	0	0	143	123	0	162	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4		4	8		
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0	32.0	32.0	32.0	
Total Split (s)	12.0	77.0		12.0	77.0		46.0	46.0	46.0	46.0	46.0	
Total Split (%)	8.9%	57.0%		8.9%	57.0%		34.1%	34.1%	34.1%	34.1%	34.1%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Act Effct Green (s)	99.4	99.4		99.6	99.6			23.2	23.2		23.2	
Actuated g/C Ratio	0.74	0.74		0.74	0.74			0.17	0.17		0.17	
v/c Ratio	0.01	0.40		0.04	0.30			0.84	0.36		0.72	
Control Delay	5.0	3.6		12.2	11.2			89.7	15.2		53.3	
Queue Delay	0.0	0.0		0.0	0.1			0.0	0.0		0.0	
Total Delay	5.0	3.7		12.2	11.3			89.7	15.2		53.3	
LOS	Α	A		В	В			F	В		D	
Approach Delay		3.7			11.3			55.3			53.3	
Approach LOS		A			В			E	4.0		D	
Queue Length 50th (ft)	0	42		3	140			123	18		95	
Queue Length 95th (ft)	m2	87		m11	281			190	69		165	
Internal Link Dist (ft)	100	356		40	297			199	F0		273	
Turn Bay Length (ft)	100	0707		40	0740			200	50		0/1	
Base Capacity (vph)	363	3726		289	3748			302	530		361	
Starvation Cap Reductn	0	445		0	1345			0	0		0	
Spillback Cap Reductn	0	138		0	0			0	2		1	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.01	0.45		0.03	0.46			0.47	0.23		0.45	

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 65

MS Synchro 9 Report Page 31

38: Brazos St & W. 15th St

2020 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection LOS: B

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.84

Intersection Signal Delay: 13.6

Intersection Capacity Utilization 65.8%

ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. ICU Level of Service C

Splits and Phases: 38: Brazos St & W. 15th St

MS Synchro 9 Report

39: San Jacinto Blvd & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	*	1	•	•	1	Ť	~	-	¥	4
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		ተተ _ጉ		7	^						ተተቡ	
raffic Volume (vph)	0	1635	112	65	842	0	0	0	0	269	624	30
uture Volume (vph)	0	1635	112	65	842	0	0	0	0	269	624	30
Confl. Peds. (#/hr)			11	11						31		
Confl. Bikes (#/hr)												
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.9
Adj. Flow (vph)	0	1758	120	70	905	0	0	0	0	289	671	32
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	1878	0	70	905	0	0	0	0	0	960	32
Furn Type		NA		pm+pt	NA					Perm	NA	Per
Protected Phases		2		1	6						4	
Permitted Phases				6						4		
Detector Phase		2		1	6					4	4	
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					7.0	7.0	7.
Minimum Split (s)		28.0		8.0	28.0					32.0	32.0	32
Fotal Split (s)		80.0		15.0	95.0					40.0	40.0	40
Fotal Split (%)		59.3%		11.1%	70.4%					29.6%	29.6%	29.6
/ellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.
ost Time Adjust (s)		0.0		0.0	0.0					1.0	0.0	0
Fotal Lost Time (s)		5.0		5.0	5.0						5.0	5.
_ead/Lag		Lag		Lead	0.0						0.0	0.
_ead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					None	None	Non
Act Effct Green (s)		81.1		91.4	91.4					140110	33.6	33
Actuated g/C Ratio		0.60		0.68	0.68						0.25	0.2
/c Ratio		0.62		0.40	0.26						0.78	0.7
Control Delay		8.6		26.1	7.6						52.2	40.
Queue Delay		0.2		0.0	0.2						0.0	0.
Fotal Delay		8.7		26.1	7.7						52.2	40.
OS		A		C	A						D	
Approach Delay		8.7		Ū	9.0						49.3	
Approach LOS		A			A						D	
Queue Length 50th (ft)		145		29	93						284	18
Queue Length 95th (ft)		286		m61	113						338	29
nternal Link Dist (ft)		297		11101	282			125			272	۷,
Furn Bay Length (ft)		2//		70	202			120			212	5
Base Capacity (vph)		3022		203	3442						1280	47
Starvation Cap Reductn		319		0	1386						0	7,
Spillback Cap Reductn		0		0	153						0	
Storage Cap Reductn		0		0	0						0	
Reduced v/c Ratio		0.69		0.34	0.44						0.75	0.6
ntersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												

MS Synchro 9 Report Page 33

39: San Jacinto Blvd & W. 15th St

2020 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.78

Intersection Signal Delay: 21.4

Intersection Capacity Utilization 68.5%

ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: C ICU Level of Service C

Splits and Phases: 39: San Jacinto Blvd & W. 15th St

MS Synchro 9 Report Page 34

40: Trinity St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	٠	-	\rightarrow	•	←	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ			ተ ተጉ			414	7			
Traffic Volume (vph)	88	1595	0	0	736	96	176	303	278	0	0	0
Future Volume (vph)	88	1595	0	0	736	96	176	303	278	0	0	0
Confl. Peds. (#/hr)	2					2	7		8			
Confl. Bikes (#/hr)									8			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	92	1661	0	0	767	100	183	316	290	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	92	1661	0	0	867	0	0	499	290	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		35.0	35.0	35.0			
Total Split (s)	10.0	100.0			90.0		35.0	35.0	35.0			
Total Split (%)	7.4%	74.1%			66.7%		25.9%	25.9%	25.9%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	95.0	95.0			85.0			30.0	30.0			
Actuated g/C Ratio	0.70	0.70			0.63			0.22	0.22			
v/c Ratio	0.22	0.46			0.27			0.65	0.75			
Control Delay	4.5	4.5			7.1			52.3	52.6			
Queue Delay	0.0	0.1			0.0			0.0	0.0			
Total Delay	4.5	4.6			7.1			52.3	52.6			
LOS	Α	Α			Α			D	D			
Approach Delay		4.6			7.1			52.4				
Approach LOS		Α			Α			D				
Queue Length 50th (ft)	12	81			83			211	195			
Queue Length 95th (ft)	m19	88			m83			273	#322			
Internal Link Dist (ft)		282			641			149			621	
Turn Bay Length (ft)	100											
Base Capacity (vph)	409	3578			3154			769	385			
Starvation Cap Reductn	0	748			0			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.22	0.59			0.27			0.65	0.75			
Intersection Cummens												

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 75

MS Synchro 9 Report Page 35

40: Trinity St & W. 15th St

2020 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.75

Intersection LOS: B ICU Level of Service C

-4 ø2 **(₹**)

Intersection Signal Delay: 16.3 Intellection Capacity Utilization 68.5% ICU

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 40: Trinity St & W. 15th St

MS Synchro 9 Report Page 36

TIA for Texas Capitol Complex Master Plan 2018 Update

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	6	70	14	0	62	36	9	0	15	89	151
Future Vol, veh/h	0	6	70	14	0	62	36	9	0	15	89	151
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	8	90	18	0	79	46	12	0	19	114	194
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		9.3				9.7				10.5		
HCM LOS		Α				Α				В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	6%	7%	58%	14%	
Vol Thru, %	35%	78%	34%	55%	
Vol Right, %	59%	16%	8%	31%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	255	90	107	132	
LT Vol	15	6	62	18	
Through Vol	89	70	36	73	
RT Vol	151	14	9	41	
Lane Flow Rate	327	115	137	169	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.404	0.166	0.201	0.226	
Departure Headway (Hd)	4.451	5.172	5.28	4.806	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	801	685	672	740	
Service Time	2.516	3.265	3.371	2.884	
HCM Lane V/C Ratio	0.408	0.168	0.204	0.228	
HCM Control Delay	10.5	9.3	9.7	9.3	
HCM Lane LOS	В	Α	Α	Α	
HCM 95th-tile Q	2	0.6	0.7	0.9	

TIA for Texas Capitol Complex Master Plan 2018 Update

11: Colorado St & W. 18th St

2020 Background Timing Plan: PM

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Intersection EOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	18	73	41
Future Vol, veh/h	0	18	73	41
Peak Hour Factor	0.78	0.78	0.78	0.78
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	23	94	53
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		9.3		
HCM LOS		Α		

12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background Timing Plan: PM

Intersection	
Intersection Delay, s/veh	8.8
Intersection LOS	Α

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ર્ન				f)				†	
Traffic Vol, veh/h	0	0	240	0	0	0	166	0	0	0	0	0
Future Vol, veh/h	0	0	240	0	0	0	166	0	0	0	0	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	279	0	0	0	193	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach			EB				WB				NB	
Opposing Approach			WB				EB				SB	
Opposing Lanes			1				1				1	
Conflicting Approach Left			SB				NB				EB	
Conflicting Lanes Left			1				1				1	
Conflicting Approach Right			NB				SB				WB	
Conflicting Lanes Right			1				1				1	
HCM Control Delay			9.1				8.4				0	
HCM LOS			Α				Α				-	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	0%	
Vol Right, %	0%	0%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	240	166	12	
LT Vol	0	0	0	0	
Through Vol	0	240	166	0	
RT Vol	0	0	0	12	
Lane Flow Rate	0	279	193	14	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0.318	0.223	0.017	
Departure Headway (Hd)	4.964	4.102	4.165	4.337	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	871	853	830	
Service Time	2.965	2.155	2.235	2.337	
HCM Lane V/C Ratio	0	0.32	0.226	0.017	
HCM Control Delay	8	9.1	8.4	7.4	
HCM Lane LOS	N	Α	Α	Α	
HCM 95th-tile Q	0	1.4	0.9	0.1	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations				7
Traffic Vol, veh/h	0	0	0	12
Future Vol, veh/h	0	0	0	12
Peak Hour Factor	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	0	0	14
Number of Lanes	0	0	0	1
Number of Earles	U	U	U	'
Approach				SB
Opposing Approach				NB
Opposing Lanes				1
Conflicting Approach Left				WB
Conflicting Lanes Left				1
Conflicting Approach Right				EB
Conflicting Lanes Right				1
HCM Control Delay				7.4
HCM LOS				Α.
HCIVI EUS				A

Intersection	
Intersection Delay, s/veh	12.9
Intersection LOS	В

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	29	174	25	0	10	44	5	0	183	160	0
Future Vol, veh/h	0	29	174	25	0	10	44	5	0	183	160	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	34	202	29	0	12	51	6	0	213	186	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		12.1				9.6				15.2		
HCM LOS		В				Α				С		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	53%	13%	17%	0%	
Vol Thru, %	47%	76%	75%	46%	
Vol Right, %	0%	11%	8%	54%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	343	228	59	123	
LT Vol	183	29	10	0	
Through Vol	160	174	44	56	
RT Vol	0	25	5	67	
Lane Flow Rate	399	265	69	143	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.578	0.402	0.111	0.205	
Departure Headway (Hd)	5.213	5.453	5.84	5.172	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	694	660	613	692	
Service Time	3.242	3.489	3.888	3.213	
HCM Lane V/C Ratio	0.575	0.402	0.113	0.207	
HCM Control Delay	15.2	12.1	9.6	9.6	
HCM Lane LOS	С	В	Α	Α	
HCM 95th-tile Q	3.7	1.9	0.4	0.8	

14: Brazos St & W. 18th St

ntersection		

Intersection				
Intersection Delay, s/veh	11			
Intersection LOS	В			

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ĵ.				ર્ન					
Traffic Vol, veh/h	0	0	48	155	0	35	23	0	0	0	0	0
Future Vol, veh/h	0	0	48	155	0	35	23	0	0	0	0	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	51	163	0	37	24	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	0	0
Approach			EB			WB						
Opposing Approach			WB			EB						
Opposing Lanes			1			1						
Conflicting Approach Left			SB									
Conflicting Lanes Left			3			0						
Conflicting Approach Right						SB						
Conflicting Lanes Right			0			3						
HCM Control Delay			10.6			10						
HCM LOS			В			Α						

Lane	EBLn1	WBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	0%	60%	0%	0%	0%
Vol Thru, %	24%	40%	100%	100%	0%
Vol Right, %	76%	0%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	203	58	254	254	12
LT Vol	0	35	0	0	0
Through Vol	48	23	254	254	0
RT Vol	155	0	0	0	12
Lane Flow Rate	214	61	267	267	13
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.318	0.108	0.391	0.391	0.01
Departure Headway (Hd)	5.356	6.383	5.28	5.28	2.831
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	667	557	678	678	1243
Service Time	3.126	4.173	3.047	3.047	0.597
HCM Lane V/C Ratio	0.321	0.11	0.394	0.394	0.01
HCM Control Delay	10.6	10	11.4	11.4	5.6
HCM Lane LOS	В	Α	В	В	Α
HCM 95th-tile Q	1.4	0.4	1.9	1.9	0

Intersection						
Intersection Delay, s/veh						
Intersection LOS						
Movement	SBU	SBL	SBT	SBR		
Lane Configurations			4₽	7		
Traffic Vol, veh/h	0	0	507	12		
Future Vol, veh/h	0	0	507	12		
Peak Hour Factor	0.95	0.95	0.95	0.95		
Heavy Vehicles, %	2	2	2	2		
Mvmt Flow	0	0	534	13		
Number of Lanes	0	0	2	1		
Approach			SB			
Opposing Approach						
Opposing Lanes			0			
Conflicting Approach Left			WB			
Conflicting Lanes Left			1			
Conflicting Approach Right			EB			
Conflicting Lanes Right			1			
HCM Control Delay			11.3			
HCM LOS			В			

16: San Jacinto Blvd & W. 18th St

Intersection				
Intersection Delay, s/veh	8.5			
I-t	۸			

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	77	0	15	0	0	0	0	0	15	129	0
Future Vol, veh/h	0	77	0	15	0	0	0	0	0	15	129	0
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	94	0	18	0	0	0	0	0	18	157	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB					WB			NB		
Opposing Approach		WB					EB			SB		
Opposing Lanes		1					1			1		
Conflicting Approach Left		SB					NB			EB		
Conflicting Lanes Left		1					1			1		
Conflicting Approach Right		NB					SB			WB		
Conflicting Lanes Right		1					1			1		
HCM Control Delay		8.7					0			8.7		
HCM LOS		Α					-			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	10%	84%	0%	0%	
Vol Thru, %	90%	0%	100%	47%	
Vol Right, %	0%	16%	0%	53%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	144	92	0	159	
LT Vol	15	77	0	0	
Through Vol	129	0	0	74	
RT Vol	0	15	0	85	
Lane Flow Rate	176	112	0	194	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.216	0.15	0	0.22	
Departure Headway (Hd)	4.429	4.8	4.885	4.084	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	811	748	0	880	
Service Time	2.448	2.823	2.916	2.101	
HCM Lane V/C Ratio	0.217	0.15	0	0.22	
HCM Control Delay	8.7	8.7	7.9	8.3	
HCM Lane LOS	Α	Α	N	Α	
HCM 95th-tile Q	0.8	0.5	0	0.8	

Intersection						
Intersection Delay, s/veh						
Intersection LOS						
Movement	SBU	SBL	SBT	SBR		
Lane Configurations			4			
Traffic Vol, veh/h	0	0	74	85		
Future Vol, veh/h	0	0	74	85		
Peak Hour Factor	0.82	0.82	0.82	0.82		
Heavy Vehicles, %	2	2	2	2		
Mvmt Flow	0	0	90	104		
Number of Lanes	0	0	1	0		
Approach			SB			
Opposing Approach			NB			
Opposing Lanes			1			
Conflicting Approach Left			WB			
Conflicting Lanes Left			1			
Conflicting Approach Right			EB			
Conflicting Lanes Right			1			
HCM Control Delay			8.3			
HCM LOS			Α			

20: Colorado St & E. 17th St

24: E. 17th St & Brazos St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background Timing Plan: PM

Movement	EBU	EBL	EBT	WBU	WBT	WBR	SBU	SBL	SBR
Lane Configurations			ર્ન		4î			Y	
Traffic Vol, veh/h	0	0	0	0	0	50	0	94	0
Future Vol, veh/h	0	0	0	0	0	50	0	94	0
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	62	0	116	0
Number of Lanes	0	0	1	0	1	0	0	1	0
Approach			EB		WB			SB	
Opposing Approach			WB		EB				
Opposing Lanes			1		1			0	
Conflicting Approach Left			SB					WB	
Conflicting Lanes Left			1		0			1	
Conflicting Approach Right					SB			EB	
Conflicting Lanes Right			0		1			1	
HCM Control Delay			0		6.8			7.9	
HCM LOS			-		A			Α	

Lane	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	100%	
Vol Thru, %	100%	0%	0%	
Vol Right, %	0%	100%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	0	50	94	
LT Vol	0	0	94	
Through Vol	0	0	0	
RT Vol	0	50	0	
Lane Flow Rate	0	62	116	
Geometry Grp	1	1	1	
Degree of Util (X)	0	0.061	0.137	
Departure Headway (Hd)	4.185	3.535	4.242	
Convergence, Y/N	Yes	Yes	Yes	
Cap	0	1001	848	
Service Time	2.259	1.602	2.254	
HCM Lane V/C Ratio	0	0.062	0.137	
HCM Control Delay	7.3	6.8	7.9	
HCM Lane LOS	N	Α	Α	
HCM 95th-tile Q	0	0.2	0.5	

MS Synchro 9 Report Page 11

EBT EBR

↑î→ 626

626 33

0

0

94 94

666 35

0 0

NBLn1 EBT EBR WBL WBT

- - 877 - - 0.039

- - 9.3 - - A - - 0.1

577

13

В

0.218

Major1

Free Free

- None

2

WBL WBT

32 1219

32 1219

8 0

- None

0

Free Free

40

94 94

2 2

Major2

709 0

2.22

886

34 1297

NBL

2

0

0

Minor1

1408

692

716

6.84

5.84

5.84

3.52

130

458

124

124

455

428

13

Stop

116

116

11

Stop

None

94

123

370

6.94

3.32

627

616

Intersection
Int Delay, s/veh
Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, # Grade, %

Traffic Vol, veh/h

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2 Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Approach
HCM Control Delay, s

Minor Lane/Major Mvmt

Capacity (veh/h) HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

HCM LOS

Follow-up Hdwy

Mymt Flow

Major/Minor

Critical Hdwy

2020 Background

Timing Plan: PM

Intersection 0	2											
	.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		^	7		ર્ન						414	
Traffic Vol, veh/h	0	20	11	84	94	0	0	0	0	26	964	2
Future Vol, veh/h	0	20	11	84	94	0	0	0	0	26	964	2
Conflicting Peds, #/hr	0	0	0	54	0	0	0	0	0	0	0	4
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Fre
RT Channelized		-	None	-	-	None	-	-	None	-	-	Non
Storage Length	-	-	0	-	-	-	-	-	-	-		
Veh in Median Storage, #	-	0	-	-	0	-	-	-	-	-	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	21	11	87	97	0	0	0	0	27	994	2
Major/Minor	Minor2			Minor1						Major2		
Conflicting Flow All	-	1100	603	615	1111	-				0	0	
Stage 1		1100	-	0.13	0					-	-	
Stage 2		0		615	1111							
Critical Hdwy		6.54	6.94	7.54	6.54					4.14		
Critical Hdwy Stg 1		5.54	0.71	7.01	0.01					-		
Critical Hdwy Stg 2		0.01		6.54	5.54							
Follow-up Hdwy		4.02	3.32	3.52	4.02					2.22		
Pot Cap-1 Maneuver	0	211	442	375	208	0				2.22		
Stage 1	0	286	- 112	-	200	0						
Stage 2	0	200		445	283	0						
Platoon blocked, %	0			110	200	U						
Mov Cap-1 Maneuver		203	425	337	200							
Mov Cap-2 Maneuver		203	120	337	200							
Stage 1		275		337	200					_		
Stage 2		213		401	272							
Stage 2				401	212							
Approach	EB			WB						SB		
HCM Control Delay, s	20.8			52.4								
HCM LOS	С			F								
Minor Lane/Major Mvmt	EBLn1	EDI nOl	MDI n1	SBL SBT	SBR							
	203	425	247	JDL JDI	JDK							
Capacity (veh/h)		0.027	0.743									
HCM Captrol Polov (a)	24.7	13.7	52.4									
HCM Control Delay (s)	24.7 C	13.7 B	52.4 F		-							
HCM Lane LOS					-							
HCM 95th %tile Q(veh)	0.3	0.1	5.2		-							

MS	Synchro 9 Report
	Page 1

MS Synchro 9 Report
Page 2

EBL EBT EBR

43

0 0

0

95 95

2 2

45

0

0

NBL NBT NBR EBLn1WBLn1

- - 193 228

- - 0.289 0.369

- - 31.1 29.8

- - D D - - 1.1 1.6

- None

Stop Stop Stop

10 43 0

Minor2

586 1160

25 25

561 1135

6.44 6.54

6.74 5.54

3.82 4.02

297 178

297 178

303 259 EB

31.1

0.059

8.4

Α

0.2

D

444 194 0

437 275 0

Intersection
Int Delay, s/veh
Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, # Grade, %

Traffic Vol, veh/h

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt Capacity (veh/h)

HCM Lane V/C Ratio

HCM Lane LOS

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Approach
HCM Control Delay, s

HCM LOS

Follow-up Hdwy

Mymt Flow

Major/Minor

Critical Hdwy

SBL SBT SBR

Free Free Free

- - None

0

95 95

2 2

0

0

0 0 0

NBL NBT NBR

Free Free Free

0

0 0

- None

52

52

55

↑ ↑↑

63 900

25 0

0

95 95 95

2 2

3.12

1124

0.5

66 947

54 26

0 21

- None

0

- 1132 522

- 6.54 7.14

- 4.02 3.92

0 202 428

0 - -

- 186 428

- 1107

- 25

- 5.54

0 284

- 186

- 267

29.8

D

95 95

Stop Stop Stop

0 54 26

95

2 2 2

0 57 27

Minor1

Intersection													
Int Delay, s/veh	4.5												
Movement	EBL	EBT	EBR	١	NBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ની				ĵ.		*	^ ^				
Traffic Vol, veh/h	129	0	0		0	0	0	140	488	0	0	0	(
Future Vol, veh/h	129	0	0		0	0	0	140	488	0	0	0	(
Conflicting Peds, #/hr	0	0	18		0	0	0	21	0	0	0	0	(
Sign Control	Stop	Stop	Stop		Free	Free	Free	Free	Free	Free	Stop	Stop	Stop
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	None
Storage Length	-	-	-		-	-	-	115	-	-	-	-	
Veh in Median Storage, #	-	0	-		-	0	-	-	0	-	-	-	
Grade, %	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	85	85	85		85	85	85	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mvmt Flow	152	0	0		0	0	0	165	574	0	0	0	(
Major/Minor	Minor2			Ma	ajor2			Major1					
Conflicting Flow All	581	926	-		-	-	0	22	0	-			
Stage 1	22	22	-		-	-	-	-	-	-			
Stage 2	559	904	-		-	-	-	-	-	-			
Critical Hdwy	6.08	6.53	-		-	-	-	4.13	-	-			
Critical Hdwy Stg 1	5.43	5.53	-		-	-	-	-	-	-			
Critical Hdwy Stg 2	6.03	5.53	-		-	-	-		-	-			
Follow-up Hdwy	3.669	4.019	-		-	-	-	2.219	-	-			
Pot Cap-1 Maneuver	487	268	0		0	-	-	1593	-	0			
Stage 1	960	877	0		0	-	-	-	-	0			
Stage 2	505	355	0		0	-	-	-	-	0			
Platoon blocked, %						-	-		-				
Mov Cap-1 Maneuver	419	0	-		-	-	-	1593	-	-			
Mov Cap-2 Maneuver	419	0	-		-	-	-	-	-	-			
Stage 1	941	0	-		-	-	-	-	-	-			
Stage 2	444	0	-		-	-	-		-	-			
Annroach	EB				WB			NB					
Approach	18.4				0			1.7					
HCM Control Delay, s	18.4 C				U			1.7					
HCM LOS	C												
Minor Lane/Major Mvmt	NBL	NRT	EBLn1	WBT V	VBR								
	1593	INDI	419	VVDI V	VDK								
Capacity (veh/h) HCM Lane V/C Ratio	0.103		0.362										
HCM Control Delay (s)	7.5		18.4	-	-								
HCM Lane LOS	7.5 A		10.4 C										
	0.3		1.6	-	-								
HCM 95th %tile Q(veh)	0.3	-	1.6	-	-								

MS	Synchro 9 Report
	Page 3

Intersection													
Int Delay, s/veh	9.4												
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			ની						414	7
Traffic Vol, veh/h	0	49	61		35	23	0	0	0	0	104	851	0
Future Vol, veh/h	0	49	61		35	23	0	0	0	0	104	851	0
Conflicting Peds, #/hr	0	0	19		0	0	0	0	0	0	94	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	None
Storage Length	-	-	50		-		-	-	-	-	-	-	50
Veh in Median Storage, #	-	0	-		-	0	-	-	-	-	-	0	-
Grade, %	-	0	-		-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85		85	85	85	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mvmt Flow	0	58	72		41	27	0	0	0	0	122	1001	0
Major/Minor	Minor2			N	/linor1						Major2		
Conflicting Flow All	-	1340	520		887	1340	-				94	0	0
Stage 1		1246	-		94	94	-				-	-	-
Stage 2		94			793	1246	-						
Critical Hdwy		6.54	6.94		7.54	6.54	-				4.14	-	-
Critical Hdwy Stg 1		5.54	-		-	-	-				-		-
Critical Hdwy Stg 2		-			6.54	5.54	-				-	-	-
Follow-up Hdwy		4.02	3.32		3.52	4.02	-				2.22		-
Pot Cap-1 Maneuver	0	151	501		239	151	0				1498	-	-
Stage 1	0	244					0				-		-
Stage 2	0				348	244	0				-	-	-
Platoon blocked. %													-
Mov Cap-1 Maneuver	-	112	501		97	112	-				1498		
Mov Cap-2 Maneuver		112	-		97	112	-				-		
Stage 1		199			-		-				-		-
Stage 2					173	199	-				-		
- · · · g · ·													
Approach	EB				WB						SB		
HCM Control Delay, s	37.3				93						1.1		
HCM LOS	F				F								
110111 200	_												
Minor Lane/Major Mvmt	EBLn1	EBLn2\	WBLn1	SBL	SBT	SBR							
Capacity (veh/h)	112	501	102	1498	-	-							
HCM Lane V/C Ratio		0.143		0.082									
HCM Control Delay (s)	67.1	13.4	93	7.6	0.3								
HCM Lane LOS	67.1	13.4 B	73 F	7.0 A	Ο.5								
HCM 95th %tile Q(veh)	2.4	0.5	3.4	0.3	_								
HOW FOUT FOUE Q(VEH)	2.4	0.5	5.4	0.3	-	_							

Intersection						
	2.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			ተተቡ		
Traffic Vol, veh/h	129	0	0	501	0	0
Future Vol, veh/h	129	0	0	501	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Stop	None	-	None	-	None
Storage Length	0	-		-		-
Veh in Median Storage, #	0			0		
Grade, %	0			0	0	
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	155	0	0	604	0	0
WWW. I IOW	133	U	U	004	U	U
Major/Minor	Minor2		Major1			
Conflicting Flow All	241		0	0		
Stage 1	0		-	-		
Stage 2	241					
Critical Hdwy	5.74		5.34			
Critical Hdwy Stg 1	3.74		3.34			
Critical Hdwy Stg 2	6.04					
Follow-up Hdwy	3.82	-	3.12	-		
Pot Cap-1 Maneuver	727	0	J. 12	_		
Stage 1	121	0				
Stage 2	713	0				
Platoon blocked. %	713	U				
Mov Cap-1 Maneuver	727					
Mov Cap-1 Maneuver	727					
Stage 1	121					
Stage 2	713	-				
Staye 2	/13					
Approach	EB		NB			
HCM Control Delay, s	11.3		0			
HCM LOS	В		0			
Minor Lane/Major Mvmt	NBL	NBT EBLn1				
Capacity (veh/h)	-	- 727				
HCM Lane V/C Ratio		- 0.214				
HCM Control Delay (s)	0	- 11.3				
HCM Lane LOS	A	- B				
HCM 95th %tile Q(veh)	-	- 0.8				
2(1011)		0.0				

Intersection												
Int Delay, s/veh	19											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ĥ			ર્ન						414	7
Traffic Vol, veh/h	0	20	11	85	94	0	0	0	0	26	1053	23
Future Vol, veh/h	0	20	11	85	94	0	0	0	0	26	1053	23
Conflicting Peds, #/hr	0	0	0	24	0	0	0	0	0	0	0	42
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	0
Veh in Median Storage, #	-	0	-	-	0	-	-	-	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	23	13	98	108	0	0	0	0	30	1210	26
Major/Minor	Minor			Minor1						Major		

Major/Minor	Minor2			Minor1			Major2		
Conflicting Flow All	-	1312	671	700	1312	-	0	0	0
Stage 1	-	1312	-	0	0	-		-	-
Stage 2	-	0	-	700	1312	-	-	-	-
Critical Hdwy	-	6.54	6.94	7.54	6.54	-	4.14	-	-
Critical Hdwy Stg 1	-	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2		-	-	6.54	5.54	-		-	-
Follow-up Hdwy	-	4.02	3.32	3.52	4.02	-	2.22	-	-
Pot Cap-1 Maneuver	0	157	399	326	157	0		-	-
Stage 1	0	227	-	-	-	0	-	-	-
Stage 2	0	-	-	396	227	0		-	-
Platoon blocked, %								-	-
Mov Cap-1 Maneuver		151	383	278	151	-		-	-
Mov Cap-2 Maneuver	-	151	-	278	151	-	-	-	-
Stage 1	-	218	-	-	-	-		-	-
Stage 2	-	-	-	343	218	-	-	-	-
Approach	EB			WB			SB		
HCM Control Delay, s	28			134.3					
HCM LOS	D			F					

Minor Lane/Major Mvmt	EBLn1V	VBLn1	SBL	SBT	SBR
0 " (1 ")	400	400			
Capacity (veh/h)	192	193	-	-	-
HCM Lane V/C Ratio	0.186	1.066			
HCM Control Delay (s)	28	134.3	-	-	-
HCM Lane LOS	D	F	-	-	-
LIGHTOFIL BUIL OF T	0.7	0 /			
HCM 95th %tile Q(veh)	0.7	9.6	-	-	-

Interception												
Intersection Int Delay, s/veh	5.2											
J.												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4	_		4			4	
Traffic Vol, veh/h	6	69	14	18	35	8	15	66	41	9	360	41
Future Vol, veh/h	6	69	14	18	35	8	15	66	41	9	360	41
Conflicting Peds, #/hr	0	0	0	0	0	15	85	0	0	0	0	85
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	88	18	23	45	10	19	85	53	12	462	53
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	788	772	573	713	771	126	599	0	0	137	0	0
Stage 1	596	596	-	149	149	-	-	-	-	-	-	-
Stage 2	192	176	-	564	622	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	309	330	519	347	331	924	978	-	-	1447	-	
Stage 1	490	492	-	854	774	-	-	-	-	-	-	-
Stage 2	810	753	-	510	479	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	238	293	477	250	294	911	978	-	-	1426	-	-
Mov Cap-2 Maneuver	238	293	-	250	294	-	-	-	-	-	-	-
Stage 1	441	447		836	758		-	-	-	-	-	-
Stage 2	727	737	-	389	435	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	23.5			20.8			1.1			0.2		
HCM LOS	С			С								
		N.D.	NDE.		0.00	0.00	000					
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	978	-	-	307 305	1426	-	-					
HCM Lane V/C Ratio	0.02	-	-	0.372 0.256		-	-					
HCM Control Delay (s)	8.8	0	-	23.5 20.8	7.5	0	-					
HCM Lane LOS	Α	Α	-	C C	Α	Α	-					
HCM 95th %tile Q(veh)	0.1	-	-	1.7 1	0	-	-					

29: Colorado St & E. 16th St

EBL EBT EBR

122

0

0

2 2

0

- 6.52

- 5.52

- 5.52

- 4.018

0 895

0 895

895

895

NBT EBLn1WBLn1 SBT

895 895

- 0.168 0.17

- 9.8 9.8

- 0.6 0.6

A A

- 895

EB

9.8

0 151

81 81 81

Minor2

- None

Stop Stop Stop

0

0

0

0

0 122

WBL WBT WBR

123

0 25

- - None

0

0

0

81 81 81

2 2 2

Minor1

0 152

- 6.52

- 5.52

- 5.52

- 4.018

0 895

- 895

- 895

9.8

0 895 0

0

Stop Stop Stop

0 0 0

81 81 81

0

0

0 -

Free Free Free

0

2

0

0

0

0

- None

0 123

Intersection
Int Delay, s/veh
Movement

Lane Configurations Traffic Vol, veh/h

Conflicting Peds, #/hr

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length Veh in Median Storage, # Grade, %

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1 Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Capacity (veh/h)

HCM Lane LOS

Approach
HCM Control Delay, s

HCM LOS

Follow-up Hdwy

Mymt Flow

Major/Minor

Critical Hdwy

0 0 0

81

2 2

Free Free Free

- - None

0

0

81 81

0

21

2020 Background

Timing Plan: PM

Intersection							
Int Delay, s/veh 2	.8						
Movement	EB ⁻	EBR		WBL	WBT	NBL	NBF
Lane Configurations	1	•			ની	W	
Traffic Vol, veh/h	79			15	44	36	0
Future Vol, veh/h	79			15	44	36	0
Conflicting Peds, #/hr) ()		1	0	0	0
Sign Control	Free			Free	Free	Stop	Stop
RT Channelized		- None		-	None	-	None
Storage Length					-	0	140110
Veh in Median Storage, #	() -			0	0	
Grade, %					0	0	
Peak Hour Factor	58			58	58	58	58
Heavy Vehicles, %	2			2	2	2	2
Mymt Flow	136			26	76	62	0
IVIVITIE I TOW	130	, 0		20	70	02	
Major/Minor	Major'		N	/lajor2		Minor1	
Conflicting Flow All		0		137	0	265	137
Stage 1				-	-	137	-
Stage 2						128	
Critical Hdwy				4.12		6.42	6.22
Critical Hdwy Stg 1				1.12		5.42	- 0.22
Critical Hdwy Stg 2				-		5.42	
Follow-up Hdwy				2.218		3.518	3.318
Pot Cap-1 Maneuver				1447		724	911
Stage 1						890	
Stage 2				-		898	
Platoon blocked, %							
Mov Cap-1 Maneuver				1447		710	910
Mov Cap-2 Maneuver						710	710
Stage 1					-	889	
Stage 2						881	
3.0go 2						201	
Approach	EE	3		WB		NB	
HCM Control Delay, s	()		1.9		10.6	
HCM LOS						В	
Minor Lane/Major Mvmt	NBLn1 EB	EBR	WBL	WBT			
Capacity (veh/h)			1447	-			
HCM Lane V/C Ratio				-			
HCM Control Delay (s)	10.6		7.5	0			
HCM Lane LOS	В		Α	Α			
HCM 95th %tile Q(veh)	0.3		0.1	_			

MS Synchro 9 Report
Page 9

MS Synchro 9 Report
Page 10

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7	'		^	1
Traffic Vol, veh/h	0	60		0	1015	30
Future Vol, veh/h	0	60	0	0	1015	30
Conflicting Peds, #/hr	0	C	0	0	0	15
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	-	C	-	-		50
Veh in Median Storage, #	# 0		-	-	0	-
Grade, %	0		-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	67	0	0	1140	34
Major/Minor	Minor2				Major2	
Conflicting Flow All	-	585			- Widjoiz	0
Stage 1						-
Stage 2						
Critical Hdwy	-	7.14				
Critical Hdwy Stg 1		7.11				
Critical Hdwy Stg 2	-					
Follow-up Hdwy		3.92				
Pot Cap-1 Maneuver	0	389				
Stage 1	0					
Stage 2	0					-
Platoon blocked, %						
Mov Cap-1 Maneuver	-	383				-
Mov Cap-2 Maneuver	-					
Stage 1						-
Stage 2	-					-
ŭ						
Approach	EB				SB	
HCM Control Delay, s	16.4				0	
HCM LOS	C				U	
	C					
Minor Lane/Major Mvmt	EBLn1	SBT SBR				
Capacity (veh/h)	383	3D1 3DN				
HCM Lane V/C Ratio	0.176					
HCM Control Delay (s)	16.4					
HCM Lane LOS	10.4 C					
HCM 95th %tile Q(veh)	0.6					
TIGIVI 75(II 76(IIIE Q(VEII)	0.0					

MS Synchro 9 Report Page 11

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	\rightarrow	•	←	*	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑			^	7				ሻ	^	7
Traffic Volume (vph)	66	749	313	0	527	318	0	0	0	285	681	129
Future Volume (vph)	66	749	313	0	527	318	0	0	0	285	681	129
Confl. Peds. (#/hr)	27		19	19		27				28		19
Confl. Bikes (#/hr)			1			1						12
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	70	797	333	0	561	338	0	0	0	303	724	137
Shared Lane Traffic (%)												
Lane Group Flow (vph)	70	1130	0	0	561	338	0	0	0	303	724	137
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases						6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase												
Minimum Initial (s)	2.0	15.0			15.0	10.0				10.0	5.0	5.0
Minimum Split (s)	7.0	27.0			34.0	15.0				15.0	32.0	32.0
Total Split (s)	18.0	75.0			57.0	45.0				45.0	45.0	45.0
Total Split (%)	15.0%	62.5%			47.5%	37.5%				37.5%	37.5%	37.5%
Yellow Time (s)	4.0	4.0			4.0	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag				Lead							
Lead-Lag Optimize?	Yes	C M			Yes	Mana				Mana	Man	Man
Recall Mode	None 11.6	C-Max			C-Max 55.6	None 95.6				None 40.0	Max	Max
Act Effct Green (s) Actuated g/C Ratio	0.10	70.0 0.58			0.46	0.80				0.33	40.0 0.33	40.0 0.33
v/c Ratio	0.10	0.56			0.46	0.80				0.53	0.33	0.33
Control Delay	57.7	16.3			22.5	1.3				35.9	36.3	11.6
Queue Delay	0.0	0.0			0.0	0.1				0.0	0.0	0.0
Total Delay	57.7	16.3			22.5	1.3				35.9	36.3	11.6
LOS	57.7 E	10.3 B			22.5 C	1.3 A				33.9 D	30.3 D	П.0
Approach Delay		18.7			14.5	А				D	33.3	D
Approach LOS		В			14.3 B						33.3 C	
Queue Length 50th (ft)	51	260			146	0				188	246	23
Queue Length 95th (ft)	99	323			206	31				278	311	70
Internal Link Dist (ft)	//	228			45	31		159		210	210	70
Turn Bay Length (ft)	160	220			73			137		130	210	120
Base Capacity (vph)	191	1970			1639	1274				590	1179	567
Starvation Cap Reductn	0	0			0	140				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.37	0.57			0.34	0.30				0.51	0.61	0.24
	2.37											

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 75

MS Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

Splits and Phases: 1: Martin Luther King Jr. Blvd & Guadalupe St

MS Synchro 9 Report

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

	-	•	1	•	1	_
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			44	ሻሻ	7
Traffic Volume (vph)	1033	0	0	706	343	219
Future Volume (vph)	1033	0	0	706	343	219
Confl. Peds. (#/hr)			J	, 50	0.0	10
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	1201	0.00	0.00	821	399	255
Shared Lane Traffic (%)	1201	- 0	- 3	021	3,7	200
Lane Group Flow (vph)	1201	0	0	821	399	255
Turn Type	NA	- 0	- 3	NA	Prot	Perm
Protected Phases	2			6	8	i Cilii
Permitted Phases				0	0	3
Detector Phases	2			6	8	3
Switch Phase				0	0	3
	10.0			10.0	5.0	EΛ
Minimum Initial (s)	10.0			10.0		5.0
Minimum Split (s)	30.0			15.0	10.0	29.0
Total Split (s)	87.0			87.0	33.0	33.0
Total Split (%)	72.5%			72.5%	27.5%	27.5%
Yellow Time (s)	4.0			4.0	4.0	4.0
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	5.0			5.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max			C-Max	Max	Max
Act Effct Green (s)	82.0			82.0	28.0	28.0
Actuated g/C Ratio	0.68			0.68	0.23	0.23
v/c Ratio	0.50			0.34	0.50	0.58
Control Delay	8.7			5.7	59.4	47.5
Queue Delay	0.2			0.0	0.0	0.0
Total Delay	9.0			5.7	59.4	47.5
LOS	А			Α	Е	D
Approach Delay	9.0			5.7	54.7	
Approach LOS	A			А	D	
Queue Length 50th (ft)	155			61	166	141
Queue Length 95th (ft)	167			66	201	161
Internal Link Dist (ft)	272			277	337	
Turn Bay Length (ft)	LIL			LII	337	
Base Capacity (vph)	2418			2418	801	440
Starvation Cap Reductn	486			2410	0	0
Spillback Cap Reductn	0			0	0	0
	0			0	0	0
Storage Cap Reductn Reduced v/c Ratio	0.62			0.34	0.50	0.58
Reduced WC Rallo	0.62			0.34	0.50	0.58
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12	.0					
Offset: 0 (0%), Referenced		EBT and	6:WBT. :	Start of G	reen	
Natural Cycle: 60	p 2.1	2.70	,			
Control Type: Actuated-Co	ordinatod					
Control Type. Actuated-CC	ordinaled					

MS Synchro 9 Report Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

Maximum v/c Ratio: 0.58		
Intersection Signal Delay: 19.1	Intersection LOS: B	
Intersection Capacity Utilization 56.9%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

J → Ø2 (R)	r [™] Ø3
87 s	33 s
← Ø6 (R)	▼ Ø8
87 s	33 s

MS Synchro 9 Report

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	-	•	•	•	1		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	↑ 1>		ሻ	^			
Traffic Volume (vph)	1089	0	8	956	0	0	
Future Volume (vph)	1089	0	8	956	0	0	
Confl. Peds. (#/hr)		6	6		1		
Confl. Bikes (#/hr)		1					
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	
Adj. Flow (vph)	1224	0	9	1074	0	0	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	1224	0	9	1074	0	0	
Turn Type	NA		pm+pt	NA			
Protected Phases	2		1	6			
Permitted Phases			6				
Detector Phase	2		1	6			
Switch Phase							
Minimum Initial (s)	15.0		1.0	5.0			
Minimum Split (s)	34.0		5.5	29.0			
Total Split (s)	107.0		13.0	120.0			
Total Split (%)	89.2%			100.0%			
Yellow Time (s)	4.0		3.5	4.0			
All-Red Time (s)	1.0		1.0	1.0			
Lost Time Adjust (s)	0.0		0.0	0.0			
Total Lost Time (s)	5.0		4.5	5.0			
Lead/Lag	Lead		Lag	0.0			
Lead-Lag Optimize?	Yes		Yes				
Recall Mode	C-Max		None	C-Max			
Act Effct Green (s)	116.4		119.1	120.0			
Actuated g/C Ratio	0.97		0.99	1.00			
v/c Ratio	0.36		0.02	0.30			
Control Delay	0.5		0.02	0.30			
Queue Delay	0.0		0.0	0.2			
Total Delay	0.5		0.0	0.0			
LOS	0.5 A		Α.	0.2 A			
Approach Delay	0.5		^	0.2			
Approach LOS	0.5 A			0.2 A			
Queue Length 50th (ft)	0		0	0			
Queue Length 95th (ft)	47		m0	0			
Internal Link Dist (ft)	366		IIIU	377	331		
Turn Bay Length (ft)	300		115	3//	331		
	3433		501	3539			
Base Capacity (vph)	3433 0		0	3339			
Starvation Cap Reductn	0		0	0			
Spillback Cap Reductn			_	_			
Storage Cap Reductn	0		0	0			
Reduced v/c Ratio	0.36		0.02	0.30			
Intersection Summary							
Cycle Length: 120 Actuated Cycle Length: 120	n						
		-DT '	LAMPT	Ct-4 - C			
Offset: 0 (0%), Referenced	to phase 2:1	-RI and	16:WBIL	, Start of C	reen		
Natural Cycle: 40							

MS Synchro 9 Report
Page 5

MS Synchro 9 Report

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	\rightarrow	•	—	•	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	^	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	137	734	226	288	948	135	19	Ö	35	42	i	10
Future Volume (vph)	137	734	226	288	948	135	19	0	35	42	1	10
Confl. Peds. (#/hr)	18		8	8		18	23		7	7		23
Confl. Bikes (#/hr)			3			3						1
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	163	874	269	343	1129	161	23	0	42	50	1	12
Shared Lane Traffic (%)												
Lane Group Flow (vph)	163	1143	0	343	1129	161	0	23	42	0	51	12
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	1.0	10.0		1.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	5.5	22.0		5.5	28.0	28.0	22.0	22.0	22.0	28.0	28.0	28.0
Total Split (s)	20.0	70.0		20.0	70.0	70.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	16.7%	58.3%		16.7%	58.3%	58.3%	25.0%	25.0%	25.0%	25.0%	25.0%	25.0%
Yellow Time (s)	3.5	4.0		3.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	4.5	5.0		4.5	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	75.2	65.7		85.5	71.5	71.5		25.0	25.0		25.0	25.0
Actuated g/C Ratio	0.63	0.55		0.71	0.60	0.60		0.21	0.21		0.21	0.21
v/c Ratio	0.48	0.61		0.89	0.54	0.18		0.08	0.11		0.18	0.03
Control Delay	11.5	12.7		47.6	11.8	3.9		39.4	6.2		41.1	0.2
Queue Delay	0.0	0.4		0.0	0.3	0.0		0.0	0.0		0.0	0.0
Total Delay	11.5	13.1		47.6	12.1	3.9		39.4	6.2		41.1	0.2
LOS	В	В		D	В	Α		D	Α		D	Α
Approach Delay		12.9			18.8			17.9			33.3	
Approach LOS	0.5	В		400	В	40		B			C	
Queue Length 50th (ft)	25	184		133	201	12		15	0		33	0
Queue Length 95th (ft)	56	157		#227	207	20		35	16		65	0
Internal Link Dist (ft)	1/0	377		100	273	100		135	100		212	
Turn Bay Length (ft)	160	1871		100 396	2109	100 915		271	100 367		284	360
Base Capacity (vph)	434	281										
Starvation Cap Reductn	0			0	409	0		0	0		0	0
Spillback Cap Reductn	0	0		0	0	0		0	0		0	0
Storage Cap Reductn	0	0.72		-	-	0.10		-	0 11		-	0 03
Reduced v/c Ratio	0.38	0.72		0.87	0.66	0.18		0.08	0.11		0.18	0.03

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 80

MS Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd

2020 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.89

Intersection LOS: B

Intersection Signal Delay: 16.5 Inte Intersection Capacity Utilization 74.9% ICU Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. ICU Level of Service D

Splits and Phases:	6: Brazos St & Martin Luther King Jr. Blvd	
√ Ø1	₩ Ø2 (R)	₩ Ø4
20 s	70 s	30 s
≯ _{Ø5}	Ø6 (R)	↑ øs
20 s	70 s	30 s

MS Synchro 9 Report

	•	-	•	•	-	•	1	Ť	~	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† 1>		*	^					ሻ	^	7
Traffic Volume (vph)	0	709	166	491	1361	0	0	0	0	35	50	54
Future Volume (vph)	0	709	166	491	1361	0	0	0	0	35	50	54
Confl. Peds. (#/hr)			52	52						7		47
Confl. Bikes (#/hr)			2									28
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	762	178	528	1463	0	0	0	0	38	54	58
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	940	0	528	1463	0	0	0	0	38	54	58
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		19	6						4	
Permitted Phases				6						4		4
Detector Phase		2		19	6					4	4	4
Switch Phase												
Minimum Initial (s)		5.0			10.0					10.0	10.0	10.0
Minimum Split (s)		30.0			30.0					28.0	28.0	28.0
Total Split (s)		62.0			92.0					28.0	28.0	28.0
Total Split (%)		51.7%			76.7%					23.3%	23.3%	23.3%
Yellow Time (s)		4.0			4.0					4.0	4.0	4.0
All-Red Time (s)		1.0			1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0					0.0	0.0	0.0
Total Lost Time (s)		5.0			5.0					5.0	5.0	5.0
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Max
Act Effct Green (s)		57.0		87.5	87.0					23.0	23.0	23.0
Actuated g/C Ratio		0.48		0.73	0.72					0.19	0.19	0.19
v/c Ratio		0.58		1.04	0.57					0.11	0.08	0.16
Control Delay		15.3		60.5	5.9					41.3	40.3	1.8
Queue Delay		0.4		24.4	0.5					0.0	0.0	0.0
Total Delay		15.7		84.9	6.4					41.3	40.3	1.8
LOS		В		F	Α					D	D	Α
Approach Delay		15.7			27.2						25.7	
Approach LOS		В			С						С	
Queue Length 50th (ft)		112		~275	123					25	18	0
Queue Length 95th (ft)		127		m#370	m126					56	36	6
Internal Link Dist (ft)		273			321			343			244	
Turn Bay Length (ft)				120						100		100
Base Capacity (vph)		1624		510	2565					335	678	354
Starvation Cap Reductn		252		74	577					0	0	0
Spillback Cap Reductn		0		0	13					0	0	0
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.69		1.21	0.74					0.11	0.08	0.16
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120 Offset: 0 (0%) Referenced to		EDT	/ MDT:	CL 1	0							
LITTERT: ILLIUM L. Dotoroncod t	n nhaca ').	⊢RI and										

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 90

Synchro 9 Report Page 9 MS

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

Lane Group	Ø1	Ø9
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	9
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	5.0
Minimum Split (s)	5.5	9.5
Total Split (s)	15.0	15.0
Total Split (%)	13%	13%
Yellow Time (s)	3.5	3.5
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Synchro 9 Report Page 10 MS

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.04 Intersection Signal Delay: 23.6 Intersection Capacity Utilization 88.5% Intersection LOS: C ICU Level of Service E Analysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

M Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd ÿ9 →ø2 (R)

MS Synchro 9 Report Page 11

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

	•	-	•	•	←	•	4	†	<i>></i>	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^			† î>		ሻ	ર્ન	7			
Traffic Volume (vph)	149	523	0	0	1776	57	66	82	107	0	0	0
Future Volume (vph)	149	523	0	0	1776	57	66	82	107	0	0	0
Confl. Peds. (#/hr)			34			57	33		27			
Confl. Bikes (#/hr)						4			4			
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	167	588	0	0	1996	64	74	92	120	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	167	588	0	0	2060	0	67	99	120	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	26.0			5.5		26.0	26.0	26.0			
Total Split (s)	15.0	94.0			79.0		26.0	26.0	26.0			
Total Split (%)	12.5%	78.3%			65.8%		21.7%	21.7%	21.7%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	89.5	89.0			75.1		21.0	21.0	21.0			
Actuated g/C Ratio	0.75	0.74			0.63		0.18	0.18	0.18			
v/c Ratio	0.80	0.22			0.94		0.24	0.32	0.34			
Control Delay	73.6	1.0			11.4		40.9	42.0	9.0			
Queue Delay	0.0	0.1			3.2		0.2	0.0	0.0			
Total Delay	73.6	1.1			14.6		41.1	42.0	9.0			
LOS	Е	Α			В		D	D	Α			
Approach Delay		17.1			14.6			28.0				
Approach LOS		В			В			С				
Queue Length 50th (ft)	95	13			158		45	68	4			
Queue Length 95th (ft)	#188	15			m91		m68	m98	m29			
Internal Link Dist (ft)		321			675			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	217	2624			2201		277	307	358			
Starvation Cap Reductn	0	936			3		0	0	0			
Spillback Cap Reductn	0	0			89		37	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.77	0.35			0.98		0.28	0.32	0.34			

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 100

MS Synchro 9 Report Page 12

8: Trinity St & Martin Luther King Jr. Blvd

2020 Background + Site Timing Plan: AM

Page 13

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94

Intersection Signal Delay: 16.5

Intersection LOS: B

Intersection Capacity Utilization 88.5%

ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

18: Guadalupe St & E. 17th St

2020 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	→	•	•	-	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7		4						र्सीके	
Traffic Volume (vph)	0	14	46	51	9	0	0	0	0	127	1036	18
Future Volume (vph)	0	14	46	51	9	0	0	0	0	127	1036	18
Confl. Peds. (#/hr)			18							44		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)		0										
Adj. Flow (vph)	0	15	50	55	10	0	0	0	0	138	1126	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	15	50	0	65	0	0	0	0	0	1284	0
Turn Type		NA	Perm	Perm	NA					Perm	NA	
Protected Phases		4 12			4 12						2 10	
Permitted Phases			4 12	4 12						2 10		
Detector Phase		4 12	4 12	4 12	4 12					2 10	2 10	
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		21.4	21.4		21.4						83.3	
Actuated g/C Ratio		0.18	0.18		0.18						0.69	
v/c Ratio		0.05	0.15		0.26						0.54	
Control Delay		20.6	3.7		27.3						7.2	
Queue Delay		0.0	0.0		0.0						0.0	
Total Delay		20.6	3.7		27.3						7.2	
LOS		С	Α		С						A	
Approach Delay		7.6			27.3						7.2	
Approach LOS		Α			C						Α	
Queue Length 50th (ft)		5	0		37						156	
Queue Length 95th (ft)		16	12		51						191	
Internal Link Dist (ft)		177	12		244			271			262	
Turn Bay Length (ft)		.,,			211			271			202	
Base Capacity (vph)		754	714		626						2398	
Starvation Cap Reductn		0	0		0						0	
Spillback Cap Reductn		0	0		0						0	
Storage Cap Reductn		0	0		0						0	
Reduced v/c Ratio		0.02	0.07		0.10						0.54	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced to	phase 2:	SBTL, St	art of Gre	en								
Natural Cycle: 95												

MS Synchro 9 Report
Page 14

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection Summary

2020 Background + Site Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	23.0	23.0	22.5	22.5
Total Split (s)	26.0	43.0	28.0	23.0
Total Split (%)	22%	36%	23%	19%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	2.0	2.0	1.0	1.0
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				

Synchro 9 Report Page 15 MS

18: Guadalupe St & E. 17th St

2020 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.54 Intersection Signal Delay: 8.1 Intersection Capacity Utilization 73.6% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service D

Splits and Phases: 18: Guadalupe St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

•	-	•	•	•	•		T		-	¥	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
	ર્ન			î»			414	7			
4	121	0	0	27	26	86	768	130	0	0	
4	121	0	0	27	26	86	768	130	0	0	
30								32			
0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.8
	0										
5	146	0	0	33	31	104	925	157	0	0	
0		0	0	64	0	0		157	0	0	
Perm						Perm		Perm			
	4 12			4 12			2 10				
4 12	4 12			4 12		2 10	2 10	2 10			
	0.21										
	0.43			0.16			0.35	0.18			
	29.1			12.7			11.5	6.6			
	0.0			0.0			0.0	0.0			
								6.6			
								Α			
	С			В			В				
	64			14			161	47			
	84						114	47			
	244			319			272			254	
								100			
								918			
	0			0			471	0			
	0			0			0	0			
	0			0			0	0			
	0.25			0.10			0.38	0.17			
	UDTI -										
to phase 2:I	NBTL, Sta	art of Gre	en								
	EBL 4 4 30 0.83 5 0 Perm 4 12 4 12	EBL EBT 4 121 30 0.83 0.83 0 5 146 0 151 Perm NA 412 412 412 412 412 412 412 625.6 0.21 0.43 29.1 0.0 29.1 C 29.1 C 64 84 244 595 0 0 0 0.25	EBL EBT EBR 4 121 0 4 121 0 30 0.83 0.83 0.83 0 5 146 0 0 151 0 Perm NA 4 12 4 12 4 12 4 12 4 12 4 12 4 12 6 0 25.6 0.21 0.43 29.1 0.0 29.1 C 29.1 C 29.1 C 64 84 244 595 0 0 0 0.25	EBL EBT EBR WBL 4 121 0 0 4 121 0 0 30 0.83 0.83 0.83 0.83 0 5 146 0 0 0 151 0 0 Perm NA 4 12 4 12 4 12 4 12 4 12 4 12 6 0.21 0.43 29.1 0.0 29.1 C 29.1 C 64 84 244 595 0 0 0 0	EBL EBT EBR WBL WBT 4 121 0 0 27 4 121 0 0 27 30 0.83 0.83 0.83 0.83 0.83 0 151 0 0 64 Perm NA NA 4 12 412 412 4 12 4 12 4 12 4 12 4 12	EBL EBT EBR WBL WBT WBR 4 121 0 0 27 26 4 121 0 0 27 26 30 0.83 0.83 0.83 0.83 0.83 0.83 5 146 0 0 33 31 0 151 0 0 64 0 Perm NA NA NA 412 412 4 12 4 12 4 12 4 12 4 12 4 12 12 4 12 4 12 5 12 7	EBL EBT EBR WBL WBT WBR NBL 4 121 0 0 27 26 86 4 121 0 0 27 26 86 30 0.83 0.83 0.83 0.83 0.83 0.83 0.83 5 146 0 0 33 31 104 0 151 0 0 64 0 0 Perm NA NA Perm 412 412 210 412 412 210 412 412 210 412 412 210 256 0.21 0.21 0.43 0.16 29.1 12.7 0.0 0.0 29.1 12.7 C B 29.1 12.7 C B 29.1 12.7 C B 64 14 84 29 244 319 595 644 0.25 0 0.10	EBL EBT EBR WBL WBT WBR NBL NBT 4 121 0 0 27 26 86 768 4 121 0 0 27 26 86 768 30 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 5 146 0 0 33 31 104 925 0 151 0 0 64 0 0 1029 Perm NA NA Perm NA 412 210 4 12 412 210 4 12 412 210 4 12 412 10 4 12 412 10 256 25.6 70.4 0.21 0.21 0.59 0.43 0.16 0.35 29.1 12.7 11.5 0.0 0 0.0 0.0 29.1 12.7 11.5 0.0 0.0 0.0 0.0 29.1 12.7 11.6 C B B B B 29.1 12.7 10.9 C B B B B 44 14 161 84 29 114 244 319 272 595 644 3162 0 0 0 471 0	EBL EBT EBR WBL WBT WBR NBL NBT NBR 4 121 0 0 27 26 86 768 130 4 121 0 0 27 26 86 768 130 30 83 0.83 0.83 0.83 0.83 0.83 0.83 0.83	EBL EBR EBR WBL WBR WBR NBL NBT NBR SBL	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT 4 121 0 0 27 26 86 768 130 0 0 30 30 32 32 32 32 32 32 32 32 32 32 32 32 32

MS Synchro 9 Report Page 17

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background + Site Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases		4	10	12
Detector Phase				
Switch Phase				
	1E 0	15.0	EΛ	5.0
Minimum Initial (s)	15.0		5.0	
Minimum Split (s)	26.0	28.0	22.5	22.5
Total Split (s)	38.0	29.0	27.0	26.0
Total Split (%)	32%	24%	23%	22%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				
intersection Summary				

MS Synchro 9 Report Page 18

19: Lavaca St & E. 17th St

2020 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.43 Intersection Signal Delay: 12.9 Intersection Capacity Utilization 39.2% Analysis Period (min) 15 Intersection LOS: B
ICU Level of Service A

Splits and Phases: 19: Lavaca St & E. 17th St

≠ Ø4	Ø2 (R)	♣ _{Ø12}	1 ø₁0	
79 s	38 s	26 s	27 s	

Synchro 9 Report Page 19 MS

28: Lavaca St & E. 16th St

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SI Lane Configurations ↑		•	→	•	•	←	•	•	†	<i>></i>	\	Ţ	4
Lane Configurations	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
Traffic Volume (vph)													
Future Volume (iph) 4 18 0 0 17 14 86 955 48 0 0 CONTINE PIECES (##hr) 10 57 CONTI. PIECES (##hr) 2 2 Peak Hour Factor		4		0	0		14	86			0	0	
Confl. Bikes (#hr)			18	0	0	17	14	86	955	48	0	0	
Peak Hour Factor							10	57					
Parking (#hr)	Confl. Bikes (#/hr)						2						
Adj. Flow (vph) 5 21 0 0 20 17 102 1137 57 0 0 Shared Lane Traffic (%) Lane Group Flow (vph) 0 26 0 0 37 0 0 1239 57 0 0 Turn Type Perm NA NA Perm NA Perm NA Perm Protected Phases 412 412 210 Perdeted Phases 412 2 10 210 210 Switch Phase Minimum Initial (s) Minimum Initial (s) Minimum Split (s) Total	Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.
Shared Lane Traffic (%) Lane Group Flow (yriph)	Parking (#/hr)					0							
Lane Group Flow (vph)	Adj. Flow (vph)	5	21	0	0	20	17	102	1137	57	0	0	
Turn Type	Shared Lane Traffic (%)												
Protected Phases	Lane Group Flow (vph)	0	26	0	0	37	0	0	1239	57	0	0	
Permitted Phases 4 12 4 12 4 12 2 10 2 10 2 10 Detector Phase 4 12 4 12 4 12 2 10 2 10 2 10 Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recail Mode Act Effct Green (s) 19.6 19.6 85.0 85.0 Actuated g/C Ratio 0.16 0.16 0.71 0.71 v/c Ratio 0.09 0.14 0.35 0.05 Control Detay 24.3 14.9 2.6 0.2 Queue Detay 0.0 0.0 0.1 0.0 Total Detay 24.3 14.9 2.8 0.2 LOS C B A A A Approach Delay 24.3 14.9 2.7 Approach LOS C B A A A Approach Delay 24.3 14.9 2.7 Approach LOS C B A A A Approach Delay 24.3 14.9 2.7 Approach LOS C B A A A Delay Split (s) 11 8 39 0 Queue Length 95th (ft) 11 10 Base Capacity (vph) 635 566 3539 1140 Starvation Cap Reductn 0 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05 Intersection Summary	Turn Type	Perm	NA			NA		Perm	NA	Perm			
Detector Phase			4 12			4 12			2 10				
Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) Total Split (s) Total Red Time (s) Lost Time (s) Lead-Lag Coptimize? Recall Mode Act Effc Green (s) Act Leaf Cag Optimize? Recall Mode Act Effc Green (s) Act Leaf Green (s) Control Delay 24.3 14.9 26. 20.00 20.0	Permitted Phases	4 12						2 10		2 10			
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio 0.06 0.16 0.16 0.16 0.17 0.71 0.71 0.71 0.71 0.71 0.71 0.71	Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Minimum Split (s) Total Split (s) Total Split (s) Yellow Time (s) All-Red Time (s) Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effict Green (s) Act Effict Green (s) Act ag (pC Ratio 0.09 0.14 0.35 0.05 Control Delay 24.3 14.9 2.6 0.2 Cueue Delay 0.0 Total Delay 24.3 14.9 2.8 0.2 LOS C B A A A A A A A A A A A A A A A A A A	Switch Phase												
Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead/Lag Qutimize? Recall Mode Act Effct Green (s) Act Effct Green (s) Act Effct Green (s) Act Lost Time (s) Lost Time (s) Lost Time (s) Lead/Lag Qutimize? Recall Mode Act Effct Green (s) Act Lost Time (s) Act Lost Time (s) Lost Time (s) Lost Time (s) Lost Time (s) Lead/Lag Qutimize? Recall Mode Act Effct Green (s) Act Lost Green (s)	Minimum Initial (s)												
Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Recall Mode Act Effct Green (s)	Minimum Split (s)												
Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio 0.16 0.16 0.17 0.71 0.71 0.71 0.71 0.72 0.73 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Total Split (s)												
All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effet Green (s) Act Effet Green (s) Act alid (company) V/c Ratio 0.09 0.14 0.35 0.05 Control Delay 24.3 14.9 2.6 0.2 Coueue Delay 0.0 Total Delay 24.3 14.9 2.8 0.2 LOS C B A A A A A A A A A A A A A A A A A A	Total Split (%)												
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Optimize? Recall Mode Act Effet Green (s) 19.6 19.6 85.0 85.0 Actuated g/C Ratio 0.16 0.16 0.71 0.71 V/c Ratio 0.09 0.14 0.35 0.05 Control Delay 24.3 14.9 2.6 0.2 Queue Delay 0.0 0.0 0.1 0.0 Total Delay 24.3 14.9 2.8 0.2 LOS C B A A A Approach Delay 24.3 14.9 2.7 Approach Delay 24.3 14.9 2.7 Approach Delay 24.3 14.9 2.7 Approach LOS C B A A C Queue Length 50th (ft) 11 8 39 0 Queue Length 50th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 835 566 3539 1140 Starvation Cap Reductn 0 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 0 Reduced V/c Ratio 0.04 0.07 0.49 0.05 Intersection Summary	Yellow Time (s)												
Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) 19.6 19.6 85.0 85.0 Actuated g/C Ratio 0.16 0.16 0.71 0.71 V/c Ratio 0.09 0.14 0.35 0.05 Control Delay 24.3 14.9 2.6 0.2 Queue Delay 0.0 0.0 0.1 0.0 Total Delay 24.3 14.9 2.8 0.2 LOS C B A A A Approach Delay 24.3 14.9 2.7 Approach Delay 24.3 14.9 2.7 Approach Delay 24.3 14.9 2.7 Coueue Length 50th (ft) 11 8 39 0 Queue Length 50th (ft) 11 8 39 0 Queue Length 50th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) Base Capacity (vph) 635 566 3539 1140 Starvation Cap Reductn 0 0 0 1029 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05	All-Red Time (s)												
Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) 19.6 85.0 85.0 Actuated g/C Ratio 0.16 0.16 0.71 0.71 v/c Ratio 0.09 0.14 0.35 0.05 Control Delay 24.3 14.9 2.6 0.2 Oueue Delay 0.0 0.0 0.1 0.0 Total Delay 24.3 14.9 2.8 0.2 LOS C B A A Approach Delay 24.3 14.9 2.7 Approach LOS C B A Queue Length 50th (ft) 11 8 39 0 Queue Length 95th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 10 100 8 Base Capacity (vph) 635 566 3539 1140 Stlarvation Cap Reductn 0 0 0 0 Spillback Cap Reductn 0 0 0 0													
Lead-Lag Optimize? Recall Mode Act Effct Green (s) 19.6 19.6 85.0 85.0 Act Lated Green (s) 0.16 0.16 0.71 0.71 v/c Ratio 0.09 0.14 0.35 0.05 Control Delay 24.3 14.9 2.6 0.2 Oueue Delay 0.0 0.0 0.1 0.0 Total Delay 24.3 14.9 2.8 0.2 LOS C B A A Approach Delay 24.3 14.9 2.7 Approach DOS C B A A Queue Length 50th (ft) 11 8 39 0 Queue Length 95th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 100 8 3539 1140 Starvation Cap Reductn 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 <	Total Lost Time (s)												
Recall Mode Act Effct Green (s) 19.6 19.6 85.0 85.0 Act Lated g/C Ratio 0.16 0.16 0.71 0.71 v/c Ratio 0.09 0.14 0.35 0.05 Control Delay 24.3 14.9 2.6 0.2 Queue Delay 0.0 0.0 0.1 0.0 Total Delay 24.3 14.9 2.8 0.2 LOS C B A A Approach Delay 24.3 14.9 2.7 Approach Delay 24.3 14.9 2.7 Approach Delay 24.3 14.9 2.7 Approach LOS C B A Queue Length 50th (ft) 11 8 39 0 Queue Length 95th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 100 0 0 Base Capacity (vph)													
Act Effet Green (s) 19.6 19.6 85.0 85.0 Actuated g/C Ratio 0.16 0.16 0.71 0.71 0.71 0.71 0.72 0.73 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75													
Actuated g/C Ratio 0.16 0.16 0.71 0.71 0.71 v/c Ratio 0.09 0.14 0.35 0.05 0.05 0.05 0.05 0.05 0.05 0.05													
v/c Ratio 0.09 0.14 0.35 0.05 Control Delay 24.3 14.9 2.6 0.2 Queue Delay 0.0 0.0 0.1 0.0 Total Delay 24.3 14.9 2.8 0.2 LOS C B A A Approach Delay 24.3 14.9 2.7 Approach LOS C B A Queue Length 50th (ft) 11 8 39 0 Queue Length 95th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 100 888 239 1140 Base Capacity (vph) 635 566 3539 1140 Starvation Cap Reductn 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05													
Control Delay 24.3 14.9 2.6 0.2 Queue Delay 0.0 0.0 0.1 0.0 Total Delay 24.3 14.9 2.8 0.2 LOS C B A A Approach Delay 24.3 14.9 2.7 Approach LOS C B A Oueue Length 95th (ft) 11 8 39 0 Queue Length 95th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 3 100 351 352 Base Capacity (vph) 635 566 3539 1140 Starvation Cap Reductn 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05													
Queue Delay 0.0 0.1 0.0 Total Delay 24.3 14.9 2.8 0.2 LOS C B A A Approach Delay 24.3 14.9 2.7 Approach LOS C B A Queue Length 50th (ft) 11 8 39 0 Queue Length 95th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 100 100 8 Base Capacity (vph) 635 566 3539 1140 Starvation Cap Reductn 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05													
Total Delay 24.3 14.9 2.8 0.2 LOS C B A A A Approach Delay 24.3 14.9 2.7 Approach LOS C B A A Queue Length 50th (ft) 11 8 39 0 Queue Length 95th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 8a5 566 3539 1140 Starvation Cap Reductn 0 0 0 1029 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05 Intersection Summary													
LOS C B A A A Approach Delay 24.3 14.9 2.7 Approach LOS C B A Approach LOS C B A Approach LOS C B A Cueue Length 50th (ft) 11 8 39 0 Cueue Length 95th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 100 Base Capacity (vph) 635 566 3539 1140 Starvation Cap Reducth 0 0 0 1029 0 Spillback Cap Reducth 0 0 0 0 0 0 Spillback Cap Reducth 0 0 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05													
Approach Delay 24.3 14.9 2.7 Approach LOS C B A Queue Length 50th (ft) 11 8 39 0 Queue Length 95th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 513 566 3539 1140 Starvation Cap Reducth 0 0 0 1029 0 Spillback Cap Reducth 0 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05													
Approach LOS C B A Queue Length 50th (ft) 11 8 39 0 Queue Length 95th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 100 100 100 Base Capacity (vph) 635 566 3539 1140 Starvation Cap Reductn 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05 Intersection Summary			-			_				A			
Oueue Length 50th (ft) 11 8 39 0 Oueue Length 95th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 100 100 100 Base Capacity (vph) 635 566 3539 1140 Starvation Cap Reductn 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05													
Queue Length 95th (ft) m21 m25 41 m0 Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 100 100 Base Capacity (vph) 635 566 3539 1140 Starvation Cap Reductn 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05 Intersection Summary													
Internal Link Dist (ft) 233 60 281 272 Turn Bay Length (ft) 100 100 Base Capacity (vph) 635 566 3539 1140 Starvation Cap Reductn 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05 Intersection Summary													
Turn Bay Length (n) 100 Base Capacity (vph) 635 566 3539 1140 Starvation Cap Reductn 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05 Intersection Summary										m0		070	
Base Capacity (vph) 635 566 3539 1140 Starvation Cap Reductn 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05 Intersection Summary			233			60			281	400		272	
Starvation Cap Reductn 0 0 1029 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05 Intersection Summary			/05			F//			2526				
Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05 Intersection Summary													
Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.04 0.07 0.49 0.05 Intersection Summary			-										
Reduced v/c Ratio 0.04 0.07 0.49 0.05 Intersection Summary													
Intersection Summary													
	Reduced v/c Ratio		0.04			0.07			0.49	0.05			

Synchro 9 Report Page 20 MS

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background + Site Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases		4	10	12
Detector Phase				
Switch Phase				
	15.0	15.0	5.0	5.0
Minimum Initial (s)				
Minimum Split (s)	28.0	32.0	21.0	20.0
Total Split (s)	42.0	32.0	21.0	25.0
Total Split (%)	35%	27%	18%	21%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

Synchro 9 Report Page 21 MS

28: Lavaca St & E. 16th St

2020 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 105 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.35

Intersection Signal Delay: 3.4 Intersection Capacity Utilization 45.3% ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Intersection LOS: A ICU Level of Service A

Splits and Phases: 28: Lavaca St & E. 16th St

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	•	•	1	Ī		-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		ተተ _ጮ		ሻ	^ ^						416	
Traffic Volume (vph)	0	1641	317	195	947	0	0	0	0	101	669	7
Future Volume (vph)	0	1641	317	195	947	0	0	0	0	101	669	7
Confl. Peds. (#/hr)			31	31						29		3
Confl. Bikes (#/hr)						1						2
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.9
Adj. Flow (vph)	0	1674	323	199	966	0	0	0	0	103	683	7
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1997	0	199	966	0	0	0	0	0	786	7
Turn Type		NA		pm+pt	NA					Perm	NA	Per
Protected Phases		2		13	6						4	
Permitted Phases				6						4		
Detector Phase		2		13	6					4	4	
Switch Phase												
Minimum Initial (s)		10.0			5.0					5.0	5.0	5
Minimum Split (s)		25.0			25.0					32.0	32.0	32
Fotal Split (s)		56.0			84.0					36.0	36.0	36
Total Split (%)		46.7%			70.0%					30.0%	30.0%	30.0
Yellow Time (s)		4.0			4.0					4.0	4.0	4
All-Red Time (s)		1.0			1.0					1.0	1.0	1
_ost Time Adjust (s)		0.0			0.0						0.0	0
Total Lost Time (s)		5.0			5.0						5.0	5
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Ma
Act Effct Green (s)		51.2		79.0	79.0						31.0	31
Actuated g/C Ratio		0.43		0.66	0.66						0.26	0.2
v/c Ratio		0.94		0.61	0.29						0.61	0.1
Control Delay		42.7		38.3	3.6						36.5	4
Queue Delay		0.2		11.1	0.1						0.4	0
Total Delay		42.9		49.4	3.7						36.9	4
LOS		D		D	Α						D	
Approach Delay		42.9			11.5						34.1	
Approach LOS		D			В						С	
Queue Length 50th (ft)		527		100	34						200	
Queue Length 95th (ft)		#645		173	39						238	2
Internal Link Dist (ft)		262			240			197			285	
Turn Bay Length (ft)				50								10
Base Capacity (vph)		2118		327	3347						1297	45
Starvation Cap Reductn		0		100	931						0	
Spillback Cap Reductn		6		0	0						144	
Storage Cap Reductn		0		0	0						0	
Reduced v/c Ratio		0.95		0.88	0.40						0.68	0.1
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Synchro 9 Report Page 23 MS

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases	'	J
Detector Phase		
Switch Phase		
Minimum Initial (s)	8.0	5.0
	13.0	10.0
Minimum Split (s)		
Total Split (s)	14.0 12%	14.0 12%
Total Split (%)		
Yellow Time (s)	4.0	4.0
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Synchro 9 Report Page 24 MS

34: Guadalupe St & W. 15th St

2020 Background + Site Timing Plan: AM

Synchro 9 Report

Page 25

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.94 Intersection Signal Delay: 31.9 Intersection Capacity Utilization 85.0% Intersection LOS: C ICU Level of Service E # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 34: Guadalupe St & W. 15th St

MS

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

	•	→	•	•	←	•	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^ ^			ተ ተጉ			414	7			
Traffic Volume (vph)	273	1396	0	0	1024	127	128	657	155	0	0	0
Future Volume (vph)	273	1396	0	0	1024	127	128	657	155	0	0	0
Confl. Peds. (#/hr)	36					36	17		46			
Confl. Bikes (#/hr)									10			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	290	1485	0	0	1089	135	136	699	165	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	290	1485	0	0	1224	0	0	835	165	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0	33.0			
Total Split (s)	19.0	79.0			60.0		41.0	41.0	41.0			
Total Split (%)	15.8%	65.8%			50.0%		34.2%	34.2%	34.2%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			6.0	6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	74.0	74.0			55.3			35.0	35.0			
Actuated g/C Ratio	0.62	0.62			0.46			0.29	0.29			
v/c Ratio	0.87	0.47			0.53			0.57	0.35			
Control Delay	56.5	2.6			10.8			37.9	22.5			
Queue Delay	3.4	0.3			0.1			0.0	0.0			
Total Delay	59.9	2.9			10.9			37.9	22.5			
LOS	E	Α			В			D	С			
Approach Delay		12.2			10.9			35.4				
Approach LOS		В			В			D				
Queue Length 50th (ft)	153	35			69			201	60			
Queue Length 95th (ft)	m173	m47			78			246	122			
Internal Link Dist (ft)		240			335			116			281	
Turn Bay Length (ft)	50											
Base Capacity (vph)	336	3135			2301			1465	470			
Starvation Cap Reductn	15	916			161			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.90	0.67			0.57			0.57	0.35			
Intersection Summary												

Intersection Summary

Cycle Length: 120

Offiset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

MS Synchro 9 Report Page 26

35: Lavaca St & W. 15th St

2020 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.87 Intersection Signal Delay: 17.6 Intersection Capacity Utilization 85.0% Intersection LOS: B ICU Level of Service E Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

MS Synchro 9 Report Page 27

36: Colorado St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

	۶	→	\rightarrow	•	←	•	4	†	~	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተ _ጉ		ሻ	^			4			ર્ન	7
Traffic Volume (vph)	184	1352	51	70	1086	136	1	21	21	5	19	20
Future Volume (vph)	184	1352	51	70	1086	136	1	21	21	5	19	20
Confl. Peds. (#/hr)	6		80	80		6	4		33	33		4
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	196	1438	54	74	1155	145	1	22	22	5	20	21
Shared Lane Traffic (%)												
Lane Group Flow (vph)	196	1492	0	74	1300	0	0	45	0	0	25	21
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	custom
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		6
Detector Phase	5	2		1	6		4	4		8	8	6
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	15.0
Minimum Split (s)	10.0	22.0		10.0	30.0		32.0	32.0		32.0	32.0	30.0
Total Split (s)	15.0	72.0		15.0	72.0		33.0	33.0		33.0	33.0	72.0
Total Split (%)	12.5%	60.0%		12.5%	60.0%		27.5%	27.5%		27.5%	27.5%	60.0%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	C-Max
Act Effct Green (s)	79.8	72.0		74.8	67.6			28.0			28.0	67.6
Actuated g/C Ratio	0.66	0.60		0.62	0.56			0.23			0.23	0.56
v/c Ratio	0.64	0.50		0.30	0.46			0.11			0.06	0.02
Control Delay	29.2	4.3		9.7	8.5			22.8			36.4	0.1
Queue Delay	0.0	0.1		0.0	0.1			0.0			0.0	0.0
Total Delay	29.2	4.4		9.7	8.5			22.8			36.4	0.1
LOS	C	A		A	A			C			D	A
Approach Delay		7.3		- / \	8.6			22.8			19.8	- '`
Approach LOS		A			A			C			В	
Queue Length 50th (ft)	44	71		9	149			14			15	0
Queue Length 95th (ft)	113	92		22	206			46			39	0
Internal Link Dist (ft)	113	335		22	362			155			114	U
Turn Bay Length (ft)	90	333		90	302			133			117	100
Base Capacity (vph)	312	3006		285	2819			410			416	904
Starvation Cap Reductn	0	371		0	365			0			0	0
Spillback Cap Reductin	0	0		0	0			0			0	0
Storage Cap Reductin	0	0		0	0			0			0	0
Reduced v/c Ratio	0.63	0.57		0.26	0.53			0.11			0.06	0.02
Reduced WC Rallo	0.03	0.57		0.20	0.53			0.11			0.06	0.02

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 75 Control Type: Actuated-Coordinated

MS Synchro 9 Report Page 28

36: Colorado St & W. 15th St

2020 Background + Site Timing Plan: AM

Page 29

TIA for Texas Capitol Complex Master Plan 2018 Update

Maximum v/c Ratio: 0.64
Intersection Signal Delay: 8.2
Intersection Capacity Utilization 79.9%
Analysis Period (min) 15
Intersection LOS: A
Intersection Capacity Utilization 79.9%
ICU Level of Service D

Splits and Phases: 36: Colorado St & W. 15th St

ÿ1	→ Ø2 (R)	Ø4
15 s	72 s	33 s
≯ ø5	₩ Ø6 (R)	↓ Ø8
15 s	72 s	33 e

MS Synchro 9 Report

37: N. Congress Ave & W. 15th St

2020 Background + Site
Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

	→	*	•	_	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ተተ _ጉ		ሻ	ተተተ		7
Traffic Volume (vph)	1352	27	18	1379	0	1
Future Volume (vph)	1352	27	18	1379	0	1
Confl. Peds. (#/hr)		29	29		12	20
Confl. Bikes (#/hr)						12
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	1380	28	18	1407	0	1
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1408	0	18	1407	0	1
Turn Type	NA		pm+pt	NA		Perm
Protected Phases	2		1	6		
Permitted Phases	_		6			4
Detector Phase	2		1	6		4
Switch Phase				,		
Minimum Initial (s)	5.0		5.0	5.0		5.0
Minimum Split (s)	25.0		10.0	25.0		33.0
Total Split (s)	72.0		15.0	87.0		33.0
Total Split (%)	60.0%		12.5%	72.5%		27.5%
Yellow Time (s)	4.0		4.0	4.0		4.0
All-Red Time (s)	1.0		1.0	1.0		1.0
Lost Time Adjust (s)	0.0		0.0	0.0		0.0
	5.0		5.0	5.0		5.0
Total Lost Time (s)				5.0		0.0
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?	Yes		Yes	C M		N.4
Recall Mode	C-Max		None	C-Max		Max
Act Effct Green (s)	77.5		82.0	82.0		28.0
Actuated g/C Ratio	0.65		0.68	0.68		0.23
v/c Ratio	0.43		0.07	0.41		0.00
Control Delay	3.3		5.2	7.0		0.0
Queue Delay	0.0		0.0	0.1		0.0
Total Delay	3.3		5.2	7.1		0.0
LOS	Α		Α	Α		Α
Approach Delay	3.3			7.1		
Approach LOS	Α			Α		
Queue Length 50th (ft)	29		3	164		0
Queue Length 95th (ft)	44		m5	63		0
Internal Link Dist (ft)	362			356	125	
Turn Bay Length (ft)			100			
Base Capacity (vph)	3270		301	3474		489
Starvation Cap Reductn	166		0	709		0
Spillback Cap Reductn	0		0	0		0
Storage Cap Reductn	0		0	0		0
Reduced v/c Ratio	0.45		0.06	0.51		0.00
	00		0.00	0.01		0.00
Intersection Summary						
Cycle Length: 120	^					
Actuated Cycle Length: 12						
Offset: 0 (0%), Referenced	to phase 2:	EBT and	6:WBTL	, Start of C	Green	
Natural Cycle: 70						

MS Synchro 9 Report
Page 30

37: N. Congress Ave & W. 15th St

2020 Background + Site
Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.43 Intersection Signal Delay: 5.2 Intersection Capacity Utilization 58.4% Intersection LOS: A ICU Level of Service B Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 37: N. Congress Ave & W. 15th St

MS Synchro 9 Report Page 31

38: Brazos St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

	۶	-	\rightarrow	•	←	•	4	†	~	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑₽		ሻ	ተ ተ ጮ			ર્ન	7		4	
Traffic Volume (vph)	77	1088	47	26	1400	81	4	2	7	2	0	4
Future Volume (vph)	77	1088	47	26	1400	81	4	2	7	2	0	4
Confl. Peds. (#/hr)	1		9	9		1	9		4	4		9
Confl. Bikes (#/hr)						1						17
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	79	1122	48	27	1443	84	4	2	7	2	0	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	79	1170	0	27	1527	0	0	6	7	0	6	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4		4	8		
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0	32.0	32.0	32.0	
Total Split (s)	15.0	78.0		10.0	73.0		32.0	32.0	32.0	32.0	32.0	
Total Split (%)	12.5%	65.0%		8.3%	60.8%		26.7%	26.7%	26.7%	26.7%	26.7%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Act Effct Green (s)	103.0	105.0		99.6	100.6			10.0	10.0		10.0	
Actuated g/C Ratio	0.86	0.88		0.83	0.84			0.08	0.08		0.08	
v/c Ratio	0.26	0.27		0.07	0.36			0.05	0.03		0.03	
Control Delay	7.1	4.1		1.9	1.7			51.7	0.3		0.2	
Queue Delay	0.0	0.0		0.0	0.1			0.0	0.0		0.0	
Total Delay	7.1	4.2		1.9	1.7			51.7	0.3		0.2	
LOS	Α	Α		Α	Α			D	Α		Α	
Approach Delay		4.4			1.7			24.0			0.2	
Approach LOS		Α			Α			С			Α	
Queue Length 50th (ft)	11	105		1	16			4	0		0	
Queue Length 95th (ft)	38	115		2	124			18	0		0	
Internal Link Dist (ft)		356			297			199			273	
Turn Bay Length (ft)	100			40					50		,	
Base Capacity (vph)	348	4414		409	4225			346	434		413	
Starvation Cap Reductn	0	1121		0	845			0	0		0	
Spillback Cap Reductn	0	0		0	0			0	0		0	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.23	0.36		0.07	0.45			0.02	0.02		0.01	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 65

MS Synchro 9 Report Page 32

38: Brazos St & W. 15th St

2020 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.36 Intersection Signal Delay: 3.0 Intersection LOS: A Intersection Capacity Utilization 57.6% ICU Level of Service B Analysis Period (min) 15

Splits and Phases: 38: Brazos St & W. 15th St

MS Synchro 9 Report Page 33

39: San Jacinto Blvd & W. 15th St

2020 Background + Site TIA for Texas Capitol Complex Master Plan 2018 Update

Timing Plan: AM WBT Lane Group SBT ተተተ ተተቡ Lane Configurations ተተቡ Traffic Volume (vph) 830 157 1486 175 Future Volume (vph) 0 830 343 157 1486 0 0 0 0 92 175 43 Confl. Peds. (#/hr) 22 22 Peak Hour Factor 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 Adj. Flow (vph) 838 346 159 1501 Shared Lane Traffic (%) Lane Group Flow (vph) 0 1184 159 1501 0 270 Turn Type NA pm+pt NA Perm NA Perm Protected Phases Permitted Phases 6 4 Detector Phase Switch Phase Minimum Initial (s) 10.0 3.0 10.0 7.0 7.0 Minimum Split (s) 28.0 8.0 28.0 32.0 32.0 32.0 Total Split (s) 68.0 20.0 88.0 32.0 32.0 32.0 Total Split (%) 56.7% 16.7% 73.3% 26.7% 26.7% 26.7% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode None C-Max None None None C-Max Act Effct Green (s) 98.0 98.0 12.0 12.0 85.2 Actuated g/C Ratio 0.71 0.82 0.82 0.10 0.10 v/c Ratio 0.34 0.41 0.36 0.54 0.20 Control Delay 2.4 3.8 55.1 6.7 7.4 Queue Delay 0.1 0.0 0.3 0.0 0.0 Total Delay 2.5 6.7 4.0 55.1 LOS Α Α Α 48.6 Approach Delay 2.5 Approach LOS D Α Α Queue Length 50th (ft) 0 24 94 73 Queue Length 95th (ft) 101 0 m30 101 20 Internal Link Dist (ft) 297 282 272 Turn Bay Length (ft) 70 50 3444 Base Capacity (vph) 476 4150 1120 398 1007 Starvation Cap Reductn 1666 0 0 0 Spillback Cap Reductn 0 0 Storage Cap Reductn 0 0 Reduced v/c Ratio 0.33 0.60 0.49 0.24 0.11 Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

MS Synchro 9 Report

39: San Jacinto Blvd & W. 15th St

2020 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Maximum v/c Ratio: 0.54 Intersection Signal Delay: 8.0 Intersection LOS: A Intersection Capacity Utilization 88.0% ICU I Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal. ICU Level of Service E

MS Synchro 9 Report Page 35

40: Trinity St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

	•	-	•	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, N	^			ተተ _ጉ			414	7			
Traffic Volume (vph)	218	752	0	0	1593	639	58	164	11	0	0	0
Future Volume (vph)	218	752	0	0	1593	639	58	164	11	0	0	0
Confl. Peds. (#/hr)	1					1	3		6			
Confl. Bikes (#/hr)									2			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	225	775	0	0	1642	659	60	169	11	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	225	775	0	0	2301	0	0	229	11	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	28.0			5.5		28.0	28.0	28.0			
Total Split (s)	20.0	92.0			72.0		28.0	28.0	28.0			
Total Split (%)	16.7%	76.7%			60.0%		23.3%	23.3%	23.3%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5			5.0	5.0			
Lead/Lag	Lead	0.0			Lag			0.0	0.0			
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	87.5	87.0			69.1		max	23.0	23.0			
Actuated g/C Ratio	0.73	0.72			0.58			0.19	0.19			
v/c Ratio	0.84	0.21			0.81			0.34	0.03			
Control Delay	62.8	3.7			8.4			43.7	0.03			
Queue Delay	0.0	0.1			0.1			0.0	0.0			
Total Delay	62.8	3.8			8.5			43.7	0.0			
LOS	02.0 F	Α.			Α.			73.7 D	Α.2			
Approach Delay		17.1			8.5			41.7	А			
Approach LOS		В			Α.5			41.7 D				
Queue Length 50th (ft)	120	35			119			81	0			
Queue Length 95th (ft)	#223	42			m158			121	0			
Internal Link Dist (ft)	#223	282			657			149	U		621	
Turn Bay Length (ft)	100	202			037			149			021	
Base Capacity (vph)	289	3686			2850			668	344			
Starvation Cap Reductn	209	1674			2650			000	0			
		0			0			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0.70	0.39			-			-	-			
Reduced v/c Ratio	0.78	0.39			0.82			0.34	0.03			

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90

MS Synchro 9 Report Page 36

40: Trinity St & W. 15th St

2020 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.84
Intersection Signal Delay: 13.2 Intersection LOS: B
Intersection Capacity Utilization 88.0% ICU Level of Service E
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 40: Trinity St & W. 15th St

MS Synchro 9 Report Page 37

11: Colorado St & W. 18th St

2020 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

tersection	
tersection Delay, s/veh	10
tersection LOS	Α

Movement	EBU	EBL	EBI	EBR	WBU	WBL	WBI	WBR	NBU	NBL	NRI	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	4	201	34	0	21	31	5	0	15	20	44
Future Vol, veh/h	0	4	201	34	0	21	31	5	0	15	20	44
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	5	228	39	0	24	35	6	0	17	23	50
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		10.5				8.8				8.5		
HCM LOS		В				Α				Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	19%	2%	37%	2%
Vol Thru, %	25%	84%	54%	91%
Vol Right, %	56%	14%	9%	7%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	79	239	57	227
LT Vol	15	4	21	4
Through Vol	20	201	31	207
RT Vol	44	34	5	16
Lane Flow Rate	90	272	65	258
Geometry Grp	1	1	1	1
Degree of Util (X)	0.119	0.36	0.093	0.346
Departure Headway (Hd)	4.791	4.774	5.147	4.826
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	741	750	690	740
Service Time	2.867	2.834	3.226	2.886
HCM Lane V/C Ratio	0.121	0.363	0.094	0.349
HCM Control Delay	8.5	10.5	8.8	10.4
HCM Lane LOS	Α	В	Α	В
HCM 95th-tile Q	0.4	1.6	0.3	1.5

MS Synchro 9 Report Page 1

11: Colorado St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background + Site Timing Plan: AM

Intersection
Intersection Delay, s/vel
Intersection LOS

iviovement	SBO	SBL	SRI	SBK	
Lane Configurations			4		
Traffic Vol, veh/h	0	4	207	16	
Future Vol, veh/h	0	4	207	16	
Peak Hour Factor	0.88	0.88	0.88	0.88	
Heavy Vehicles, %	2	2	2	2	
Mvmt Flow	0	5	235	18	
Number of Lanes	0	0	1	0	
Approach		SB			
Opposing Approach		NB			
0		- 1			

MS Synchro 9 Report Page 2

12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection		
Intersection Delay, s/veh	8.6	
Intersection LOS	Α	

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ર્ન				f)				†	
Traffic Vol, veh/h	0	0	251	0	0	0	54	0	0	0	0	0
Future Vol, veh/h	0	0	251	0	0	0	54	0	0	0	0	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	289	0	0	0	62	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach			EB				WB				NB	
Opposing Approach			WB				EB				SB	
Opposing Lanes			1				1				1	
Conflicting Approach Left			SB				NB				EB	
Conflicting Lanes Left			1				1				1	
Conflicting Approach Right			NB				SB				WB	
Conflicting Lanes Right			1				1				1	
HCM Control Delay			8.9				7.5				0	
HCM LOS			Α				Α				-	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	0%	
Vol Right, %	0%	0%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	251	54	8	
LT Vol	0	0	0	0	
Through Vol	0	251	54	0	
RT Vol	0	0	0	8	
Lane Flow Rate	0	289	62	9	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0.32	0.072	0.01	
Departure Headway (Hd)	4.697	3.996	4.164	4.08	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	900	853	882	
Service Time	2.697	2.014	2.222	2.08	
HCM Lane V/C Ratio	0	0.321	0.073	0.01	
HCM Control Delay	7.7	8.9	7.5	7.1	
HCM Lane LOS	N	Α	Α	Α	
HCM 95th-tile Q	0	1.4	0.2	0	

MS Synchro 9 Report Page 3 12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations				7
Traffic Vol, veh/h	0	0	0	8
Future Vol, veh/h	0	0	0	8
Peak Hour Factor	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	0	0	9
Number of Lanes	0	0	0	1
				•
Approach				SB
Opposing Approach				NB
Opposing Lanes				1
Conflicting Approach Left				WB
Conflicting Lanes Left				1
Conflicting Approach Right				EB
Conflicting Lanes Right				1
HCM Control Delay				7.1
HCM LOS				Α

TIA for Texas Capitol Complex Master Plan 2018 Update

ntersection	
ntersection Delay, s/veh	12.6
ntersection LOS	В

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	117	79	7	0	17	115	106	0	20	0	0
Future Vol, veh/h	0	117	79	7	0	17	115	106	0	20	0	0
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	148	100	9	0	22	146	134	0	25	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		12.1				12				9.6		
HCM LOS		В				В				Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	100%	58%	7%	5%
Vol Thru, %	0%	39%	48%	85%
Vol Right, %	0%	3%	45%	9%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	20	203	238	262
LT Vol	20	117	17	14
Through Vol	0	79	115	224
RT Vol	0	7	106	24
Lane Flow Rate	25	257	301	332
Geometry Grp	1	1	1	1
Degree of Util (X)	0.044	0.393	0.428	0.498
Departure Headway (Hd)	6.245	5.503	5.114	5.403
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	571	653	702	667
Service Time	4.305	3.544	3.154	3.442
HCM Lane V/C Ratio	0.044	0.394	0.429	0.498
HCM Control Delay	9.6	12.1	12	13.7
HCM Lane LOS	Α	В	В	В
HCM 95th-tile Q	0.1	1.9	2.2	2.8

Synchro 9 Report Page 5 MS

14: Brazos St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	14	224	24
Future Vol, veh/h	0	14	224	24
Peak Hour Factor	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	18	284	30
Number of Lanes	0	0	1	0
	Ů			
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		13.7		
HCM LOS		В		
TIOM E03				

Intersection			
Intersection Delay, s/veh	14.1		
Intersection LOS	В		

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ĥ				ર્ન					
Traffic Vol, veh/h	0	0	13	95	0	71	172	0	0	0	0	0
Future Vol, veh/h	0	0	13	95	0	71	172	0	0	0	0	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	14	101	0	76	183	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	0	0
Approach			EB			WB						
Opposing Approach			WB			EB						
Opposing Lanes			1			1						
Conflicting Approach Left			SB									
Conflicting Lanes Left			3			0						
Conflicting Approach Right						SB						
Conflicting Lanes Right			0			3						
HCM Control Delay			10.4			15.3						
HCM LOS			В			С						

Lane	EBLn1	WBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	0%	29%	0%	0%	0%
Vol Thru, %	12%	71%	100%	100%	0%
Vol Right, %	88%	0%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	108	243	318	318	68
LT Vol	0	71	0	0	0
Through Vol	13	172	318	318	0
RT Vol	95	0	0	0	68
Lane Flow Rate	115	259	338	338	72
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.196	0.476	0.541	0.541	0.066
Departure Headway (Hd)	6.14	6.631	5.761	5.761	3.302
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	584	543	628	628	1082
Service Time	3.881	4.366	3.489	3.489	1.03
HCM Lane V/C Ratio	0.197	0.477	0.538	0.538	0.067
HCM Control Delay	10.4	15.3	15.1	15.1	6.3
HCM Lane LOS	В	С	С	С	Α
HCM 95th-tile Q	0.7	2.5	3.2	3.2	0.2

Synchro 9 Report Page 7 MS

16: San Jacinto Blvd & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection
Intersection Delay, s/veh
Intersection LOS

Movement	SBU	SBL	SBT	SBR
Lane Configurations			414	7
Traffic Vol, veh/h	0	0	635	68
Future Vol, veh/h	0	0	635	68
Peak Hour Factor	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	676	72
Number of Lanes	0	0	2	1
Approach			SB	
Opposing Approach				
Opposing Lanes			0	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			14.2	
HCM LOS			В	

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection	
Intersection Delay, s/veh	10.1
Intersection LOS	В

iviovement	EDU	EDL	EDI	EDK	WDU	WDL	WDI	WDR	INDU	IVDL	INDI	NDR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	30	185	34	0	0	25	0	0	15	41	0
Future Vol, veh/h	0	30	185	34	0	0	25	0	0	15	41	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	34	210	39	0	0	28	0	0	17	47	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB					WB			NB		
Opposing Approach		WB					EB			SB		
Opposing Lanes		1					1			1		
Conflicting Approach Left		SB					NB			EB		
Conflicting Lanes Left		1					1			1		
Conflicting Approach Right		NB					SB			WB		
Conflicting Lanes Right		1					1			1		
HCM Control Delay		10.5					8.4			8.6		
HCM LOS		В					Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	27%	12%	0%	0%	
Vol Thru, %	73%	74%	100%	88%	
Vol Right, %	0%	14%	0%	12%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	56	249	25	233	
LT Vol	15	30	0	0	
Through Vol	41	185	25	206	
RT Vol	0	34	0	27	
Lane Flow Rate	64	283	28	265	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.09	0.37	0.04	0.346	
Departure Headway (Hd)	5.073	4.703	5.088	4.701	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	702	761	699	763	
Service Time	3.137	2.751	3.157	2.75	
HCM Lane V/C Ratio	0.091	0.372	0.04	0.347	
HCM Control Delay	8.6	10.5	8.4	10.2	
HCM Lane LOS	Α	В	Α	В	
HCM 95th-tile Q	0.3	1.7	0.1	1.5	

MS Synchro 9 Report Page 9

20: Colorado St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

		,	,				·	
Intersection								
Intersection Delay, s/veh								
Intersection LOS								
Movement	SBU	SBL	SBT	SBR				
Lane Configurations			4					
Traffic Vol, veh/h	0	0	206	27				
Future Vol, veh/h	0	0	206	27				
Peak Hour Factor	0.88	0.88	0.88	0.88				
Heavy Vehicles, %	2	2	2	2				
Mvmt Flow	0	0	234	31				
Number of Lanes	0	0	1	0				
Approach			SB					
Opposing Approach			NB					
Opposing Lanes			1					
Conflicting Approach Left			WB					
Conflicting Lanes Left			1					
Conflicting Approach Right			EB					
Conflicting Lanes Right			1					
HCM Control Delay			10.2					
HCM LOS			В					

Intersection			

Movement	EBU	EBL	EBT	WBU	WBT	WBR	SBU	SBL	SBR
Lane Configurations			ર્ન		4î			Y	
Traffic Vol, veh/h	0	0	28	0	206	16	0	37	0
Future Vol, veh/h	0	0	28	0	206	16	0	37	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	32	0	234	18	0	42	0
Number of Lanes	0	0	1	0	1	0	0	1	0
Approach			EB		WB			SB	
Opposing Approach			WB		EB				
Opposing Lanes			1		1			0	
Conflicting Approach Left			SB					WB	
Conflicting Lanes Left			1		0			1	
Conflicting Approach Right					SB			EB	
Conflicting Lanes Right			0		1			1	
HCM Control Delay			7.4		8.6			8	
HCM LOS			Α		А			Α	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	0%	0%	100%
Vol Thru, %	100%	93%	0%
Vol Right, %	0%	7%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	28	222	37
LT Vol	0	0	37
Through Vol	28	206	0
RT Vol	0	16	0
Lane Flow Rate	32	252	42
Geometry Grp	1	1	1
Degree of Util (X)	0.037	0.279	0.055
Departure Headway (Hd)	4.197	3.987	4.745
Convergence, Y/N	Yes	Yes	Yes
Cap	841	898	759
Service Time	2.281	2.031	2.745
HCM Lane V/C Ratio	0.038	0.281	0.055
HCM Control Delay	7.4	8.6	8
HCM Lane LOS	Α	Α	Α
HCM 95th-tile Q	0.1	1.1	0.2

MS Synchro 9 Report Page 11 EBT EBR

92

↑

1081 92

0

0

87 87

Major1

0 0

NBLn1 EBT EBR WBL WBT

- - 504

- - 15.6

- - C - - 1.4

- 0.328

391

0.062

14.8

В

0.2

1243 106

Free Free

- None

2

WBL WBT

† † † † 144 761

144 761

Free Free

40

87 87

2 2

Major2

1349 0

2.22

506

504 -

166 875

1 0

- None

0

NBL

0

0

0

0

Minor1

2064

1296

768

6.84

5.84

5.84

3.52

47

220

418

31

31

220

280

14.8

Stop

21

21

5

Stop

None

87

24

680

6.94

3.32

393

391

1.2

Intersection Int Delay, s/veh

Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, # Grade, %

Traffic Vol, veh/h

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Capacity (veh/h)

HCM Lane LOS

Approach HCM Control Delay, s

HCM LOS

Follow-up Hdwy

Mymt Flow

Major/Minor

Critical Hdwy

2020 Background + Site Timing Plan: AM

						_
Intersection						
Int Delay, s/veh	2.3					
Movement	EBL	EBT	EBR	WBL	WBT	
Lane Configurations		*	7		ર્ન	
Traffic Vol, veh/h	0	12	46	60	9	
Future Vol, veh/h	0	12	46	60	9	
Conflicting Peds, #/hr	0	0	0	12	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	
RT Channelized		-	None	-	-	
Storage Length		-	0	-	-	
Veh in Median Storage, #		0	-	-	0	
Grade, %		0		-	0	
Peak Hour Factor	95	95	95	95	95	
Heavy Vehicles, %	2	2	2	2	2	
Mvmt Flow	0	13	48	63	9	

9: Guadalupe St & W. 18th St

2020 Background + Site Timing Plan: AM

0 0	EBT ↑	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
0		- 7						INDIX	JDL		301
0	12			ની						414	
_		46	60	9	0	0	0	0	74	1074	1
	12	46	60	9	0	0	0	0	74	1074	1
0	0	0	12	0	0	0	0	0	0	0	3
Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Fre
-	-	None	-	-	None	-	-	None	-	-	Non
-	-	0	-	-	-	-	-	-	-	-	
-	0	-	-	0	-	-	-	-	-	0	
-	0	-	-	0	-	-	0	-	-	0	
95											9
2			_								
0	13	48	63	9	0	0	0	0	78	1131	1
Minor2			Minor1						Major2		
-	1332	623	739	1341	-				0	0	
	1332	-	0	0	-				-	-	
-	0	-	739	1341	-				-	-	
		6.94	7.54	6.54	-				4.14	-	
-	5.54	-	-	-	-				-	-	
	-	-	6.54	5.54	-				-	-	
-	4.02	3.32	3.52	4.02	-				2.22	-	
0	153	429	306	151	0				-	-	
0	222	-	-	-	0				-	-	
0	-	-	375	219	0				-	-	
										-	
-	148	414	253	146	-				-	-	
-	148	-	253	146	-				-	-	
	214	-	-	-	-				-	-	
-	-	-	312	211	-				-	-	
EB			WB						SB		
18.3			27.6								
С			D								
		Minor2 - 1332 - 1332 - 1332 - 1332 - 554 - 554 - 120 0 153 0 222 0 - 148 - 148 - 214	None 0 - 0 0 95 95 95 2 2 2 2 0 13 48 Minor2 - 1332 623 - 1332 0 6.54 6.94 - 5.54 4.02 3.32 0 153 429 0 222 - 0 148 414 - 148 214 214	None - None -	- None	None	- None - None - None None None 0	None	- None -	None	- None - None - None - None None None None None None None

Conflicting Flow All	-	1332	023		139	1341	-	U	U	U
Stage 1	-	1332	-		0	0	-	-	-	-
Stage 2	-	0	-		739	1341	-	-	-	-
Critical Hdwy	-	6.54	6.94		7.54	6.54	-	4.14	-	
Critical Hdwy Stg 1	-	5.54	-		-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-		6.54	5.54	-	-	-	
Follow-up Hdwy	-	4.02	3.32		3.52	4.02	-	2.22	-	
Pot Cap-1 Maneuver	0	153	429		306	151	0	-	-	
Stage 1	0	222	-		-	-	0	-	-	
Stage 2	0	-	-		375	219	0	-	-	
Platoon blocked, %									-	
Mov Cap-1 Maneuver	-	148	414		253	146	-	-	-	
Mov Cap-2 Maneuver	-	148	-		253	146	-	-	-	
Stage 1	-	214	-		-	-	-	-	-	
Stage 2	-	-	-		312	211	-	-		
Approach	EB				WB			SB		
HCM Control Delay, s	18.3				27.6					
HCM LOS	С				D					
Minor Lane/Major Mvmt	EBLn1 E	EBLn2V	/BLn1	SBL	SBT	SBR				
Capacity (veh/h)	148	414	231	-	-	-				
HCM Lane V/C Ratio	0.085	0.117	0.314	-	-	-				
HCM Control Delay (s)	31.6	14.8	27.6	-	-	-				
HCM Lane LOS	D	В	D	-	-	-				
HCM 95th %tile Q(veh)	0.3	0.4	1.3	-	-	-				

MS	Synchro 9 Report Page 1

MS Synchro 9 Report Page 2

Intersection														
Int Delay, s/veh	4													
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NE	3L	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स				ĵ,			7	ተ ተኈ				
Traffic Vol, veh/h	4	69	0		0	34	18	8	36	530	171	0	0	0
Future Vol, veh/h	4	69	0		0	34	18	8	36	530	171	0	0	0
Conflicting Peds, #/hr	0	0	0		0	0	28		17	0	0	0	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Fre	ee	Free	Free	Free	Free	Free
RT Channelized	-	-	None		-	-	None		-	-	None	-	-	None
Storage Length	-	-	-		-	-	-		0	-	-	-	-	-
Veh in Median Storage, #	-	0	-		-	0	-		-	0	-	-	-	-
Grade, %	-	0	-		-	0	-		-	0	-	-	0	-
Peak Hour Factor	94	94	94		94	94	94	(94	94	94	94	94	94
Heavy Vehicles, %	2	2	2		2	2	2		2	2	2	2	2	2
Mvmt Flow	4	73	0		0	36	19	Ć	91	564	182	0	0	0
Major/Minor	Minor2			N.	/linor1			Majo						
Conflicting Flow All	472	946	-		-	855	401		17	0	0			
Stage 1	17	17	-		-	838	-		-	-	-			
Stage 2	455	929	-		-	17	-		-	-	-			
Critical Hdwy	6.44	6.54	-		-	6.54	7.14	5.3	34	-	-			
Critical Hdwy Stg 1	-	-	-		-	5.54	-		-	-	-			
Critical Hdwy Stg 2	6.74	5.54	-		-	-	-		-	-	-			
Follow-up Hdwy	3.82	4.02	-		-	4.02	3.92	3.		-	-			
Pot Cap-1 Maneuver	515	260	0		0	294	512	113	33	-	-			
Stage 1	-	-	0		0	380	-		-	-	-			
Stage 2	507	344	0		0	-	-		-	-	-			
Platoon blocked, %										-	-			
Mov Cap-1 Maneuver	411	235	-		-	266	512	113	33	-	-			
Mov Cap-2 Maneuver	411	235	-		-	266	-		-	-	-			
Stage 1	-	-	-		-	349	-		-	-	-			
Stage 2	402	316	-		-	-	-		-	-	-			
	ED				MD				n					
Approach	EB				WB				IB					
HCM Control Delay, s	26.9				18.6			0	.9					
HCM LOS	D				С									
Minor Lane/Major Mvmt	NBL	NBT	NRR I	EBLn1W	/RI n1									
Capacity (veh/h)	1133		-	241	319									
HCM Lane V/C Ratio	0.081			0.322										
HCM Control Delay (s)	8.5			26.9	18.6									
HCM Lane LOS	6.5 A			20.9 D	10.0									
HCM 95th %tile Q(veh)	0.3			1.3	0.6									
HOW YOUR WINE WIVEN)	0.3	-	-	1.3	0.0									

Intersection									
Int Delay, s/veh	3								
Movement	EBL	EBT				WBT	WBR	SBL	SBR
Lane Configurations		4				1>		¥	
Traffic Vol, veh/h	123	127				56	103	14	17
Future Vol, veh/h	123	127				56	103	14	17
Conflicting Peds, #/hr	0	0				0	0	0	0
Sign Control	Free	Free				Free	Free	Stop	Stop
RT Channelized	-	None				-	None	-	None
Storage Length		-					-	0	-
Veh in Median Storage, #	-	0				0	-	0	-
Grade, %		0				0	-	0	
Peak Hour Factor	92	92				92	92	92	92
Heavy Vehicles, %	2	2				2	2	2	2
Mvmt Flow	134	138				61	112	15	18
Major/Minor	Major1				M	ajor2		Minor2	
Conflicting Flow All	173	0				-	0	522	117
Stage 1		-					-	117	-
Stage 2							-	405	
Critical Hdwy	4.12					-	-	6.42	6.22
Critical Hdwy Stg 1	-	-				-	-	5.42	-
Critical Hdwy Stg 2	-	-				-	-	5.42	-
Follow-up Hdwy	2.218	-				-		3.518	3.318
Pot Cap-1 Maneuver	1404					-		515	935
Stage 1	-	-				-		908	
Stage 2		-				-	-	673	-
Platoon blocked, %		-				-			
Mov Cap-1 Maneuver	1404					-		462	935
Mov Cap-2 Maneuver	-	-				-	-	462	
Stage 1	-					-		908	-
Stage 2	-	-				-	-	604	
-									
Approach	EB					WB		SB	
HCM Control Delay, s	3.9					0		10.9	
HCM LOS								В	
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR S	SBLn1				
Capacity (veh/h)	1404	-	-	-	639				
HCM Lane V/C Ratio	0.095				0.053				
HCM Control Delay (s)	7.8	0	-		10.9				
HCM Lane LOS	A	Α	-	-	В				
HCM 95th %tile Q(veh)	0.3		-		0.2				
	2.0								

Intersection							
Int Delay, s/veh	3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			લ	f)		
Traffic Vol, veh/h	35	21	154	69	257	257	
Future Vol, veh/h	35	21	154	69	257	257	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-		-		-	
Veh in Median Storage, #	0			0	0	-	
Grade, %	0	-		0	0		
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	38	23	167	75	279	279	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	829	419	559	0	-	0	
Stage 1	419		-	-	-	-	
Stage 2	410						
Critical Hdwy	6.42	6.22	4.12	-		-	
Critical Hdwy Stg 1	5.42		-			-	
Critical Hdwy Stg 2	5.42	-	-	-			
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	340	634	1012	-		-	
Stage 1	664	-	-	-	-	-	
Stage 2	670	-		-		-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	282	634	1012	-	-	-	
Mov Cap-2 Maneuver	282	-	-	-	-	-	
Stage 1	664	-	-	-	-	-	
Stage 2	555		-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	17.2		6.4		0		
HCM LOS	С						
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR				
Capacity (veh/h)	1012	- 356					
HCM Lane V/C Ratio	0.165	- 0.171					
HCM Control Delay (s)	9.3	0 17.2					
HCM Lane LOS	Α	A C					
HCM 95th %tile Q(veh)	0.6	- 0.6					
. , ,							

Intersection													
	5.5												
Movement	EBL	EBT	EBR	V	VBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		ની				₽		ሻ					
Traffic Vol, veh/h	27	0	0		0	0	0	341	219	0	0	0	
Future Vol, veh/h	27	0	0		0	0	0	341	219	0	0	0	
Conflicting Peds, #/hr	0	0	5		0	0	0	6	0	0	0	0	
Sign Control	Stop	Stop	Stop	F	ree	Free	Free	Free	Free	Free	Stop	Stop	Sto
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	Nor
Storage Length	-	-	-		-	-	-	115	-	-	-	-	
Veh in Median Storage, #	-	0	-		-	0	-	-	0	-	-	-	
Grade, %	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	88	88	88		88	88	88	88	88	88	88	88	8
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	
Mvmt Flow	31	0	0		0	0	0	388	249	0	0	0	
Major/Minor	Minor2			Ma	ior?			Major1					
Conflicting Flow All	882	1031		IVIA	JUI Z -	-	0	7	0				
	7	7	-		-		U	-	0	-			
Stage 1	875	1024	-		-	-	-	-	-	-			
Stage 2			-		-	-	-	4.12	-	-			
Critical Hdwy	6.08	6.53	-		-	-	-	4.13	-	-			
Critical Hdwy Stg 1	5.43	5.53 5.53			-	-	-	-		-			
Critical Hdwy Stg 2		4.019	-		-		-	2.219	-	-			
Follow-up Hdwy			-		-	-	-		-	-			
Pot Cap-1 Maneuver	335	232	0		0	-	-	1613	-	0			
Stage 1	974	890	0		0	-	-	-	-	0			
Stage 2	342	312	0		0	-	-		-	0			
Platoon blocked, %	050					-	-	4/40	-				
Mov Cap-1 Maneuver	252	0	-		-	-	-	1613	-	-			
Mov Cap-2 Maneuver	252	0	-		-	-	-		-	-			
Stage 1	968	0	-		-	-	-	-	-	-			
Stage 2	258	0	-			-	-	-	-	-			
Approach	EB				WB			NB					
HCM Control Delay, s	21.3				0			4.8					
HCM LOS	С												
Minor Lane/Major Mvmt	NBL	NRT	EBLn1	WBT W	/BR								
Capacity (veh/h)	1613	INDI	252	WDI W	IDI								
HCM Lane V/C Ratio	0.24		0.122	-									
	7.9		21.3										
HCM Control Delay (s)		-		-	-								
HCM Lane LOS	A	-	C	-	-								
HCM 95th %tile Q(veh)	0.9	-	0.4	-	-								

26: Trinity St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: AM

ntersection															Intersection		
nt Delay, s/veh	6.7														Int Delay, s/veh	0.6	
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Movement	EBL	[
ane Configurations		^	7			ની						-411	. 7		Lane Configurations	*	
raffic Vol, veh/h	0	20	58		70	121	0	0	0	0	46				Traffic Vol, veh/h	35	
uture Vol, veh/h	0	20	58		70	121	0	0	0	0	46	538	103		Future Vol, veh/h	35	
Conflicting Peds. #/hr	0	0	22		0	0	0	0	0	0	4	0	0		Conflicting Peds. #/hr	3	
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free	Free	Free	Free		Sign Control	Stop	
RT Channelized	-	-	None		-	-	None	-	-	None			None		RT Channelized	-	
Storage Length		-	40							-			- 50		Storage Length	0	
/eh in Median Storage, #		0	-		-	0						C			Veh in Median Storage, #	ŧ 0	
Grade, %		0				0			0						Grade, %	0	
Peak Hour Factor	92	92	92		92	92	92	92	92		92				Peak Hour Factor	87	
leavy Vehicles, %	2	2	2		2	2	2	2	2						Heavy Vehicles, %	2	
Nymt Flow	0	22	63		76	132	0	0	0						Mymt Flow	40	
WITH THOW	· ·		03		70	102	Ū	Ū	Ū	U	00	500	112		WWW. Flow	10	
Major/Minor	Minor2			Mi	inor1						Maior2				Major/Minor	Minor2	
Conflicting Flow All	-	689	314		429	689	-				4		0		Conflicting Flow All	482	
Stage 1		685	-		4	4									Stage 1	0	
Stage 2		4			425	685									Stage 2	482	
Critical Hdwv			6.94		7.54	6.54					4.14				Critical Hdwy	5.74	
Critical Hdwy Stg 1			0.74		7.54	0.54					7.17				Critical Hdwy Stg 1	3.74	
Critical Hdwy Stg 2		J.J4			6.54	5.54									Critical Hdwy Stg 2	6.04	
follow-up Hdwy		4.02	3.32		3.52	4.02					2.22				Follow-up Hdwy	3.82	
Pot Cap-1 Maneuver	0	367	682		510	367	0				1616				Pot Cap-1 Maneuver	558	
Stage 1	0	447	002			307	0				1010				Stage 1	336	
	0	447			-	447	0									536	
Stage 2	U		-		578	447	U								Stage 2	536	
Platoon blocked, %		0.47	(00		400	0.47					4/4/				Platoon blocked, %	550	
Mov Cap-1 Maneuver		0 . ,	682		422	347	-				1616				Mov Cap-1 Maneuver	558	
Nov Cap-2 Maneuver	-	347	-		422	347	-								Mov Cap-2 Maneuver	558	
Stage 1		424	-		-	-	-						-		Stage 1		
Stage 2	-	-	-		472	424	-								Stage 2	536	
Innroach	EB				WB						SB				Approach	EB	
Approach HCM Control Delay, s	12.2				26.3						0.6			.	Approach HCM Control Delay, s	12	
	12.2 B				26.3 D						0.0					12 B	
HCM LOS	В				U										HCM LOS	В	
Minor Lane/Major Mvmt	EBLn1 I	FRI n2N	MRI n1	SBL	SBT	SBR									Minor Lane/Major Mvmt	NBL	NBT E
Capacity (veh/h)	347	682	371	1616	JD1 -	JUIC									Capacity (veh/h)	INDL	NOTE
HCM Lane V/C Ratio	0.063		0.56												HCM Lane V/C Ratio		- 1
HCM Control Delay (s)	16.1	10.8	26.3	7.3	0.1	-									HCM Control Delay (s)		- 1
		10.8 B		7.3 A	0. I	-										-	-
HCM Lane LOS HCM 95th %tile Q(veh)	С		D			-									HCM Lane LOS		_
	0.2	0.3	3.3	0.1	-	-									HCM 95th %tile Q(veh)	-	

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ			ተተቡ		
Traffic Vol, veh/h	35	0	103	527	0	0
Future Vol, veh/h	35	0	103	527	0	0
Conflicting Peds, #/hr	3	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0	-	-	-		-
Veh in Median Storage,	# 0	-	-	0		-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	40	0	118	606	0	0
Major/Minor	Minor2		Major1			
Conflicting Flow All	482	-	0	0		
Stage 1	0	-	-	-		
Stage 2	482	-	-	-		
Critical Hdwy	5.74	-	5.34	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	6.04	-	-	-		
Follow-up Hdwy	3.82	-	3.12	-		
Pot Cap-1 Maneuver	558	0	-	-		
Stage 1	-	0	-	-		
Stage 2	536	0	-	-		
Platoon blocked, %				-		
Mov Cap-1 Maneuver	558	-		-		
Mov Cap-2 Maneuver	558	-	-	-		
Stage 1	-	-	-	-		
Stage 2	536			-		
Approach	EB		NB			
HCM Control Delay, s	12					
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1				
Capacity (veh/h)		- 558				
HCM Lane V/C Ratio		- 0.072				
HCM Control Delay (s)		- 12				
HCM Lane LOS		- B				
HCM 95th %tile Q(veh)		- 0.2				

MS Synchro 9 Report Page 8

Int Delay, s/veh 1.	.8													
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NB	L	NBT	NBR	SBL	SBT	SBF
Lane Configurations		1				4							414	7
Traffic Vol. veh/h	0	12	46		40	8	0		0	0	0	23	1086	18
Future Vol. veh/h	0	12	46		40	8	0		0	0	0	23	1086	18
Conflicting Peds, #/hr	0	0	0		20	0	0		0	0	0	0	0	24
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Fre	e	Free	Free	Free	Free	Free
RT Channelized	-	-	None			-	None		-	-	None	-	-	None
Storage Length			-		-	-	-			-	-	-		C
Veh in Median Storage, #		0	-		-	0	-		-	-	-	-	0	
Grade, %	-	0	-		-	0	-		-	0	-		0	
Peak Hour Factor	92	92	92		92	92	92	9	2	92	92	92	92	92
Heavy Vehicles, %	2	2	2		2	2	2		2	2	2	2	2	2
Mvmt Flow	0	13	50		43	9	0		0	0	0	25	1180	20
Major/Minor	Minor2			М	inor1							Major2		
Conflicting Flow All	-	1254	634		667	1254	-					0	0	(
Stage 1		1254	-		0	0	-					-	-	
Stage 2		0	-		667	1254	-							
Critical Hdwy	-	6.54	6.94		7.54	6.54	-					4.14		
Critical Hdwy Stg 1		5.54	-		-		-					-		
Critical Hdwy Stg 2	-	-	-		6.54	5.54	-						-	
Follow-up Hdwy		4.02	3.32		3.52	4.02	-					2.22		
Pot Cap-1 Maneuver	0	171	422		344	171	0					-		
Stage 1	0	242	-		-	-	0					-		
Stage 2	0	-	-		414	242	0					-	-	
Platoon blocked, %														
Mov Cap-1 Maneuver	-	167	412		284	167	-					-	-	
Mov Cap-2 Maneuver		167	-		284	167	-					-	-	
Stage 1	-	236	-		-	-	-						-	
Stage 2	-	-	-		344	236	-					-	-	
Ů														
Approach	EB				WB							SB		
HCM Control Delay, s	19.2				22.8									
HCM LOS	С				С									
Minor Lane/Major Mvmt	EBLn1V	VBLn1	SBL	SBT	SBR									
Capacity (veh/h)	316	254		-										
HCM Lane V/C Ratio		0.205		-										
HCM Control Delay (s)	19.2	22.8		-										
HCM Lane LOS	C	C		-										
HCM 95th %tile Q(veh)	0.7	0.8												

Intersection													
Int Delay, s/veh	2.4												
Movement	EBL	EBT	EBR	WB	L WBT	WBR	1	VBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4				44			4	
Traffic Vol, veh/h	3	25	33		9 7	5		15	280	8	2	46	16
Future Vol, veh/h	3	25	33		9 7	5		15	280	8	2	46	16
Conflicting Peds, #/hr	0	0	0		0 0	15		3	0	0	0	0	3
Sign Control	Stop	Stop	Stop	Sto	p Stop	Stop	F	ree	Free	Free	Free	Free	Free
RT Channelized	-	-	None			None		-	-	None	-	-	None
Storage Length	-	-	-			-		-	-	-	-	-	-
Veh in Median Storage, #	-	0	-		- 0	-		-	0	-	-	0	-
Grade, %	-	0	-		- 0	-		-	0	-	-	0	-
Peak Hour Factor	79	79	79	7	9 79	79		79	79	79	79	79	79
Heavy Vehicles, %	2	2	2		2 2	2		2	2	2	2	2	2
Mvmt Flow	4	32	42	1	1 9	6		19	354	10	3	58	20
Major/Minor	Minor2			Minor	1		Ma	jor1			Major2		
Conflicting Flow All	496	479	71	50	7 484	374		81	0	0	365	0	0
Stage 1	76	76	-	39	7 397	-		-	-	-	-	-	-
Stage 2	420	403	-	11	0 87	-		-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.1	2 6.52	6.22	4	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.1	2 5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.1	2 5.52	-		-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.51	8 4.018	3.318	2.	218	-	-	2.218	-	-
Pot Cap-1 Maneuver	484	486	991	47	6 483	672	1	517	-	-	1194	-	-
Stage 1	933	832	-	62	9 603	-		-	-	-	-	-	-
Stage 2	611	600	-	89	5 823	-		-	-	-	-	-	-
Platoon blocked, %									-	-		-	-
Mov Cap-1 Maneuver	458	475	988	42		662	1	517	-	-	1177	-	-
Mov Cap-2 Maneuver	458	475	-	42		-		-	-	-	-	-	-
Stage 1	915	827	-	61		-		-	-	-	-	-	-
Stage 2	578	590	-	82	2 818			-	-	-	-	-	-
Approach	EB			W	В			NB			SB		
HCM Control Delay, s	11.2			12.	9			0.4			0.3		
HCM LOS	В				В								
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1WBLn	1 SBL	SBT	SBR						
Capacity (veh/h)	1517	-		659 48			-						
HCM Lane V/C Ratio	0.013						-						
HCM Control Delay (s)	7.4	0		11.2 12.		0	-						
HCM Lane LOS	Α	Ā			В А	A	-						
HCM 95th %tile Q(veh)	0	-	-	0.4 0.		-	-						

Synchro 9 Report Page 10 MS

Intersection Int Delay, s/veh	9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	EDL	<u>EBI</u>	EDR	WDL		WDR	INDL		INDIX	JDL		SDI
Traffic Vol. veh/h	0	35	0	0	↑ 18	0	0	↑	0	0	↑	(
Future Vol. veh/h	0	35	0	0	18	0	0	0	0	0	0	(
Conflicting Peds, #/hr	0	0	0	10	0	10	11	0	0	0	0	11
J	-	-	-		-	Stop	Free	Free	Free	Free	Free	Free
Sign Control RT Channelized	Stop	Stop	Stop	Stop	Stop	None	riee	riee	None	riee	riee	None
Storage Length			None	-		None			None			INOHE
Veh in Median Storage, #		0			0			0	-		0	
Grade, %		0			0			0			0	
								92				
Peak Hour Factor	92	92	92	92	92	92	92		92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	38	0	0	20	0	0	0	0	0	0	(
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	-	1		-	1	-	-	0	-		-	(
Stage 1		1	-		0	-						
Stage 2		0	-		1							
Critical Hdwy		6.52	-		6.52	-						
Critical Hdwy Stg 1		5.52	-		5.52					-		
Critical Hdwy Stg 2		5.52	-	-	5.52		-			-		
Follow-up Hdwy			-							-		
Pot Cap-1 Maneuver	0	895	0	0	895	0	0		0	0		C
Stage 1	0	895	0	0	-	0	0		0	0		
Stage 2	0	-	0	0	895	0	0		0	0		C
Platoon blocked. %	-		-	_		-	_		-	_		
Mov Cap-1 Maneuver		895	-		895	-						
Mov Cap-2 Maneuver		895	-		895							
Stage 1		895			-							
Stage 2		075			895							
Stage 2					070							
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.2			9.1			0			0		
HCM LOS	Α			А								
Minor Lane/Major Mvmt	NBT	EBLn1\	VBLn1	SBT								
Capacity (veh/h)	-	895	895	-								
HCM Lane V/C Ratio			0.022									
HCM Control Delay (s)		9.2	9.1	-								
HCM Lane LOS		7.2 A	7. I									

Intersection								
Int Delay, s/veh	2.4							
Movement		EBT	EBR		WBL	WBT	NBL	NBR
Lane Configurations		ĵ.				ર્ન	¥	
Traffic Vol, veh/h		34	0		3	12	14	0
Future Vol, veh/h		34	0		3	12	14	0
Conflicting Peds, #/hr		0	0		25	0	0	0
Sign Control		Free	Free		Free	Free	Stop	Stop
RT Channelized		-	None		-	None	-	None
Storage Length		-	-		-	-	0	-
Veh in Median Storage, #		0	-		-	0	0	-
Grade, %		0	-		-	0	0	-
Peak Hour Factor		83	83		83	83	83	83
Heavy Vehicles, %		2	2		2	2	2	2
Mvmt Flow		41	0		4	14	17	0
Major/Minor	N	Najor1		N	/lajor2		Minor1	
Conflicting Flow All		0	0		66	0	88	66
Stage 1		-	-		-	-	66	-
Stage 2		-	-		-	-	22	-
Critical Hdwy		-	-		4.12	-	6.42	6.22
Critical Hdwy Stg 1		-	-		-	-	5.42	-
Critical Hdwy Stg 2		-	-		-	-	5.42	-
Follow-up Hdwy		-	-		2.218	-	3.518	3.318
Pot Cap-1 Maneuver		-	-		1536	-	913	998
Stage 1		-	-		-	-	957	-
Stage 2		-	-		-	-	1001	-
Platoon blocked, %		-	-			-		
Mov Cap-1 Maneuver		-	-		1536	-	889	974
Mov Cap-2 Maneuver		-	-		-	-	889	-
Stage 1		-			-	-	934	-
Stage 2		-	-		-	-	998	-
Approach		EB			WB		NB	
HCM Control Delay, s		0			1.5		9.1	
HCM LOS					110		A	
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT			
Capacity (veh/h)	889	-	-	1536	-			
HCM Lane V/C Ratio	0.019			0.002				
HCM Control Delay (s)	9.1	-		7.3	0			
HCM Lane LOS	7. I			7.5 A	A			
HCM 95th %tile Q(veh)	0.1			0	-			
HOW FOUT FOUTE CE(VEII)	0.1	-		U				

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7			^	1
Traffic Vol, veh/h	0	44	0	0	333	33
Future Vol. veh/h	0	44	0	0	333	33
Conflicting Peds, #/hr	0	0	0	0	0	120
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None		None
Storage Length	-	0		-		50
Veh in Median Storage, #	# 0			-	0	
Grade, %	0			0	0	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	53	0	0	401	40
Major/Minor	Minor2				Major2	
Conflicting Flow All	- 101111012	321			iviajoiz	0
Stage 1	-	321				U
Stage 2						
Critical Hdwy		7.14				
Critical Hdwy Stg 1		7.17				
Critical Hdwy Stg 2						
Follow-up Hdwy		3.92				
Pot Cap-1 Maneuver	0	576				
Stage 1	0	-				
Stage 2	0	-				
Platoon blocked, %						
Mov Cap-1 Maneuver	-	510				-
Mov Cap-2 Maneuver		-				
Stage 1	-					-
Stage 2						-
,						
Approach	EB				SB	
HCM Control Delay, s	12.9				0	
HCM LOS	12.7 B				U	
TIOW EOS	ь					
Minor Lane/Major Mvmt	EBLn1	SBT SBR				
Capacity (veh/h)	510	3DI 3DK				
HCM Lane V/C Ratio	0.104					
HCM Control Delay (s)	12.9					
HCM Lane LOS	12.9 B					
HCM 95th %tile Q(veh)	0.3					
HOW YOU WILL (VEII)	0.3					

MS Synchro 9 Report Page 13

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	•	•	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑			^	7				ሻ	^	7
Traffic Volume (vph)	149	362	129	0	1163	669	0	0	0	187	619	228
Future Volume (vph)	149	362	129	0	1163	669	0	0	0	187	619	228
Confl. Peds. (#/hr)	29		68	68		29				41		68
Confl. Bikes (#/hr)			1			6						3
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	159	385	137	0	1237	712	0	0	0	199	659	243
Shared Lane Traffic (%)												
Lane Group Flow (vph)	159	522	0	0	1237	712	0	0	0	199	659	243
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases						6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase												
Minimum Initial (s)	2.0	15.0			15.0	10.0				10.0	5.0	5.0
Minimum Split (s)	7.0	27.0			34.0	15.0				15.0	32.0	32.0
Total Split (s)	25.0	92.0			67.0	43.0				43.0	43.0	43.0
Total Split (%)	18.5%	68.1%			49.6%	31.9%				31.9%	31.9%	31.9%
Yellow Time (s)	4.0	4.0			4.0	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag				Lead							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max	None				None	Max	Max
Act Effct Green (s)	20.0	87.0			62.0	100.0				38.0	38.0	38.0
Actuated g/C Ratio	0.15	0.64			0.46	0.74				0.28	0.28	0.28
v/c Ratio	0.61	0.25			0.76	0.60				0.40	0.66	0.48
Control Delay	64.6	10.0			25.7	2.3				42.2	46.6	18.6
Queue Delay	0.0	0.0			13.8	0.2				0.0	0.0	0.0
Total Delay	64.6	10.0			39.5	2.5				42.2	46.6	18.6
LOS	E	Α			D	Α				D	D	В
Approach Delay		22.7			26.0						39.6	
Approach LOS		С			С						D	
Queue Length 50th (ft)	132	90			423	20				142	268	63
Queue Length 95th (ft)	209	117			498	43				216	337	147
Internal Link Dist (ft)		228			45			159			210	
Turn Bay Length (ft)	160									130		120
Base Capacity (vph)	262	2122			1625	1177				498	996	503
Starvation Cap Reductn	0	0			392	80				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.61	0.25			1.00	0.65				0.40	0.66	0.48
Intersection Cummany												

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 80

MS Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: PM

Splits and Phases: 1: Martin Luther King Jr. Blvd & Guadalupe St

MS Synchro 9 Report

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: PM

	-	•	1	•	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			^	ሻሻ	7
Traffic Volume (vph)	528	0	0	1297	857	238
Future Volume (vph)	528	0	0	1297	857	238
Confl. Peds. (#/hr)	520	J	Ü	12//	007	79
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	580	0.71	0.71	1425	942	262
Shared Lane Traffic (%)	300	J	0	1723	/72	202
Lane Group Flow (vph)	580	0	0	1425	942	262
Turn Type	NA	U	U	NA	Prot	Perm
Protected Phases	2			6	8	reiiii
Permitted Phases	2			Ü	0	3
Detector Phases	2			6	8	3
	2			D	8	3
Switch Phase	10.0			10.0	ΕΛ	EA
Minimum Initial (s)	10.0			10.0	5.0	5.0
Minimum Split (s)	30.0			15.0	10.0	10.0
Total Split (s)	86.0			86.0	49.0	49.0
Total Split (%)	63.7%			63.7%	36.3%	36.3%
Yellow Time (s)	4.0			4.0	4.0	4.0
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	5.0			5.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max			C-Max	Max	Max
Act Effct Green (s)	81.0			81.0	44.0	44.0
Actuated g/C Ratio	0.60			0.60	0.33	0.33
v/c Ratio	0.27			0.67	0.84	0.42
Control Delay	13.9			13.6	60.1	18.5
Queue Delay	0.0			0.3	0.0	0.0
Total Delay	13.9			13.9	60.1	18.5
LOS	B			12.0	E	В
Approach Delay	13.9			13.9	51.1	
Approach LOS	В			В	D	0-
Queue Length 50th (ft)	122			250	436	82
Queue Length 95th (ft)	150			299	509	114
Internal Link Dist (ft)	272			277	337	
Turn Bay Length (ft)						
Base Capacity (vph)	2123			2123	1118	631
Starvation Cap Reductn	0			146	0	0
Spillback Cap Reductn	0			191	0	0
Storage Cap Reductn	0			0	0	0
Reduced v/c Ratio	0.27			0.74	0.84	0.42
	0.27			0	0.01	U. 12
Intersection Summary						
Cycle Length: 135						
Actuated Cycle Length: 13						
Offset: 0 (0%), Referenced		EBT and	6:WBT,	Start of G	ireen	
Natural Cycle: 55						
Control Type: Actuated-Co	ordinated					
Control Type. Actualeu Ct	oramated					

MS Synchro 9 Report
Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: PM

Maximum v/c Ratio: 0.84
Intersection Signal Delay: 27.8
Intersection Capacity Utilization 87.2%
ICU Level of Service E
Analysis Period (min) 15

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	-	•	•	←	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ ↑		*	^		
Traffic Volume (vph)	738	0	12	1242	0	0
Future Volume (vph)	738	0	12	1242	0	0
Confl. Peds. (#/hr)		32	32		34	
Confl. Bikes (#/hr)		4				
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	785	0	13	1321	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	785	0	13	1321	0	0
Turn Type	NA		pm+pt	NA		
Protected Phases	2		1	6		
Permitted Phases	_		6			
Detector Phase	2		1	6		
Switch Phase				J		
Minimum Initial (s)	15.0		3.0	15.0		
Minimum Split (s)	34.0		8.0	20.0		
Total Split (s)	120.0		15.0	135.0		
Total Split (%)	88.9%			100.0%		
Yellow Time (s)	4.0		4.0	4.0		
All-Red Time (s)	1.0		1.0	1.0		
Lost Time Adjust (s)	0.0		0.0	0.0		
Total Lost Time (s)	5.0		5.0	5.0		
Lead/Lag	Lead		Lag	5.0		
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		
Act Effct Green (s)	127.0		133.0	135.0		
Actuated g/C Ratio	0.94		0.99	1.00		
			0.99			
v/c Ratio	0.24			0.37		
Control Delay	0.7		0.1	0.3		
Queue Delay	0.0		0.0	0.0		
Total Delay	0.7		0.1	0.3		
LOS	A		Α	A		
Approach Delay	0.7			0.3		
Approach LOS	A			A		
Queue Length 50th (ft)	0		0	3		
Queue Length 95th (ft)	42		m0	0	201	
Internal Link Dist (ft)	366			377	331	
Turn Bay Length (ft)	0000		115	0500		
Base Capacity (vph)	3329		704	3539		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.24		0.02	0.37		
Intersection Summary						
Cycle Length: 135						
Actuated Cycle Length: 13	5					
Offset: 0 (0%), Referenced		FRT and	6·WRTI	Start of G	Green	
Matural Cycle, 4F	priuse 2.1	_J i uilu	5. TT D I L	., Juli 01 C		

MS Synchro 9 Report
Page 5

Natural Cycle: 45

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: PM

Splits and Phases: 5: N. Congress Ave & Martin Luther King Jr. Blvd

MS Synchro 9 Report

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	\rightarrow	•	←	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	^	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	87	731	31	44	870	131	124	23	300	96	25	244
Future Volume (vph)	87	731	31	44	870	131	124	23	300	96	25	244
Confl. Peds. (#/hr)	43		7	7		43	22		23	23		22
Confl. Bikes (#/hr)			4			3						
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	90	754	32	45	897	135	128	24	309	99	26	252
Shared Lane Traffic (%)												
Lane Group Flow (vph)	90	786	0	45	897	135	0	152	309	0	125	252
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	3.0	10.0		3.0	10.0	10.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	8.0	22.0		8.0	28.0	28.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (s)	15.0	89.0		15.0	89.0	89.0	31.0	31.0	31.0	31.0	31.0	31.0
Total Split (%)	11.1%	65.9%		11.1%	65.9%	65.9%	23.0%	23.0%	23.0%	23.0%	23.0%	23.0%
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	95.9	89.7		93.0	86.6	86.6		26.0	26.0		26.0	26.0
Actuated g/C Ratio	0.71	0.66		0.69	0.64	0.64		0.19	0.19		0.19	0.19
v/c Ratio	0.22	0.34		0.10	0.40	0.15		0.73	0.57		0.66	0.52
Control Delay	5.1	7.2		2.0	5.4	2.0		72.3	9.5		68.1	11.3
Queue Delay	0.0	0.3		0.0	0.3	0.0		0.0	0.2		0.0	0.0
Total Delay	5.1	7.5		2.0	5.7	2.0		72.3	9.7		68.1	11.3
LOS	Α	Α		Α	Α	Α		Е	Α		E	В
Approach Delay		7.2			5.0			30.3			30.1	
Approach LOS		Α			Α			С			С	
Queue Length 50th (ft)	15	102		2	113	10		127	0		102	11
Queue Length 95th (ft)	24	108		5	154	28		#231	84		#187	90
Internal Link Dist (ft)		377			273			135			212	
Turn Bay Length (ft)	160			100		100			100			
Base Capacity (vph)	444	2334		519	2269	904		208	539		190	481
Starvation Cap Reductn	0	808		0	666	0		0	0		0	0
Spillback Cap Reductn	0	283		0	0	0		0	24		0	0
Storage Cap Reductn	0	0		0	0	0		0	0		0	0
Reduced v/c Ratio	0.20	0.52		0.09	0.56	0.15		0.73	0.60		0.66	0.52

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 70

MS Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.73
Intersection Signal Delay: 13.3 Intersection Capacity Utilization 78.2% ICU
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles. Intersection LOS: B ICU Level of Service D

Splits and Phases: 6: Brazos St & Martin Luther King Jr. Blvd ↑ Ø8

MS Synchro 9 Report

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	•	•	1	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		∱ 1≽		<u>ነ</u>	44					ሻ	^	7
Traffic Volume (vph)	0	1066	29	335	1102	0	0	0	0	37	196	138
Future Volume (vph)	0	1066	29	335	1102	0	0	0	0	37	196	138
Confl. Peds. (#/hr)			36	36						71		17
Confl. Bikes (#/hr)			7									14
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	1146	31	360	1185	0	0	0	0	40	211	148
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1177	0	360	1185	0	0	0	0	40	211	148
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		1	6						4	
Permitted Phases				6						4		4
Detector Phase		2		1	6					4	4	4
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					5.0	5.0	5.0
Minimum Split (s)		32.0		8.0	30.0					30.0	30.0	30.0
Total Split (s)		78.0		25.0	103.0					32.0	32.0	32.0
Total Split (%)		57.8%		18.5%	76.3%					23.7%	23.7%	23.7%
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					Max	Max	Max
Act Effct Green (s)		74.7		98.0	98.0					27.0	27.0	27.0
Actuated g/C Ratio		0.55		0.73	0.73					0.20	0.20	0.20
v/c Ratio		0.60		0.90	0.46					0.13	0.30	0.37
Control Delay		15.7		60.2	4.3					45.8	47.3	13.6
Queue Delay		0.5		1.8	0.3					0.0	0.0	0.0
Total Delay		16.2		62.0	4.5					45.8	47.3	13.6
LOS		В		Е	Α					D	D	В
Approach Delay		16.2			17.9						34.6	
Approach LOS		В			В						С	
Queue Length 50th (ft)		303		207	122					29	83	15
Queue Length 95th (ft)		377		m#337	m127					64	122	76
Internal Link Dist (ft)		273			321			343			244	
Turn Bay Length (ft)				120						100		100
Base Capacity (vph)		1949		418	2569					313	707	401
Starvation Cap Reductn		351		13	626					0	0	0
Spillback Cap Reductn		0		0	0					0	0	0
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.74		0.89	0.61					0.13	0.30	0.37
Intersection Summary												
Cycle Length: 135												

Cycle Length: 135

Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 80

MS Synchro 9 Report Page 9

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: PM

MS Synchro 9 Report Page 10

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	—	•	4	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^			† î>		ሻ	ર્ન	7			
Traffic Volume (vph)	83	1097	0	0	1176	51	214	314	482	0	0	0
Future Volume (vph)	83	1097	0	0	1176	51	214	314	482	0	0	0
Confl. Peds. (#/hr)			33			87	17		148			
Confl. Bikes (#/hr)						4			12			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	86	1131	0	0	1212	53	221	324	497	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	86	1131	0	0	1265	0	199	346	497	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	104.0			89.0		31.0	31.0	31.0			
Total Split (%)	11.1%	77.0%			65.9%		23.0%	23.0%	23.0%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	99.0	99.0			86.7		26.0	26.0	26.0			
Actuated g/C Ratio	0.73	0.73			0.64		0.19	0.19	0.19			
v/c Ratio	0.30	0.44			0.57		0.64	1.02	1.57			
Control Delay	4.8	1.4			7.0		67.7	113.8	302.5			
Queue Delay	0.0	0.0			0.6		0.9	26.6	0.0			
Total Delay	4.8	1.5			7.7		68.7	140.4	302.5			
LOS	Α	Α			Α		E	F	F			
Approach Delay		1.7			7.7			204.0				
Approach LOS		Α			Α			F				
Queue Length 50th (ft)	3	22			107		174	~341	~530			
Queue Length 95th (ft)	m12	24			123		269	#553	#754			
Internal Link Dist (ft)		321			699			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	317	2595			2232		313	339	316			
Starvation Cap Reductn	0	222			537		0	0	0			
Spillback Cap Reductn	0	0			0		22	24	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.27	0.48			0.75		0.68	1.10	1.57			

Intersection Summary

Cycle Length: 135

Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 65

MS Synchro 9 Report Page 11 8: Trinity St & Martin Luther King Jr. Blvd

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.57

Intersection Signal Delay: 63.7 Intersection Capacity Utilization 82.4% Intersection LOS: E ICU Level of Service E

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Oueue shown is maximum after two cycles.

Molume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd **1**04 ⊸ø_{2 (R)} 🥊 Ø6 (R)

MS Synchro 9 Report

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

	ᄼ	-	•	•	•	•	4	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		†	7		4						413-	
Fraffic Volume (vph)	0	20	11	163	94	0	0	0	0	47	1136	2
uture Volume (vph)	0	20	11	163	94	0	0	0	0	47	1136	2
Confl. Peds. (#/hr)			67		- '					43	1100	_
Confl. Bikes (#/hr)			07						2	15		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.9
Parking (#/hr)	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0
Adj. Flow (vph)	0	21	11	170	98	0	0	0	0	49	1183	
Shared Lane Traffic (%)	U	21		170	70	U	U	U	U	17	1100	
Lane Group Flow (vph)	0	21	11	0	268	0	0	0	0	0	1255	
Turn Type	U	NA	Perm	Perm	NA	U	U	U	U	Perm	NA	
Protected Phases		4 12	r cilli	r Cilli	4 12					r ciiii	2 10	
Permitted Phases		4 12	4 12	4 12	4 12					2 10	2 10	
Detector Phase		4 12	4 12	4 12	4 12					2 10	2 10	
Switch Phase		4 12	4 12	4 12	4 12					2 10	2 10	
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Fotal Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s) Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		31.3	31.3		31.3						79.7	
Actuated g/C Ratio		0.23	0.23		0.23						0.59	
//c Ratio		0.05	0.03		0.78						0.60	
Control Delay		21.9	0.03		35.1						12.1	
Queue Delay		0.0	0.0		0.0						0.0	
Total Delay		21.9	0.0		35.1						12.1	
_OS		C C	Α.		D						В	
Approach Delay		14.4			35.1						12.1	
Approach LOS		В			D						12.1 B	
Queue Length 50th (ft)		10	0		84						193	
Queue Length 95th (ft)		24	0		108						246	
nternal Link Dist (ft)		177	U		244			271			262	
Furn Bay Length (ft)		177			244			2/1			202	
Base Capacity (vph)		533	509		471						2076	
Starvation Cap Reductn		0	0		1						0	
Spillback Cap Reductn		0	0		0						0	
Storage Cap Reductn Reduced v/c Ratio		0.04	0.02		0.57						0.60	
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												
	n nhase 2.0	SRTI S	art of Gre	en								
Offset: 0 (0%), Referenced t	o phase 2:	SBTL, St	art of Gre	en								

Synchro 9 Report Page 13 MS

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
	15.0	15.0	ГΛ	Γ.0
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	21.0	21.0	22.5	22.5
Total Split (s)	56.0	29.0	24.0	26.0
Total Split (%)	41%	21%	18%	19%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?	0.14	NI.	N1	NI
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Cummen				
ntersection Summary				

Synchro 9 Report Page 14 MS

18: Guadalupe St & E. 17th St

2020 Background + Site Timing Plan: PM

Page 15

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 90 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.78 Intersection Signal Delay: 16.1 Intersection Capacity Utilization 74.9% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service D

Splits and Phases: 18: Guadalupe St & E. 17th St

MS Synchro 9 Report

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: PM

	۶	-	\rightarrow	•	←	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ની			- 1}•			414	7			
Traffic Volume (vph)	10	64	0	0	131	123	63	1021	68	0	0	0
Future Volume (vph)	10	64	0	0	131	123	63	1021	68	0	0	0
Confl. Peds. (#/hr)	33								46			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)		0										
Adj. Flow (vph)	11	70	0	0	142	134	68	1110	74	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	81	0	0	276	0	0	1178	74	0	0	0
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		31.2			31.2			79.8	79.8			
Actuated g/C Ratio		0.23			0.23			0.59	0.59			
v/c Ratio		0.22			0.64			0.39	0.09			
Control Delay		21.8			30.2			8.7	2.3			
Queue Delay		0.0			0.0			0.1	0.0			
Total Delay		21.8			30.2			8.8	2.3			
LOS		C			C			A	Α.			
Approach Delay		21.8			30.2			8.4	,,			
Approach LOS		C			C			A				
Queue Length 50th (ft)		33			127			154	2			
Queue Length 95th (ft)		m62			181			93	11			
Internal Link Dist (ft)		244			319			272	- 11		254	
Turn Bay Length (ft)		277			317			212	100		234	
Base Capacity (vph)		512			592			3052	813			
Starvation Cap Reductn		0			0			465	013			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.16			0.47			0.46	0.09			
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												

MS Synchro 9 Report Page 16

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type	_		10	10
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	26.0	28.0	22.5	22.5
Total Split (s)	54.0	28.0	25.0	28.0
Total Split (%)	40%	21%	19%	21%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	2.0	2.0	110	1.0
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?	C Man	Mana	Ninna	Mana
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn Reduced v/c Ratio				
Reduced Wc Ratio				
Intersection Summary				

Synchro 9 Report Page 17 MS

19: Lavaca St & E. 17th St

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.64

Intersection Signal Delay: 12.8

Intersection Capacity Utilization 45.4%

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: B
ICU Level of Service A

Splits and Phases: 19: Lavaca St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	•	•	4	†	-	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		ર્ન			1 2			ተተቡ	7			
Traffic Volume (vph)	10	43	0	0	54	27	62	1102	51	0	0	
Future Volume (vph)	10	43	0	0	54	27	62	1102	51	0	0	
Confl. Peds. (#/hr)						163	85		-			
Confl. Bikes (#/hr)						2						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Parking (#/hr)					0							
Adj. Flow (vph)	11	45	0	0	57	28	65	1160	54	0	0	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	56	0	0	85	0	0	1225	54	0	0	
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase	2						2.0	5	5			
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
ost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		20.7			20.7			90.3	90.3			
Actuated g/C Ratio		0.15			0.15			0.67	0.67			
v/c Ratio		0.13			0.15			0.07	0.07			
Control Delay		30.0			26.2			5.9	2.1			
Queue Delay		0.0			0.0			0.4	0.0			
Total Delay		30.0			26.2			6.4	2.1			
LOS		30.0 C			20.2 C			0.4 A	2.1 A			
Approach Delay		30.0			26.2			6.2	A			
Approach LOS		30.0 C			20.2 C			0.2 A				
Queue Length 50th (ft)		32			37			136	5			
Queue Length 95th (ft)		m51			64			130	m6			
		233			60			281	1110		272	
Internal Link Dist (ft)		233			00			201	100		212	
Turn Bay Length (ft)		570			490			3364	100			
Base Capacity (vph)												
Starvation Cap Reductn		0			0			1476	0			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		_			0 17			0	0.05			
Reduced v/c Ratio		0.10			0.17			0.65	0.05			
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												
Offset: 0 (0%), Referenced	to phase 2:I	NBTL, St	art of Gre	en								

MS Synchro 9 Report Page 19

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background + Site Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
	15.0	15.0	ГΛ	Γ.0
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	28.0	32.0	21.0	20.0
Total Split (s)	55.0	32.0	24.0	24.0
Total Split (%)	41%	24%	18%	18%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
	C M	NI	Mana	Mana
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Reduced V/C Railo				

MS Synchro 9 Report Page 20

28: Lavaca St & E. 16th St

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 105 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.37

Intersection Signal Delay: 8.3 Inters
Intersection Capacity Utilization 54.2% ICU I
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: A ICU Level of Service A

Splits and Phases: 28: Lavaca St & E. 16th St

MS Synchro 9 Report Page 21

34: Guadalupe St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: PM

	•	-	•	•	←	•	4	†	/	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ተተ _ጉ		ሻ	ተተተ						414	7
Traffic Volume (vph)	0	901	95	212	1707	0	0	0	0	149	889	412
Future Volume (vph)	0	901	95	212	1707	0	0	0	0	149	889	412
Confl. Peds. (#/hr)			18	18						20		27
Confl. Bikes (#/hr)												27
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	0	1048	110	247	1985	0	0	0	0	173	1034	479
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1158	0	247	1985	0	0	0	0	0	1207	479
Turn Type		NA		pm+pt	NA					Perm	NA	Pern
Protected Phases		2		13	6						4	
Permitted Phases				6						4		
Detector Phase		2		13	6					4	4	
Switch Phase												
Vinimum Initial (s)		10.0			5.0					5.0	5.0	5.0
Minimum Split (s)		25.0			25.0					32.0	32.0	32.0
Total Split (s)		58.0			88.0					47.0	47.0	47.0
Total Split (%)		43.0%			65.2%					34.8%	34.8%	34.8%
Yellow Time (s)		4.0			4.0					4.0	4.0	4.0
All-Red Time (s)		1.0			1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0					110	0.0	0.0
Total Lost Time (s)		5.0			5.0						5.0	5.0
Lead/Lag		Lag			0.0						0.0	0.0
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Max
Act Effct Green (s)		53.0		83.0	83.0					iviax	42.0	42.0
Actuated g/C Ratio		0.39		0.61	0.61						0.31	0.31
v/c Ratio		0.59		0.64	0.63						0.77	0.91
Control Delay		33.4		25.6	7.2						43.9	55.0
Queue Delay		0.0		7.1	0.2						0.0	0.0
Total Delay		33.4		32.7	7.4						43.9	55.0
LOS		33.4 C		32.7 C	Α.4						43.7 D	JJ.(
Approach Delay		33.4		C	10.2						47.1	L
Approach LOS		33.4 C			10.2 B						47.1 D	
Queue Length 50th (ft)		287		80	134						307	273
		316		m138	137						356	#488
Queue Length 95th (ft) Internal Link Dist (ft)		262		111130	240			197			285	#400
		202		50	240			197			260	100
Turn Bay Length (ft)		1968		383	3126						1564	525
Base Capacity (vph)				94	411							523
Starvation Cap Reductn		0									0	
Spillback Cap Reductn		0		0	0						0	(
Storage Cap Reductn		0		0	0						0	(
Reduced v/c Ratio		0.59		0.85	0.73						0.77	0.91
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												
Offset: 0 (0%), Referenced t Natural Cycle: 80	to phase 2	ERI and	6:MRIL	, Start of	Green							

Natural Cycle: 80

MS

Synchro 9 Report Page 22

34: Guadalupe St & W. 15th St

2020 Background + Site
Timing Plan: PM

|--|

Lane Group	Ø1	Ø3
LaneConfigurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		J
Detector Phase		
Switch Phase		
Minimum Initial (s)	5.0	8.0
Minimum Split (s)	10.0	13.0
Total Split (s)	15.0	15.0
Total Split (%)	11%	11%
Yellow Time (s)	4.0	4.0
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

MS Synchro 9 Report Page 23

34: Guadalupe St & W. 15th St

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.91
Intersection Signal Delay: 27.8 Intersection Capacity Utilization 77.2% ICU
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycless.

Intersection LOS: C ICU Level of Service D

m Volume for 95th percentile queue is metered by upstream signal.

MS Synchro 9 Report

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	\rightarrow	•	←	•	1	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ			ተተ _ጉ			414	7			
Traffic Volume (vph)	118	900	0	0	1606	66	385	872	157	0	0	0
Future Volume (vph)	118	900	0	0	1606	66	385	872	157	0	0	0
Confl. Peds. (#/hr)	47					47	30		18			
Confl. Bikes (#/hr)			2						27			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	131	1000	0	0	1784	73	428	969	174	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	131	1000	0	0	1857	0	0	1397	174	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0	33.0			
Total Split (s)	20.0	86.0			66.0		49.0	49.0	49.0			
Total Split (%)	14.8%	63.7%			48.9%		36.3%	36.3%	36.3%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			6.0	6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	81.0	81.0			65.1			43.0	43.0			
Actuated g/C Ratio	0.60	0.60			0.48			0.32	0.32			
v/c Ratio	0.66	0.33			0.76			0.89	0.31			
Control Delay	69.2	3.2			12.8			51.8	13.1			
Queue Delay	0.0	0.1			0.0			0.0	0.0			
Total Delay	69.2	3.3			12.8			51.8	13.1			
LOS	E	Α			В			D	В			
Approach Delay		11.0			12.8			47.5				
Approach LOS		В			В			D				
Queue Length 50th (ft)	81	43			117			426	33			
Queue Length 95th (ft)	m147	50			116			491	92			
Internal Link Dist (ft)		240			335			116			281	
Turn Bay Length (ft)	50											
Base Capacity (vph)	248	3051			2432			1573	558			
Starvation Cap Reductn	0	873			0			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.53	0.46			0.76			0.89	0.31			

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

MS Synchro 9 Report Page 25

35: Lavaca St & W. 15th St

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.89 Intersection Signal Delay: 24.3 Intersection Capacity Utilization 77.2% Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

MS Synchro 9 Report

36: Colorado St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	→	•	•	+	4	•	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^		ሻ	^			4			ર્ન	7
Traffic Volume (vph)	27	1060	21	22	1374	14	8	26	108	127	6	267
Future Volume (vph)	27	1060	21	22	1374	14	8	26	108	127	6	267
Confl. Peds. (#/hr)	32		34	34		32	96		6	6		96
Confl. Bikes (#/hr)			1			2			2			1
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	31	1218	24	25	1579	16	9	30	124	146	7	307
Shared Lane Traffic (%)												
Lane Group Flow (vph)	31	1242	0	25	1595	0	0	163	0	0	153	307
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm		custom
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		6
Detector Phase	5	2		1	6		4	4		8	8	6
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	15.0
Minimum Split (s)	10.0	20.0		10.0	22.0		36.0	36.0		10.0	10.0	22.0
Total Split (s)	10.0	79.0		10.0	79.0		46.0	46.0		46.0	46.0	79.0
Total Split (%)	7.4%	58.5%		7.4%	58.5%		34.1%	34.1%		34.1%	34.1%	58.5%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	C-Max
Act Effct Green (s)	81.0	78.0		81.0	78.0			41.0			41.0	78.0
Actuated g/C Ratio	0.60	0.58		0.60	0.58			0.30			0.30	0.58
v/c Ratio	0.18	0.42		0.10	0.54			0.29			0.49	0.37
Control Delay	6.2	6.3		5.1	8.7			13.5			45.1	2.9
Queue Delay	0.0	0.2		0.0	0.1			0.0			0.0	0.0
Total Delay	6.2	6.4		5.1	8.8			13.5			45.1	2.9
LOS	Α	A 6.4		Α	A 8.7			B 13.5			D	Α
Approach Delay		6.4 A			8.7 A						17.0	
Approach LOS	0	100		2	349			B 32			110	0
Queue Length 50th (ft)	0			3				83				37
Queue Length 95th (ft)	0	116		0	156						175	31
Internal Link Dist (ft)	90	335		90	362			155			114	100
Turn Bay Length (ft)	172	2927		242	2928			567			310	100 828
Base Capacity (vph)		687			352							
Starvation Cap Reductn	0			0				0			0	0
Spillback Cap Reductn	0	0		0	60			0			0	14
Storage Cap Reductn	0.18	0.55		-	0.62			0.29			0.49	0 20
Reduced v/c Ratio	U. 18	0.55		0.10	0.62			0.29			0.49	0.38

Intersection Summary

Cycle Length: 135

Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 75

MS Synchro 9 Report Page 27

36: Colorado St & W. 15th St

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.54 Intersection Signal Delay. 9.2 Intersection Capacity Utilization 87.6% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service E

Splits and Phases: 36: Colorado St & W. 15th St

MS Synchro 9 Report

37: N. Congress Ave & W. 15th St

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

The Configurations The Con	
The Configurations The Con	Lane Group
fific Volume (vph) 1353 0 0 1175 0 1 ure Volume (vph) 1353 0 0 1175 0 1 nfl. Peds. (#hr) 48 48 40 14 nfl. Bikes (#hr) 4 48 48 40 14 nfl. Bikes (#hr) 4 48 48 40 14 nfl. Eds. (#hr) 4 48 48 40 14 ak Hour Factor 0.86 <td< td=""><td>Lane Configurations</td></td<>	Lane Configurations
ure Volume (vph) 1353 0 0 1175 0 1 nfl. Peds. (#/hr) 48 48 40 14 nfl. Bikes (#/hr) 4 48 48 40 14 nfl. Bikes (#/hr) 0 0.86	Traffic Volume (vph)
nfl. Peds. (#/hr)	Future Volume (vph)
nfl. Bikes (#/hr) ak Hour Factor	Confl. Peds. (#/hr)
ak Hour Factor	
Flow (vph)	Peak Hour Factor
ared Lane Traffic (%) the Group Flow (vph) Type NA Type	
ne Group Flow (vph) 1573 0 0 1366 0 1 n Type NA pm+pt NA	
In Type	
Interest 1	Turn Type
mitted Phases	
tector Phase titch	
itich Phase immum Initial (s)	
simum Initial (s) 5.0 5.0 5.0 5.0 simum Split (s) 25.0 10.0 25.0 33.0 al Split (s) 92.0 10.0 102.0 33.0 al Split (s) 68.1% 7.4% 75.6% 24.4% low Time (s) 4.0 4.0 4.0 4.0 Red Time (s) 1.0 1.0 1.0 1.0 st Time Adjust (s) 0.0 0.0 0.0 0.0 al Lost Time (s) 5.0 5.0 5.0 5.0 al/Lag Lead Lead Lead Lead vd-Lag Optimize? Yes Yes Yes Yes all Mode C-Max None C-Max Max elffct Green (s) 97.0 97.0 28.0 uated g/C Ratio 0.72 0.72 0.21 Ratio 0.43 0.37 0.00 eue Delay 4.5 10.4 0.0 so Capacity 4.5 10.5	
nimum Split (s) 25.0 10.0 25.0 33.0 al Split (s) 92.0 10.0 102.0 33.0 al Split (s) 92.0 10.0 102.0 33.0 al Split (s) 68.1% 7.4% 75.6% 24.4% low Time (s) 4.0 4.0 4.0 4.0 Red Time (s) 1.0 1.0 1.0 1.0 it Time Adjust (s) 0.0 0.0 0.0 0.0 al Lost Time (s) 5.0 5.0 5.0 5.0 al/Lag Detimize? Yes Yes Ves C-Max None C-Max Max al/Lag Optimize? Yes Yes Yes Ves	
al Split (s) 92.0 10.0 102.0 33.0 al Split (%) 68.1% 7.4% 75.6% 24.4% 10.0 Time (s) 4.0 4.0 4.0 4.0 4.0 Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 at Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 1.0 at Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 10.1 at Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	. ,
al Split (%) 68.1% 7.4% 75.6% 24.4% low Time (s) 4.0 4.0 4.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	
Section Sect	
Red Time (s) 1.0 1.0 1.0 1.0 st Time Adjust (s) 0.0 0.0 0.0 0.0 ald Lost Time (s) 5.0 5.0 5.0 5.0 ad/Lag Lag Lead Lead ad-Lag Optimize? Yes Yes Yes call Mode C-Max None C-Max Max Effet Green (s) 97.0 28.0 28.0 28.0 uated g/C Ratio 0.72 0.72 0.21 Ratio 0.37 0.00 ntrol Delay 4.5 10.4 0.0 0.0 0.1 0.0 al Delay 4.5 10.5 0.0 0.1 0.0 0.1 0.0 al Delay 4.5 10.5 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
st Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 al Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 add/Lag Lag Lead dd/Lag Dtimize? Yes Yes Scall Mode C-Max None C-Max Max Leffet Green (s) 97.0 97.0 28.0 uated g/C Ratio 0.72 0.72 0.21 Ratio 0.43 0.37 0.00 al Delay 4.5 10.4 0.0 eue Delay 0.0 0.1 0.0 al Delay 4.5 10.5 0.0 S A B A B A B A B A B A B A B B A B B A B B A B B A B B A B B A B B A B B B A B B B B A B	
al Lost Time (s) 5.0 5.0 5.0 5.0 5.0 add/Lag Lag Lead dad-Lag Optimize? Yes Yes Call Mode C-Max None C-Max Max Effect Green (s) 97.0 97.0 28.0 ualed g/C Ratio 0.72 0.72 0.21 Ratio 0.43 0.37 0.00 ntrol Delay 4.5 10.4 0.0 al Delay 4.5 10.5 0.0 S A B A B A Droach LOS A B B A Droach LOS A B B A Droach LOS A B B B A Droach LOS A B B B A Droach LOS A B B B B A Droach LOS A B B B B A Droach LOS B B B B B B B B B B B B B B B B B B B	
ad/Lag Lag Lead ad/Lag Optimize? Yes Yes ad/Lag Optimize? Yes Yes call Mode C-Max None C-Max Max LEffet Green (s) 97.0 97.0 28.0 uated g/C Ratio 0.72 0.72 0.21 0.21 0.0 </td <td></td>	
Ad-Lag Optimize? Yes Yes	
call Mode C-Max None C-Max Max LEffct Green (s) 97.0 97.0 28.0 uated g/C Ratio 0.72 0.72 0.21 Ratio 0.43 0.37 0.00 ntrol Delay 4.5 10.4 0.0 eue Delay 0.0 0.1 0.0 al Delay 4.5 10.5 0.0 S A B A proach Delay 4.5 10.5 0.0 proach LOS A B eue Length 50th (ft) 78 331 0 peue Length 50th (ft) 78 331 0	Lead/Lag
Effct Green (s) 97.0 97.0 28.0 uated g/c Ratio 0.72 0.72 0.21 Ratio 0.43 0.37 0.00 ntrol Delay 4.5 10.4 0.0 eue Delay 0.0 0.1 0.0 al Delay 4.5 10.5 0.0 S A B A B A proach Delay 4.5 10.5 proach LOS A B B A proach LOS A B B A proach LOS A B B A B B B B B B B B B B B B B B B	
uated g/C Ratio 0.72 0.72 0.21 Ratio 0.43 0.37 0.00 Introl Delay 4.5 10.4 0.0 eue Delay 0.0 0.1 0.0 al Delay 4.5 10.5 0.0 S A B A broach Delay 4.5 10.5 0.0 broach LOS A B 0.0 eue Length 95th (ft) 78 331 0 eue Length 95th (ft) 362 356 125 n Bay Length (ft) 362 356 125 n Bay Length (ft) 3653 394 variation Cap Reductn 408 1059 0 Illback Cap Reductn 0 0 0 duced v/c Ratio 0.48 0.53 0.00	Recall Mode
Ratio 0.43 0.37 0.00 Introl Delay 4.5 10.4 0.0 eue Delay 0.0 0.1 0.0 al Delay 4.5 10.5 0.0 S A B A B A proach Delay 4.5 10.5 S A B A B A proach Delay 4.5 10.5 eue Length 50th (ft) 78 331 0 eue Length 95th (ft) 90 77 0 eue Length 95th (ft) 90 77 0 eue Length 95th (ft) 362 356 125 eue Length 95th (ft) 362 356 336 125 eue Length 95th (ft) 362 356 125 eue Length 95th (ft) 362 356 125 eue Length 95th (ft) 365 3653 394 everation Cap Reductn 408 1059 0 ellback Cap Reductn 0 289 0 erage Cap Reductn 0 0 0 0 educed v/c Ratio 0.48 0.53 0.00 exercection Summary else Length: 135 everation Summary	Act Effct Green (s)
Introl Delay 4.5 10.4 0.0 eue Delay 0.0 0.1 0.0 al Delay 4.5 10.5 0.0 S A B A proach Delay 4.5 10.5 A proach LOS A B B eue Length 50th (ft) 78 331 0 eue Length 95th (ft) 90 77 0 ernal Link Dist (ft) 362 356 125 n Bay Length (ft) sec Capacity (vph) 3653 394 rivation Cap Reductn 408 1059 0 Ilback Cap Reductn 0 289 0 riage Cap Reductn 0 0 0 duced v/c Ratio 0.48 0.53 0.00 **Resection Summary **Le Length: 135 **uated Cycle Length: 135 **uated Cycle Length: 135	Actuated g/C Ratio
eue Delay 0.0 0.1 0.0 al Delay 4.5 10.5 0.0 S A B B A proach Delay 4.5 10.5 oroach LOS A B eue Length 50th (ft) 78 331 0 eue Length 95th (ft) 90 77 0 ernal Link Dist (ft) 362 356 125 n Bay Length (ft) 5ec Capacity (vph) 3653 3653 394 ervation Cap Reductn 408 1059 0 ellback Cap Reductn 0 289 0 ersection Summary cle Length: 135 uated Cycle Length: 135 unded Cycle Length: 135	v/c Ratio
al Delay 4.5 10.5 0.0 S A B A Droach Delay 4.5 10.5 oroach LOS A B eue Length 50th (ft) 78 331 0 eue Length 95th (ft) 90 77 0 ernal Link Dist (ft) 362 356 125 nn Bay Length (ft) se Capacity (vph) 3653 3653 394 evation Cap Reductn 408 1059 0 ellback Cap Reductn 0 289 0 exage Cap Reductn 0 0 0 exage Cap Reductn 0 0 0 exage Cap Reductn 0 0.00 exercetion Summary Lie Length: 135 uated Cycle Length: 135	Control Delay
S A B A Proach Delay 4.5 10.5 Proach Delay 4.5 10.5 Proach LOS A B	Queue Delay
S A B A Proach Delay 4.5 10.5 Proach Delay 4.5 10.5 Proach LOS A B	Total Delay
rorach LOS A B eue Length 50th (ft) 78 331 0 eue Length 95th (ft) 90 77 0 ernal Link Dist (ft) 362 356 125 rn Bay Length (ft) 8653 3663 394 rivation Cap Reductn 408 1059 0 Ilback Cap Reductn 0 289 0 rage Cap Reductn 0 0 0 duced vic Ratio 0.48 0.53 0.00 execution Summary Lie Length: 135 uated Cycle Length: 135	LOS
proach LOS A B eue Length 50th (ft) 78 331 0 eue Length 95th (ft) 90 77 0 ernal Link Dist (ft) 362 356 125 n Bay Length (ft) 562 356 125 n Bay Length (ft) 562 356 365 394 rivation Cap Reductn 408 1059 0 Illback Cap Reductn 0 289 0 riage Cap Reductn 0 0 0 0 duced v/c Ratio 0.48 0.53 0.00	Approach Delay
eue Length 50th (ft) 78 331 0 eue Length 95th (ft) 90 77 0 ernal Link Dist (ft) 362 356 125 en Bay Length (ft) se Capacity (vph) 3653 3653 394 ervation Cap Reductn 408 1059 0 ellback Cap Reductn 0 289 0 ellback Cap Reductn 0 0 0 0 ellback Cap Reductn 0 0 0 0 ellback Cap Reductn 0 0.00 exercetion Summary Lie Length: 135 euated Cycle Length: 135	Approach LOS
eue Length 95th (ft) 90 77 0 rmal Link Dist (ft) 362 356 125 m Bay Length (ft) se Capacity (vph) 3653 3653 394 rivation Cap Reductn 408 1059 0 Ilback Cap Reductn 0 289 0 rage Cap Reductn 0 0 0 duced v/c Ratio 0.48 0.53 0.00 rresection Summary Lie Length: 135 uated Cycle Length: 135	Queue Length 50th (ft)
ernal Link Dist (ft) 362 356 125 n Bay Length (ft) 5 see Capacity (vph) 3653 3653 394 rivation Cap Reductn 408 1059 0 Illback Cap Reductn 0 289 0 rage Cap Reductn 0 0 0 0 duced v/c Ratio 0.48 0.53 0.00 resection Summary Lie Length: 135 uated Cycle Length: 135	Queue Length 95th (ft)
In Bay Length (ft) se Capacity (vph) 3653 3653 394 Irvation Cap Reductn 408 1059 0 Ilback Cap Reductn 0 289 0 Irage Cap Reductn 0 0 0 0 Iduced Vic Ratio 0.48 0.53 0.00 Intersection Summary Cale Length: 135 Uated Cycle Length: 135	Internal Link Dist (ft)
se Capacity (vph) 3653 3653 394 rivation Cap Reductn 408 1059 0 Ilback Cap Reductn 0 289 0 rage Cap Reductn 0 0 0 0 duced vic Ratio 0.48 0.53 0.00 ersection Summary Lie Length: 135 uated Cycle Length: 135	
uvation Cap Reductn 408 1059 0 Ilback Cap Reductn 0 289 0 urage Cap Reductn 0 0 0 duced v/c Ratio 0.48 0.53 0.00 ersection Summary cle Length: 135 uated Cycle Length: 135	
Ilback Cap Reductn	
rage Cap Reductn 0 0 0 0 duced v/c Ratio 0.48 0.53 0.00 ersection Summary cle Length: 135 uated Cycle Length: 135	
duced v/c Ratio 0.48 0.53 0.00 ersection Summary cle Length: 135 uated Cycle Length: 135	
rsection Summary Lie Length: 135 uated Cycle Length: 135	Reduced v/c Ratio
cle Length: 135 uated Cycle Length: 135	
uated Čycle Length: 135	
set: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green	
tural Cycle: 70	Natural Cycle: 70

MS Synchro 9 Report Page 29

37: N. Congress Ave & W. 15th St

2020 Background + Site
Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.43 Intersection Signal Delay: 7.3 Intersection Capacity Utilization 57.8% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service B

Splits and Phases: 37: N. Congress Ave & W. 15th St

MS Synchro 9 Report

38: Brazos St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ĭ	ተተ _ጉ		, T	ተተ _ጉ			र्स	7		4	
Traffic Volume (vph)	5	1341	37	9	1034	5	130	3	114	63	3	85
Future Volume (vph)	5	1341	37	9	1034	5	130	3	114	63	3	85
Confl. Peds. (#/hr)	8		9	9		8	5		19	19		5
Confl. Bikes (#/hr)						1						1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	5	1442	40	10	1112	5	140	3	123	68	3	91
Shared Lane Traffic (%)												
Lane Group Flow (vph)	5	1482	0	10	1117	0	0	143	123	0	162	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4		4	8		
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0	32.0	32.0	32.0	
Total Split (s)	12.0	77.0		12.0	77.0		46.0	46.0	46.0	46.0	46.0	
Total Split (%)	8.9%	57.0%		8.9%	57.0%		34.1%	34.1%	34.1%	34.1%	34.1%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Act Effct Green (s)	99.4	99.4		99.6	99.6			23.2	23.2		23.2	
Actuated g/C Ratio	0.74	0.74		0.74	0.74			0.17	0.17		0.17	
v/c Ratio	0.01	0.40		0.04	0.30			0.84	0.36		0.72	
Control Delay	5.4	3.8		12.7	11.4			89.7	15.2		53.3	
Queue Delay	0.0	0.0		0.0	0.1			0.0	0.0		0.0	
Total Delay	5.4	3.8		12.7	11.5			89.7	15.2		53.3	
LOS	Α	Α		В	В			F	В		D	
Approach Delay		3.8			11.5			55.3			53.3	
Approach LOS		Α			В			Е			D	
Queue Length 50th (ft)	0	42		3	144			123	18		95	
Queue Length 95th (ft)	m2	93		m11	289			190	69		165	
Internal Link Dist (ft)		356			297			199			273	
Turn Bay Length (ft)	100			40					50			
Base Capacity (vph)	363	3726		289	3748			302	530		361	
Starvation Cap Reductn	0	445		0	1355			0	0		0	
Spillback Cap Reductn	0	138		0	0			0	2		1	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.01	0.45		0.03	0.47			0.47	0.23		0.45	

Intersection Summary

Cycle Length: 135

Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 65

MS Synchro 9 Report Page 31

38: Brazos St & W. 15th St

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.84

Intersection Signal Delay: 13.8 Intersection Capacity Utilization 65.8% Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 38: Brazos St & W. 15th St

MS Synchro 9 Report

39: San Jacinto Blvd & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

Lane Configurations		•	-	•	•	•	•	1	Ť	~	>	¥	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Traffic Volume (vph)	ane Configurations		ተ ቀኈ		7	ተተተ						4413	
Conf. Peds. (#/hr)	Fraffic Volume (vph)	0		112	65		0	0	0	0	511		30
Confi. Bikes (#/hr)	uture Volume (vph)	0	1635	112	65	842	0	0	0	0	511	624	30
Peak Hour Factor 0.93 0.	Confl. Peds. (#/hr)			11	11						31		
Adj. Flow (vph)	Confl. Bikes (#/hr)												
Shared Lane Traffic (%) Lane Group Flow (vph) 0 1878 0 70 905 0 0 0 0 0 1220 Turn Type NA pherm NA perm NA perm NA perm NA permited Phases 2 1 1 6 4 Detected Phases 6 4 Detected Phases 8 0 70 70 70 70 70 70 70 70 70 70 70 70 7	Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.9
Lane Group Flow (vph) 0 1878 0 70 905 0 0 0 0 1220 Turn Type NA pm+pt NA Perm NA Ferroll NA Perm NA Perm NA Perm NA Perm NA Perm NA Perm NA Perm NA Perm NA Perm Na Perm Na Perm Na Perm Na Perm NA Perm Na Perm Na Perm Na Perm Na Perm Na Perm Na Perm Na Perm Na Perm Na Perm Na	Adj. Flow (vph)	0	1758	120	70	905	0	0	0	0	549	671	32
Turn Type NA pm+pt NA perm NA Ferm Per													
Turn Type NA pm+pt NA perm NA Ferm NA Perm NA Perm NA Perm depended Pases 4 4 4 Permitted Phases 6 A 4 Detector Phase 2 1 6 4 4 A South Phase A Minimum Initial (s) 10	Lane Group Flow (vph)	0	1878	0	70	905	0	0	0	0	0	1220	32
Protected Phases 2 1 6 4 Permitted Phases 6 6 4 Permitted Phases 6 6 4 Switch Phase Delector Phase 2 2 1 6 4 4 Switch Phase Switch Phase Winimum Split (s) 10.0 3.0 10.0 7.0 7.0 7.0 Winimum Split (s) 28.0 8.0 28.0 32.0 32.0 Total Split (s) 80.0 15.0 95.0 40.0 40.0 Total Split (%) 59.3% 11.1% 70.4% 29.6% 29			NA		pm+pt	NA					Perm	NA	Peri
Detector Phase 2			2									4	
Switch Phase Minimum Initial (s)	Permitted Phases				6						4		
Minimum Initial (s) 10.0 3.0 10.0 7.0 7.0 Minimum Split (s) 28.0 8.0 28.0 32.0 32.0 Total Split (s) 80.0 15.0 95.0 40.0 40.0 Total Split (%) 59.3% 11.1% 70.4% 29.6% </td <td>Detector Phase</td> <td></td> <td>2</td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>4</td> <td></td>	Detector Phase		2			6					4	4	
Minimum Split (s) 28.0 8.0 28.0 32.0 32.0 32.0 70.0 32.0 40.0	Switch Phase												
Minimum Split (s) 28.0 8.0 28.0 32.0 32.0 32.0 70.0 32.0 40.0	Minimum Initial (s)		10.0		3.0	10.0					7.0	7.0	7.
Total Split (s) 80.0 15.0 95.0 40.0 40.0 Total Split (%) 59.3% 11.1% 70.4% 29.6% 29.	. ,												32.
Total Split (%) 59.3% 11.1% 70.4% 29.6% 29													40.
Yellow Time (s) 4.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0													29.69
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0					4.0	4.0					4.0	4.0	4.
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Collaboration (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0													1.
Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0													0.
Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None Effct Green (s) 79.7 90.0 90.0 35.0 Actualed g/C Ratio 0.59 0.67 0.67 0.26 v/c Ratio 0.63 0.41 0.27 1.22dl Control Delay 8.9 27.2 8.4 67.9 Queue Delay 0.2 0.0 0.0 Total Delay 9.1 27.2 8.6 67.9 LOS A C A E Approach Delay 9.1 9.9 62.8 Approach LOS A A E Queue Length 50th (ft) 145 31 100 339 Queue Length 95th (ft) 286 m64 116 #489 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 297 282 125 272 Turn Bay					5.0								5.
Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None Non						0.0						0.0	0.
Recall Mode C-Max None C-Max None													
Act Effet Green (s) 79.7 90.0 90.0 35.0 Actuated g/C Ratio 0.59 0.67 0.67 0.26 Vic Ratio 0.63 0.41 0.27 1.22dl Control Delay 8.9 27.2 8.4 67.9 Queue Delay 0.2 0.0 0.2 0.0 Total Delay 9.1 27.2 8.6 67.9 LOS A C A E Approach Delay 9.1 9.9 62.8 Approach LOS A A A E Queue Length 50th (ft) 145 31 100 389 Queue Length 95th (ft) 286 m64 116 #489 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 20 3390 1262 Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c R						C-Max					None	None	Non
Actuated g/C Ratio 0.59 0.67 0.67 0.26 v/c Ratio 0.63 0.41 0.27 1.22dl Control Delay 8.9 27.2 8.4 67.9 Queue Delay 0.2 0.0 0.2 0.0 Total Delay 9.1 27.2 8.6 67.9 LOS A C A E Approach Delay 9.1 9.9 62.8 Approach LOS A A E Queue Length 50th (ft) 145 31 100 389 Queue Length 95th (ti) 286 m64 116 #489 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (tt) 70 200 3390 1262 Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio													35.
v/c Ratio 0.63 0.41 0.27 1.22dl Control Delay 8.9 27.2 8.4 67.9 Queue Delay 0.2 0.0 0.2 0.0 Total Delay 9.1 27.2 8.6 67.9 LOS A C A E Approach Delay 9.1 9.9 62.8 Approach LOS A A E Queue Length 95th (ft) 145 31 100 389 Queue Length 95th (ft) 286 m64 116 #489 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 282 125 272 Turn Bay Length (ft) 70 282 125 272 Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio	. , ,												0.2
Control Delay 8.9 27.2 8.4 67.9 Queue Delay 0.2 0.0 0.2 0.0 Total Delay 9.1 27.2 8.6 67.9 LOS A C A E Approach Delay 9.1 9.9 62.8 Approach LOS A A A E Queue Length 50th (ft) 145 31 100 389 Queue Length 95th (ft) 286 m64 116 #489 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 282 125 272 Turn Bay Length (rt) 70 200 3390 1262 Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97													0.7
Queue Delay 0.2 0.0 0.2 0.0 Total Delay 9.1 27.2 8.6 67.9 LOS A C A E Approach Delay 9.1 9.9 62.8 Approach LOS A A A E Queue Length 50th (ft) 145 31 100 389 Queue Length 95th (ft) 286 m64 116 #489 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8ase Capacity (vph) 2970 200 3390 1262 Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97													43.
Total Delay 9.1 27.2 8.6 67.9 LOS A C A E Approach Delay 9.1 9.9 62.8 Approach LOS A A E Queue Length 50th (ft) 145 31 100 389 Queue Length 95th (ft) 286 m64 116 #489 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 200 3390 1262 Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97	,												0.
A C A C A E													43.
Approach Delay 9.1 9.9 62.8 Approach LOS A A A E Dueue Length 50th (ft) 145 31 100 389 Dueue Length 95th (ft) 286 m64 116 #489 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 282 125 272 Starvation Cap Reductn 319 20 3390 1262 Starvation Cap Reductn 319 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97													
Approach LOS A A A B Queue Length 50th (ft) 145 31 100 389 Queue Length 95th (ft) 286 m64 116 #489 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 Base Capacity (vph) 2970 200 3390 1262 Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 0 159 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97					Ū								
Oueue Length 50th (ft) 145 31 100 389 Queue Length 95th (ft) 286 m64 116 #489 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 888 1262 Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97													
Queue Length 95th (ft) 286 m64 116 #489 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 882 125 272 Base Capacity (vph) 2970 200 3390 1262 Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97					31								20
Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8 1262 Base Capacity (vph) 2970 200 3390 1262 Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97													31
Turn Bay Length (n) 70 Base Capacity (vph) 2970 200 3390 1262 Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97					11101				125				31
Base Capacity (vph) 2970 200 3390 1262 Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97			2//		70	202			120			212	5
Starvation Cap Reductn 319 0 1388 0 Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97			2970			3390						1262	46
Spillback Cap Reductn 0 0 159 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97													10
Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.71 0.35 0.45 0.97													
Reduced v/c Ratio 0.71 0.35 0.45 0.97													
Intersection Summary					-								0.7
	Intersection Summary												

MS Synchro 9 Report Page 33

39: San Jacinto Blvd & W. 15th St

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.97

Intersection LOS: C ICU Level of Service C

Intersection Signal Delay: 28.1 Intersection Capacity Utilization 72.7% Analysis Period (min) 15

- # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.
- dl Defacto Left Lane. Recode with 1 though lane as a left lane.

Splits and Phases: 39: San Jacinto Blvd & W. 15th St

MS Synchro 9 Report

40: Trinity St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: PM

	•	-	•	•	←	•	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ			ተተ _ጉ			414	7			
Traffic Volume (vph)	88	1837	0	0	736	145	176	303	278	0	0	0
Future Volume (vph)	88	1837	0	0	736	145	176	303	278	0	0	0
Confl. Peds. (#/hr)	2					2	7		8			
Confl. Bikes (#/hr)									8			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	92	1914	0	0	767	151	183	316	290	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	92	1914	0	0	918	0	0	499	290	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		35.0	35.0	35.0			
Total Split (s)	10.0	100.0			90.0		35.0	35.0	35.0			
Total Split (%)	7.4%	74.1%			66.7%		25.9%	25.9%	25.9%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	95.0	95.0			85.0			30.0	30.0			
Actuated g/C Ratio	0.70	0.70			0.63			0.22	0.22			
v/c Ratio	0.24	0.53			0.29			0.65	0.75			
Control Delay	6.3	7.2			6.5			52.3	52.6			
Queue Delay	0.0	0.2			0.0			0.0	0.1			
Total Delay	6.3	7.4			6.5			52.3	52.6			
LOS	A	Α			A			D	D			
Approach Delay	,	7.4			6.5			52.4				
Approach LOS		Α			A			D				
Queue Length 50th (ft)	20	157			81			211	195			
Queue Length 95th (ft)	m30	m167			m78			273	#322			
Internal Link Dist (ft)	11100	282			641			149	# OLL		621	
Turn Bay Length (ft)	100	LOL			011						OL.	
Base Capacity (vph)	389	3578			3136			769	385			
Starvation Cap Reductn	0	711			0			0	0			
Spillback Cap Reductn	0	120			0			0	1			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.24	0.67			0.29			0.65	0.76			
Intersection Summany	0.21	3.07			U.Z./			5.00	3.70			

Intersection Summary

Cycle Length: 135

Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 75

MS Synchro 9 Report Page 35

40: Trinity St & W. 15th St

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.75

Intersection Signal Delay: 16.7 Intersection Capacity Utilization 72.7% Analysis Period (min) 15 Intersection LOS: B

ICU Level of Service C

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

MS Synchro 9 Report

11: Colorado St & W. 18th St

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection Intersection Delay, s/veh Intersection LOS 13.3

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	6	103	14	0	62	201	9	0	15	89	151
Future Vol, veh/h	0	6	103	14	0	62	201	9	0	15	89	151
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	8	132	18	0	79	258	12	0	19	114	194
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		11				15.3				13.4		
HCM LOS		В				С				В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
/ol Left, %	6%	5%	23%	14%	
Vol Thru, %	35%	84%	74%	55%	
Vol Right, %	59%	11%	3%	31%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	255	123	272	132	
LT Vol	15	6	62	18	
Through Vol	89	103	201	73	
RT Vol	151	14	9	41	
Lane Flow Rate	327	158	349	169	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.486	0.258	0.545	0.273	
Departure Headway (Hd)	5.353	5.895	5.627	5.808	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	670	606	638	614	
Service Time	3.422	3.975	3.69	3.89	
HCM Lane V/C Ratio	0.488	0.261	0.547	0.275	
HCM Control Delay	13.4	11	15.3	11.1	
HCM Lane LOS	В	В	С	В	
HCM 95th-tile Q	2.7	1	3.3	1.1	

Synchro 9 Report Page 1 MS

11: Colorado St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background + Site Timing Plan: PM

Intersection Delay, s/veh Intersection LOS					
Intersection LOS	Intersection				
Movement SBU SBL SBT SBR Lane Configurations ↓ ↑	Intersection Delay, s/veh				
Lane Configurations Traffic Vol, veh/h Traf	Intersection LOS				
Lane Configurations Traffic Vol, veh/h Traffic Vol, veh/h 0 18 73 41 Future Vol, veh/h 0 18 73 41 Future Vol, veh/h 0 18 73 41 8 0.78 0.78 0.78 10 0.78 0.78 0.78 10 0.78 0.78 0.78 10 0.78 0.78 0.78 10 0.78 0.78 0.78 10 0.78 0.78 0.78 10 0.78 0.78 0.78 10 0.78 0.78 0.78 10 0.78 0.78 0.78 10 0 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0					
Lane Configurations Traffic Vol, veh/h 10 18 73 41 Future Vol, veh/h 10 18 73 41 Future Vol, veh/h 10 18 73 41 Feak Hour Factor 10 78 0.78 0.78 0.78 10 20 2 2 2 2 Mvmt Flow 10 23 94 53 Number of Lanes 10 0 1 0 Approach SB Opposing Approach Opposing Approach Conflicting Approach Left Conflicting Approach Right Conflicting Lanes Right HCM Control Delay 11.1	Movement	SBU	SBI	SBT	SBR
Traffic Vol, veh/h 0 18 73 41 Future Vol, veh/h 0 18 73 41 Peak Hour Factor 0.78 0.78 0.78 0.78 Heavy Vehicles, % 2 8 8 8 8 8 8 8 8 8 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Future Vol, veh/h 0 18 73 41 Peak Hour Factor 0.78 0.78 0.78 0.78 Heavy Vehicles, % 2 2 2 2 Wmit Flow 0 23 94 53 Number of Lanes 0 0 1 0 1 0 Approach SB Opposing Approach NB Opposing Lanes 1 1 Conflicting Approach Left WB Conflicting Approach Right Conflicting Lanes Right 1 HCM Control Delay 11.1		0	18		41
Peak Hour Factor 0.78 0.78 0.78 0.78 Heavy Vehicles, % 2 2 2 2 2 Mymt Flow 0 23 94 53 Number of Lanes 0 0 1 0 Approach SB		-			
Heavy Vehicles, % 2 2 2 2 Mymt Flow 0 23 94 53 Number of Lanes 0 0 1 0 Approach SB Opposing Approach NB Opposing Lanes 1 Conflicting Approach Left WB Conflicting Approach Right EB Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 11.1					
Mvmf Flow 0 23 94 53 Number of Lanes 0 0 1 0 Approach SB 0 0 1 0 Opposing Approach NB 0 <					
Number of Lanes 0 0 1 0 Approach SB Deposing Approach NB Deposing Lanes 1 Conflicting Approach Left WB Conflicting Lanes Left 1 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 11.1					
Approach SB Opposing Approach NB Opposing Lanes 1 Conflicting Approach Left WB Conflicting Lanes Left 1 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 11.1		-			
Opposing Approach Opposing Lanes 1 Conflicting Approach Left Conflicting Approach Right Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 11.1					
Opposing Lanes 1 Conflicting Approach Left WB Conflicting Lanes Left 1 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 11.1	Approach		SB		
Conflicting Approach Left WB Conflicting Lanes Left 1 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 11.1	Opposing Approach		NB		
Conflicting Lanes Left 1 Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 11.1			1		
Conflicting Approach Right EB Conflicting Lanes Right 1 HCM Control Delay 11.1			WB		
Conflicting Lanes Right 1 HCM Control Delay 11.1			1		
HCM Control Delay 11.1			EB		
	Conflicting Lanes Right		1		
HOM LOC	HCM Control Delay		11.1		
HCM FO2 R	HCM LOS		В		

Synchro 9 Report Page 2 MS

12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection Intersection Delay, s/veh Intersection LOS 10.3 B

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ર્ન				f)				†	
Traffic Vol, veh/h	0	0	274	0	0	0	331	0	0	0	0	0
Future Vol, veh/h	0	0	274	0	0	0	331	0	0	0	0	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	319	0	0	0	385	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach			EB				WB				NB	
Opposing Approach			WB				EB				SB	
Opposing Lanes			1				1				1	
Conflicting Approach Left			SB				NB				EB	
Conflicting Lanes Left			1				1				1	
Conflicting Approach Right			NB				SB				WB	
Conflicting Lanes Right			1				1				1	
HCM Control Delay			10				10.7				0	
HCM LOS			Α				В				-	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	0%	
Vol Right, %	0%	0%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	274	331	12	
LT Vol	0	0	0	0	
Through Vol	0	274	331	0	
RT Vol	0	0	0	12	
Lane Flow Rate	0	319	385	14	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0.384	0.448	0.019	
Departure Headway (Hd)	5.456	4.344	4.195	4.821	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	832	843	745	
Service Time	3.472	2.348	2.294	2.834	
HCM Lane V/C Ratio	0	0.383	0.457	0.019	
HCM Control Delay	8.5	10	10.7	7.9	
HCM Lane LOS	N	Α	В	Α	
HCM 95th-tile Q	0	1.8	2.3	0.1	

MS Synchro 9 Report Page 3 12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection						
Intersection Delay, s/veh Intersection LOS						
Intersection LOS						
Movement	SBII	SBI	SBT	SBR		

Movement	SBU	SBL	SBT	SBR
Lane Configurations				7
Traffic Vol, veh/h	0	0	0	12
Future Vol, veh/h	0	0	0	12
Peak Hour Factor	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	0	14
Number of Lanes	0	0	0	1
Approach				SB
Opposing Approach				NB
Opposing Lanes				1
Conflicting Approach Left				WB
Conflicting Lanes Left				1
Conflicting Approach Right				EB
Conflicting Lanes Right				1
HCM Control Delay				7.9
HCM LOS				Α

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection		
Intersection Delay, s/veh	20.8	
Intersection LOS	С	

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	39	270	25	0	10	64	25	0	183	160	0
Future Vol, veh/h	0	39	270	25	0	10	64	25	0	183	160	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	45	314	29	0	12	74	29	0	213	186	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		23.1				12.4				24		
HCM LOS		С				В				С		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	53%	12%	10%	36%
Vol Thru, %	47%	81%	65%	21%
Vol Right, %	0%	7%	25%	43%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	343	334	99	268
LT Vol	183	39	10	97
Through Vol	160	270	64	56
RT Vol	0	25	25	115
Lane Flow Rate	399	388	115	312
Geometry Grp	1	1	1	1
Degree of Util (X)	0.713	0.696	0.228	0.551
Departure Headway (Hd)	6.44	6.454	7.134	6.362
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	558	559	500	564
Service Time	4.51	4.52	5.231	4.436
HCM Lane V/C Ratio	0.715	0.694	0.23	0.553
HCM Control Delay	24	23.1	12.4	17
HCM Lane LOS	С	С	В	С
HCM 95th-tile Q	5.8	5.5	0.9	3.3

Synchro 9 Report Page 5 MS

14: Brazos St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	97	56	115
Future Vol, veh/h	0	97	56	115
Peak Hour Factor	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	113	65	134
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		17		
HCM LOS		С		
		0		

16: San Jacinto Blvd & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection	
Intersection Delay, s/veh	15.4
Intersection LOS	С

EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
		ĵ.				ર્ન					
0	0	96	300	0	35	53	0	0	0	0	0
0	0	96	300	0	35	53	0	0	0	0	0
0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
2	2	2	2	2	2	2	2	2	2	2	2
0	0	101	316	0	37	56	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0
		EB			WB						
		WB			EB						
		1			1						
		SB									
		3			0						
					SB						
		0			3						
		18.8			11.2						
		С			В						
	0 0 0.95 2 0	0 0 0 0 0.95 0.95 2 2 0 0	0 0 96 0 0 96 0.95 0.95 0.95 2 2 2 0 0 101 0 0 1 EB WB 1 1 SB 3	0 0 96 300 0 96 300 0.95 0.95 0.95 0.95 2 2 2 2 2 0 0 101 316 0 0 1 0 EB WB 1 SB 3 0 18.8	0 0 96 300 0 0 0 96 300 0 0.95 0.95 0.95 0.95 2 2 2 2 2 2 0 0 101 316 0 0 0 1 0 0 EB WB 1 SB 3 0 18.8	0 0 96 300 0 35 0 0 96 300 0 35 0.95 0.95 0.95 0.95 0.95 2 2 2 2 2 2 2 2 0 0 101 316 0 37 0 0 1 1 0 0 0 EB WB WB BB 1 1 SB 3 0 SB 3 0 SB 4 33 0 SB 4 33 0 SB 4 3 3 18.8 11.2	0 0 96 300 0 35 53 0 0 0 96 300 0 35 53 0.95 0.95 0.95 0.95 0.95 0.95 2 2 2 2 2 2 2 2 2 0 0 101 316 0 37 56 0 0 1 0 10 0 0 1 EB WB WB BB 1 1 SB 3 0 SB 0 33 18.8	1	0 0 96 300 0 35 53 0 0 0 96 300 0 35 53 0 0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 2 2 2 2 2 2 2 2 2 2 2 2 0 0 101 316 0 37 56 0 0 0 1 0 0 1 0 0 0 0 1 0 0 EB WB WB BB 1 1 1 SB 3 0 SB 3 0 SB 0 33 18.8 11.2	0 0 96 300 0 35 53 0 0 0 0 0 96 300 0 35 53 0 0 0 0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 101 316 0 37 56 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 EB WB EB 1 1 1 1 1 SB 3 0 0 SB 0 33 18.8 11.2	0 0 96 300 0 35 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lane	EBLn1	WBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	0%	40%	0%	0%	0%
Vol Thru, %	24%	60%	100%	100%	0%
Vol Right, %	76%	0%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	396	88	264	264	22
LT Vol	0	35	0	0	0
Through Vol	96	53	264	264	0
RT Vol	300	0	0	0	22
Lane Flow Rate	417	93	277	277	23
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.659	0.178	0.467	0.467	0.023
Departure Headway (Hd)	5.691	6.899	6.06	6.06	3.595
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	634	520	594	594	992
Service Time	3.43	4.652	3.797	3.797	1.331
HCM Lane V/C Ratio	0.658	0.179	0.466	0.466	0.023
HCM Control Delay	18.8	11.2	14	14	6.4
HCM Lane LOS	С	В	В	В	Α
HCM 95th-tile Q	4.9	0.6	2.5	2.5	0.1

Intersection					
Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	ı
Lane Configurations			414	7	
Traffic Vol, veh/h	0	0	527	22	
Future Vol, veh/h	0	0	527	22	
Peak Hour Factor	0.95	0.95	0.95	0.95	
Heavy Vehicles, %	2	2	2	2	
Mvmt Flow	0	0	555	23	
Number of Lanes	0	0	2	1	
Approach			SB		
Opposing Approach			30		
Opposing Lanes			0		
Conflicting Approach Left			WB		
Conflicting Lanes Left			1		
Conflicting Approach Right			EB		
Conflicting Lanes Right			1		
HCM Control Delay			13.7		
HCM LOS			В		

20: Colorado St & E. 17th St

2020 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

ntersection		
ntersection Delay, s/veh	9.9	
ntersection LOS	Α	

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	77	36	15	0	0	174	0	0	15	129	0
Future Vol, veh/h	0	77	36	15	0	0	174	0	0	15	129	0
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	94	44	18	0	0	212	0	0	18	157	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB					WB			NB		
Opposing Approach		WB					EB			SB		
Opposing Lanes		1					1			1		
Conflicting Approach Left		SB					NB			EB		
Conflicting Lanes Left		1					1			1		
Conflicting Approach Right		NB					SB			WB		
Conflicting Lanes Right		1					1			1		
HCM Control Delay		9.8					10.3			10		
HCM LOS		Α					В			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	10%	60%	0%	0%	
Vol Thru, %	90%	28%	100%	47%	
Vol Right, %	0%	12%	0%	53%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	144	128	174	159	
LT Vol	15	77	0	0	
Through Vol	129	36	174	74	
RT Vol	0	15	0	85	
Lane Flow Rate	176	156	212	194	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.25	0.224	0.297	0.257	
Departure Headway (Hd)	5.127	5.168	5.042	4.776	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	692	685	704	743	
Service Time	3.22	3.266	3.134	2.866	
HCM Lane V/C Ratio	0.254	0.228	0.301	0.261	
HCM Control Delay	10	9.8	10.3	9.5	
HCM Lane LOS	Α	Α	В	Α	
HCM 95th-tile Q	1	0.9	1.2	1	

MS Synchro 9 Report Page 9

20: Colorado St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update 2020 Background + Site Timing Plan: PM

Intersection

Intersection Delay, s/veh Intersection LOS

Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	0	74	85
Future Vol, veh/h	0	0	74	85
Peak Hour Factor	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	90	104
Number of Lanes	0	0	1	0

Approach	SB	
Opposing Approach	NB	
Opposing Lanes	1	
Conflicting Approach Left	WB	
Conflicting Lanes Left	1	
Conflicting Approach Right	EB	
Conflicting Lanes Right	1	
HCM Control Delay	9.5	
HCM LOS	A	

ΓIA for	Texas	Capito	l Com	plex	Master	Plan	2018	Updat

ntersection	
ntersection Delay, s/veh	8.7
ntersection LOS	Α

Movement	EBU	EBL	EBT	WBU	WBT	WBR	SBU	SBL	SBR
	EDU	EDL	EDI	WBU		WDK	300	JDL M	JDK
Lane Configurations			4		₹				
Traffic Vol, veh/h	0	0	193	0	40	50	0	94	0
Future Vol, veh/h	0	0	193	0	40	50	0	94	0
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	238	0	49	62	0	116	0
Number of Lanes	0	0	1	0	1	0	0	1	0
Approach			EB		WB			SB	
Opposing Approach			WB		EB				
Opposing Lanes			1		1			0	
Conflicting Approach Left			SB					WB	
Conflicting Lanes Left			1		0			1	
Conflicting Approach Right					SB			EB	
Conflicting Lanes Right			0		1			1	
HCM Control Delay			9.1		7.8			8.8	
HCM LOS			Α		А			Α	

Lane	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	100%	
Vol Thru, %	100%	44%	0%	
Vol Right, %	0%	56%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	193	90	94	
LT Vol	0	0	94	
Through Vol	193	40	0	
RT Vol	0	50	0	
Lane Flow Rate	238	111	116	
Geometry Grp	1	1	1	
Degree of Util (X)	0.288	0.128	0.158	
Departure Headway (Hd)	4.344	4.15	4.899	
Convergence, Y/N	Yes	Yes	Yes	
Cap	829	864	733	
Service Time	2.361	2.17	2.923	
HCM Lane V/C Ratio	0.287	0.128	0.158	
HCM Control Delay	9.1	7.8	8.8	
HCM Lane LOS	Α	Α	Α	
HCM 95th-tile Q	1.2	0.4	0.6	

Int Delay, s/veh 0.	.9						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	♦ 1}-		ሻ	^	¥		
Traffic Vol, veh/h	646	33	32	1315	2	116	
Future Vol, veh/h	646	33	32	1315	2	116	
Conflicting Peds, #/hr	0	8	8	0	0	11	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized		None	-	None	-	None	
Storage Length		-	40	-	0	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade. %	0	-	-	0	0	-	
Peak Hour Factor	94	94	94	94	94	94	
Heavy Vehicles, %	2	2	2	2	2	2	
Mymt Flow	687	35	34	1399	2	123	
	307	- 00		.0,,			
Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	730	0	1481	380	
Stage 1		-			713	-	
Stage 2					768	-	
Critical Hdwy			4.14		6.84	6.94	
Critical Hdwy Stg 1			-		5.84	-	
Critical Hdwy Stg 2					5.84	-	
Follow-up Hdwy			2.22		3.52	3.32	
Pot Cap-1 Maneuver			870		116	618	
Stage 1			-		447	-	
Stage 2					418		
Platoon blocked. %					110		
Mov Cap-1 Maneuver		-	861		111	607	
Mov Cap-1 Maneuver		-	-		111	-	
Stage 1					444		
Stage 2					401		
Stage 2					401		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.2		13.2		
HCM LOS	0		0.2		B		
110W E00							
Minor Lane/Major Mvmt	NBLn1 EBT	EBR W	BL WBT				
Capacity (veh/h)	564 -		361 -				
HCM Lane V/C Ratio	0.223 -		.04 -				
HCM Control Delay (s)	13.2		9.4 -				
HCM Lane LOS	B -		A -				
HCM 95th %tile Q(veh)	0.8 -		0.1 -				

Intersection													
Int Delay, s/veh	32.2												
Movement	EBL	EBT	EBR	V	VBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations			7			ની						414	
Traffic Vol, veh/h	0	20	11		200	94	0	0	0	0	36	983	2
Future Vol, veh/h	0	20	11		200	94	0	0	0	0	36	983	2
Conflicting Peds, #/hr	0	0	0		54	0	0	0	0	0	0	0	4
Sign Control	Stop	Stop	Stop	S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Fre
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	Non
Storage Length	-	-	0		-	-	-	-	-	-	-	-	
Veh in Median Storage, #	# -	0	-		-	0	-	-	-	-	-	0	
Grade, %	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	97	97	97		97	97	97	97	97	97	97	97	9
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	
Mvmt Flow	0	21	11		206	97	0	0	0	0	37	1013	2
Major/Minor	Minor2			Min	or1						Major2		
Conflicting Flow All		1140	613		645	1151	-				0	0	
	-	1140	013		045	0					U		-
Stage 1 Stage 2		1140			645	1151	-				-	-	
		6.54	6.94		7.54	6.54					4.14		
Critical Hdwy Critical Hdwy Stg 1		5.54	0.94	,	.04	0.04					4.14		
Critical Hdwy Stg 2		5.54		4	5.54	5.54							
Follow-up Hdwy		4.02	3.32		3.52	4.02					2.22		
Pot Cap-1 Maneuver	0	200	435		357	197	0				2.22		
Stage 1	0	274	433		337	177	0						
Stage 2	0	2/4			427	271	0						
Platoon blocked. %	U				421	2/1	U						
Mov Cap-1 Maneuver		192	418		319	189					_		
Mov Cap-1 Maneuver		192	- 10		319	189							
Stage 1		263			317	107							
Stage 2		203			383	260							
Stage 2					303	200							
Approach	EB				WB						SB		
HCM Control Delay, s	21.7			14	17.4								
HCM LOS	С				F								
Minor Lane/Major Mvmt	EBLn1 I	FRI n2\	VRI n1	SBL S	SBT	SBR							
Capacity (veh/h)	192	418	261	- JDL -	-	JUK							
HCM Lane V/C Ratio		0.027		-	-	- 1							
HCM Control Delay (s)	26	13.9	147.4	-									
HCM Lane LOS	20 D	13.9 B	147.4 F	-	-	- 1							
	0.4	0.1	13.6	-									
HCM 95th %tile Q(veh)	0.4	U. I	13.0		-								

Int Delay, s/veh	38.8											
3 .												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		લી			₽			ተተኈ				
Traffic Vol, veh/h	10	53	0	0	170	74	63	997	76	0	0	0
Future Vol, veh/h	10	53	0	0	170	74	63	997	76	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	21	25	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	0	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	-	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	11	56	0	0	179	78	66	1049	80	0	0	0
Major/Minor	Minor2			Minor1			Major1					
Conflicting Flow All	688	1287	-		1247	586	25	0	0			
Stage 1	25	25	-	-	1222	-	-	-	-			
Stage 2	663	1262	-	-	25	-	-	-	-			
Critical Hdwy	6.44	6.54	-	-	6.54	7.14	5.34	-	-			
Critical Hdwy Stg 1	-	-	-	-	5.54	-	-	-	-			
Critical Hdwy Stg 2	6.74	5.54	-	-	-	-	-	-	-			
Follow-up Hdwy	3.82	4.02	-	-	4.02	3.92	3.12	-	-			
Pot Cap-1 Maneuver	388	163	0	0	~ 172	389	1124	-	-			
Stage 1	-	-	0	0	250	-	-	-	-			
Stage 2	379	239	0	0	-	-	-	-	-			
Platoon blocked. %								-	-			
Mov Cap-1 Maneuver	-	150	-	-	~ 158	389	1124	-	-			
Mov Cap-2 Maneuver	-	150	-	-	~ 158	-	-	-	-			
Stage 1	-	-	-	-	235		-					
Stage 2	68	225	-			-						
J												
Approach	EB			WB			NB					
HCM Control Delay, s				227.3			0.5					
HCM LOS				F			3.0					
Minor Lane/Major Mvmt	NBL	NBT	NBR F	BLn1WBLn1								
Capacity (veh/h)	1124	-	-	- 193								
HCM Lane V/C Ratio	0.059		-	- 1.331								
HCM Control Delay (s)	8.4		-	- 227.3								
HCM Lane LOS	Α.		-	- F								
HCM 95th %tile Q(veh)	0.2			- 14.6								

Movement EBL EBT WBT WBR SBL SBR Lane Configurations ↑ ०	Intersection								
Traffic Vol, veh/h	Int Delay, s/veh	4.7							
Traffic Vol, veh/h	Movement	EBL	EBT			WBT	WBR	SBL	SBR
Future Vol, veh/h Conflicting Peds, #/hr O O O O O O O O O O O O O O O O O O O	Lane Configurations		ની			f)		¥	
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Traffic Vol, veh/h	24	278			342	20	97	116
Sign Control Free Row Free Row RT Channelized Free Row RT Channelized Free Row RT Channelized Stop RT Channelized None None <t< td=""><td>Future Vol, veh/h</td><td>24</td><td>278</td><td></td><td></td><td>342</td><td>20</td><td>97</td><td>116</td></t<>	Future Vol, veh/h	24	278			342	20	97	116
RT Channelized - None - None - None Storage Length 0	Conflicting Peds, #/hr	0	0			0	0	0	0
Storage Length	Sign Control	Free	Free			Free	Free	Stop	Stop
Veh in Median Storage, # - 0 0 - 0 7 37 126 Major Minor Minor Major Minor Minor Minor Major Minor Minor Minor Major Minor M	RT Channelized	-	None			-	None	-	None
Grade, % - 0 0 0 - 0 - 0 - 0 Peak Hour Factor 92 92 92 92 92 92 92 92 92 92 Mmt Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			-			-	-	0	-
Peak Hour Factor 92 126 92 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126	Veh in Median Storage, #	# -	0			0	-	0	-
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2	Grade, %	-	0			0	-	0	-
Mymit Flow 26 302 372 22 105 126 Major/Minor Major1 Major2 Minor2 Conflicting Flow All 393 0 - 0 737 383 Stage 1 - - - 383 - Stage 2 - - - 354 - Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Follow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1166 - - 386 664 Stage 1 - - - 689 - Stage 2 - - - 710 - Platoon blocked, % - - - 376 664 Mov Cap-1 Maneuver 1166 - - 376 - Stage 1 - -	Peak Hour Factor	92	92				92	92	92
Major/Minor Major Major Major Major		2							
Conflicting Flow All 393 0	Mvmt Flow	26	302			372	22	105	126
Conflicting Flow All 393 0									
Stage 1	Major/Minor	Major1				Major2		Minor2	
Stage 2	Conflicting Flow All	393	0			-	0	737	383
Critical Hdwy 4.12 - - 6.42 6.22 Critical Hdwy Stg 1 - - - 5.42 - Critical Hdwy Stg 2 - - - 5.42 - Follow-up Hdwy 2.218 - - 3.518 3.318 Pollow-up Hdwy 2.218 - - 386 664 Stage 1 - - 689 - 386 664 Stage 2 - - - 689 - 710 - Platoon blocked, % - - - - 70 - - 689 - - 710 - - - 376 664 - - 376 664 - - 376 - - - - 489 - - - 689 - - 689 - - 691 - - - 691 - - - 691 - - - - - - - - -	Stage 1		-			-	-	383	-
Critical Hdwy Stg 1 - - 5.42 - Critical Hdwy Stg 2 - - 5.42 - Follow-up Hdwy 2.218 - - 3.518 3.318 Pot Cap-1 Maneuver 1166 - - 386 664 Stage 1 - - - 689 - Stage 2 - - - 710 - Platoon blocked, % - - - 376 664 Mov Cap-1 Maneuver - - - 376 664 Mov Cap-2 Maneuver - - - 376 - Stage 1 - - - 689 - Stage 2 - - - 691 - Approach EB WB SB HCM Control Delay, s 0.6 0 18.7 HCM Lane More Major Mwnt EBL EBL WBT WBR SBLnt Capacity (vev/h) 1166 - 492 HCM Lane V/C Ratio 0.022 - 0.471	Stage 2	-	-			-	-	354	-
Critical Hdwy Stg 2 5.42 5.42 - Follow-up Hdwy 2.218 3.518 3.318 Pot Cap-1 Maneuver 1166 386 664 Stage 1 689 710 910 Platoon blocked, %	Critical Hdwy	4.12	-			-	-	6.42	6.22
Follow-up Hidwy 2.218 3.518 3.318 Pot Cap-1 Maneuver 1166 386 664 Stage 1 689 - 689 - 710 - 710 Platoon blocked, % Mov Cap-1 Maneuver 1166 376 664 Mov Cap-1 Maneuver 1166 376 664 Mov Cap-2 Maneuver 1 6 376 664 Mov Cap-2 Maneuver 376 664 Stage 1 689 - 376 Stage 2 691 - 689 Stage 2 691 - 689 Approach EB WB SB HCM Control Delay, s 0.6 0 18.7 HCM LOS C Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1166 - 492 HCM Lane V/C Ratio 0.022 - 0.471 HCM Control Delay (s) 8.2 0 - 18.7	Critical Hdwy Stg 1	-	-			-	-	5.42	-
Pot Cap-1 Maneuver 1166 386 664 Stage 1 689 - 689 - 710 710 710 710 710 710 710 710 710 710 710 710 710 710 710 - 71	Critical Hdwy Stg 2		-			-	-	5.42	-
Stage 1	Follow-up Hdwy	2.218	-			-	-	3.518	3.318
Stage 2	Pot Cap-1 Maneuver	1166	-			-	-	386	664
Platoon blocked, %		-	-			-	-		-
Mov Cap-1 Maneuver 1166 - - 376 664 Mov Cap-2 Maneuver - - - 376 - Stage 1 - - - 689 - Stage 2 - - 691 - Approach EB WB SB HCM Control Delay, s 0.6 0 18.7 HCM LOS C C Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1166 492 HCM Lane V/C Ratio 0.022 0.471 HCM Lane V/C Ratio 0.022 0.471 HCM Lane LOS A A - C - 0.471 HCM Lane LOS A A - C -			-			-	-	710	-
Mov Cap-2 Maneuver			-			-	-		
Stage 1		1166	-			-	-		664
Stage 2		-	-			-	-		-
Approach EB WB SB HCM Control Delay, s 0.6 0 18.7 HCM LOS C Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1166 492 HCM Lane V/C Ratio 0.022 0.471 HCM Control Delay (s) 8.2 0 - 18.7 HCM Lane LOS A A - C		-	-			-	-	689	-
HCM Control Delay, s 0.6 0 18.7 HCM LOS C Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1	Stage 2	-	-			-	-	691	-
HCM Control Delay, s 0.6 0 18.7 HCM LOS C Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1									
HCM Control Delay, s 0.6 0 18.7 HCM LOS C Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1	Approach	EB				WB		SB	
Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1166 - - 492 HCM Lane V/C Ratio 0.022 - - 0.471 HCM Control Delay (s) 8.2 0 - 18.7 HCM Lane LOS A A - C	HCM Control Delay, s	0.6				0		18.7	
Capacity (velv/h) 1166 - - 492 HCM Lane V/C Ratio 0.022 - - 0.471 HCM Control Delay (s) 8.2 0 - 18.7 HCM Lane LOS A A - C	HCM LOS							С	
Capacity (velv/h) 1166 - - 492 HCM Lane V/C Ratio 0.022 - - 0.471 HCM Control Delay (s) 8.2 0 - 18.7 HCM Lane LOS A A - C									
Capacity (velv/h) 1166 - - 492 HCM Lane V/C Ratio 0.022 - - 0.471 HCM Control Delay (s) 8.2 0 - 18.7 HCM Lane LOS A A - C	Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn	1			
HCM Lane V/C Ratio 0.022 - - 0.471 HCM Control Delay (s) 8.2 0 - 18.7 HCM Lane LOS A A - C									
HCM Control Delay (s) 8.2 0 - 18.7 HCM Lane LOS A A - C									
HCM Lane LOS A A C			0						
HCM 95th %tile Q(veh) 0.1 2.5	HCM Lane LOS	A	Α	-	- (С			
	HCM 95th %tile Q(veh)	0.1	-	-	- 2.	5			

-: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

2020 Background + Site Timing Plan: PM

17: Trinity St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection							
Int Delay, s/veh	10.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
		EDK	INDL			SDK	
Lane Configurations	Y	1.45	20	4	<u>4</u>	F0	
Traffic Vol, veh/h	242	145	30	195	51	50	
Future Vol, veh/h	242	145	30	195	51	50	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None		None	
Storage Length	0	-	-	-		-	
Veh in Median Storage,		-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	263	158	33	212	55	54	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	360	83	110	0	ividjoiz	0	
Stage 1	83	- 03	110	-	•	-	
Stage 2	277						
Critical Hdwy	7.12	6.22	4.12			-	
	6.12	0.22	4.12		•		
Critical Hdwy Stg 1		-		-		-	
Critical Hdwy Stg 2	6.12 3.518	3.318	2.218	-	-		
Follow-up Hdwy				-	-	-	
Pot Cap-1 Maneuver	596	976	1480	-	•	-	
Stage 1	925	-	-	-			
Stage 2	729	-		-	•	-	
Platoon blocked, %	FOF	07/	1400		-		
Mov Cap-1 Maneuver	585	976	1480	-	•	-	
Mov Cap-2 Maneuver	585	-		-	-	-	
Stage 1	902			-	-	-	
Stage 2	711	-					
Approach	EB		NB		SB		
HCM Control Delay, s	18.1		1		0		
HCM LOS	C						
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR				
Capacity (veh/h)	1480	- 688	JDT JDK				
HCM Lane V/C Ratio	0.022	- 0.611					
HCM Control Delay (s)	7.5	0 18.1					
HCM Control Delay (s) HCM Lane LOS	7.5 A	0 18.1 A C					
	0.1	- 4.2					
HCM 95th %tile Q(veh)	0.1	- 4.2					

6.0												
EBL		EBR		WBL		WBR			NBR	SBL	SBT	SB
	_	_		_	-	_			-	-	-	
										-	-	
-	_			-	-	-		-	-	-	-	
				Free								Sto
				-								Non
		-		-					-			
-		-		-	-			-	-	-		
					-							
												8
208	0	0		0	0	0	200	688	0	0	0	
Minor2			1	Maior2			Maior1					
	1110	-				0		0	-			
				_		-	-	-				
							4.13					
		_		_			1373		-			
				-					-			
730	2/1	U		U	_	_			U			
354	٥						1503					
							1373					
		-		-	-	-	-	-	-			
3/5	U	-		-		-	-	-	-			
EB				WB			NB					
28.7				0			1.7					
D												
NRI	NRT I	FBI n1	WRT	WBR								
		26.7 D										
A												
	85 2 208 Minor2 697 22 675 6.08 5.43 6.03 3.669 422 960 438 354 354 941 375 EB	EBL EBT 177 0 177 0 177 0 0 0 0 Stop Stop 0 - 0 85 85 2 2 208 0 Minor2 697 1110 22 22 675 1088 6.08 6.53 5.43 5.53 6.03 5.53 3.669 4.019 960 877 438 291 354 0 941 0 375 0 EB 28.7 D	EBL EBT EBR 177 0 0 177 0 0 177 0 0 0 177 0 0 0 18 Stop Stop Stop - None - 0 - 0 0 - 85 85 85 85 2 2 2 2 208 0 0 Minor2 697 1110 - 22 22 2 267 1088 - 6.08 6.53 - 5.43 5.53 - 6.03 5.53 - 3.669 4.019 - 422 209 0 960 877 0 438 291 0 354 0 - 354 0 - 354 0 - 355 0 - EB 28.7 D NBL NBT EBLn1 1593 - 354 0.126 - 0.588 7.6 - 28.7	EBL EBT EBR 177 0 0 177 0 0 177 0 0 0 18 Stop Stop Stop - None - 0 - 0 0 - 85 85 85 2 2 2 2 208 0 0 Minor2 697 1110 - 22 22 - 675 1088 - 6.08 6.53 - 5.43 5.53 - 5.43 5.53 - 3.669 4.019 - 422 209 0 960 877 0 438 291 0 354 0 - 941 0 - 375 0 - EB 28.7 D NBL NBT EBL11 WBT 1593 - 354 - 0.126 - 0.588 - 7.6 - 28.7 -	The image	EBL EBT EBR WBL WBT 177 0 0 0 0 0 0 177 0 0 0 0 0 177 0 0 18 0 0 Stop Stop Stop Free Free - None 0 0 85 85 85 85 85 2 2 2 2 2 2 2 208 0 0 0 0 0 Minor2 Major2 697 1110 22 22 657 1088 6.08 6.53 6.03 5.53 5.43 5.53 5.43 5.53 6.03 5.53 6.03 6.53 6.08 6.53 6.08 6.53 6.09 4.019 422 209 0 0 0 - 960 877 0 0 0 - 422 209 0 0 0 - 960 877 0 0 0 - 438 291 0 0 0 - 354 0 354 0 3554 0 941 0 375 0 EB WB 28.7 0 0 NBL NBTEBLn1 WBT WBR 1593 - 354 0.126 - 0.588 7.6 - 28.7	The first color The first	The second color The second	BBL BBT BBR WBL WBT WBR NBL NBT	The color of the	The color of the	The color of the

EBL EBT EBR

0 146 158

Intersection
Int Delay, s/veh
Movement

MS

Lane Configurations Traffic Vol, veh/h 2020 Background + Site
Timing Plan: PM

4↑ 996

Synchro 9 Report

Page 7

20

104

26: Trinity St & E. 17th St
TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection						
Int Delay, s/veh	4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T T	LDIX	NDL	444	301	JUK
Traffic Vol, veh/h	226	0	20	530	0	0
Future Vol, veh/h	226	0	20	530	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	310p	None	-		1166	None
Storage Length	0	None -		-		- INOTIC
Veh in Median Storage, #	0			0		
Grade, %	0			0	0	
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	272	0	24	639	0	0
WWW.CT IOW	LIL	Ū	21	007	U	U
Major/Minor	Minor2		Major1			
Conflicting Flow All	304		0	0		
Stage 1	0		-	-		
Stage 2	304					
Critical Hdwy	5.74		5.34	-		
Critical Hdwy Stg 1	0.71		- 0.01			
Critical Hdwy Stg 2	6.04	-				
Follow-up Hdwy	3.82	-	3.12			
Pot Cap-1 Maneuver	679	0				
Stage 1	-	0				
Stage 2	662	0	-			
Platoon blocked, %						
Mov Cap-1 Maneuver	679			-		
Mov Cap-2 Maneuver	679	-		-		
Stage 1	-	-		-		
Stage 2	662	-		-		
ů.						
Approach	EB		NB			
HCM Control Delay, s	13.8					
HCM LOS	B					
Minor Lane/Major Mvmt	NBL	NBT EBLn1				
Capacity (veh/h)	-	- 679				
HCM Lane V/C Ratio		- 0.401				
HCM Control Delay (s)	-	- 13.8				
HCM Lane LOS		- B				

2020 Background + Site Timing Plan: PM

rranic voi, ven/n	U	140	158		35	43	U	Ĺ	U	U	104	990	20
Future Vol, veh/h	0	146	158		35	43	0	C	0	0	104	996	20
Conflicting Peds, #/hr	0	0	19		0	0	0	C	0	0	94	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None		-	-	None		-	None	-	-	None
Storage Length	-	-	40		-	-	-		-	-	-	-	50
Veh in Median Storage, #	-	0	-		-	0	-		-	-	-	0	-
Grade, %	-	0	-		-	0	-		0	-	-	0	-
Peak Hour Factor	95	95	95		95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mvmt Flow	0	154	166		37	45	0	C	0	0	109	1048	21
M. 1. (0.0)	14. 0				4						14:0		
Major/Minor	Minor2			IVI	inor1						Major2	_	
Conflicting Flow All	-	1361	543		933	1361	-				94	0	0
Stage 1	-	1267	-		94	94	-				-	-	-
Stage 2	-	94	-		839	1267	-				-	-	-
Critical Hdwy	-	6.54	6.94		7.54	6.54	-				4.14	-	-
Critical Hdwy Stg 1	-	5.54	-		-	-	-				-	-	-
Critical Hdwy Stg 2	-	-	-		6.54	5.54	-				-	-	-
Follow-up Hdwy	-	4.02	3.32		3.52	4.02	-				2.22	-	-
Pot Cap-1 Maneuver			484		221	147	0				1498	-	-
Stage 1	0	238	-		-	-	0				-	-	-
Stage 2	0	-	-		326	238	0				-	-	-
Platoon blocked, %												-	-
Mov Cap-1 Maneuver		~ 110	484		-	110	-				1498	-	-
Mov Cap-2 Maneuver	-	~ 110	-		-	110	-				-	-	-
Stage 1	-	195	-		-	-	-				-	-	-
Stage 2	-	-	-		37	195	-				-	-	-
Approach	EB				WB						SB		
HCM Control Delay, s	150.7				WD						1		
HCM LOS	130.7 F										- 1		
TICIVI EOS	'												
Minor Lane/Major Mvmt	EBLn1	EBLn2V	VBLn1	SBL	SBT	SBR							
Capacity (veh/h)	110	484	-	1498	-	-							
HCM Lane V/C Ratio	1.397	0.344	-	0.073	-	-							
HCM Control Delay (s)	296.1	16.3	-	7.6	0.3	-							
HCM Lane LOS	F	С	-	Α	Α	-							
HCM 95th %tile Q(veh)	10.8	1.5	-	0.2	-	-							
Notes													

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

ર્લ 43

MS Synchro 9 Report Page 8

HCM 95th %tile Q(veh)

2020 Background + Site Timing Plan: PM

29: Colorado St & E. 16th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2020 Background + Site Timing Plan: PM

ПΑ	tor	Texas	Capitol	Complex	Master	Plan	2018	Update

Intersection													
Int Delay, s/veh	34.8												
Movement		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			ĵ.			ની						41	7
Traffic Vol, veh/h		0	20	11	85	94	0	0	0	0	26	1246	23
Future Vol, veh/h		0	20	11	85	94	0	0	0	0	26	1246	23
Conflicting Peds, #/hr		0	0	0	24	0	0	0	0	0	0	0	42
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	-	None									
Storage Length		-	-	-	-	-	-	-	-	-	-	-	0
Veh in Median Storage,	#	-	0	-	-	0	-	-	-	-	-	0	-
Grade, %		-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor		87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %		2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow		0	23	13	98	108	0	0	0	0	30	1432	26

Major/Minor	Minor2			Minor1			Major2		
Conflicting Flow All	-	1534	782	811	1534	-	0	0	0
Stage 1	-	1534	-	0	0	-	-	-	-
Stage 2	-	0	-	811	1534	-	-	-	-
Critical Hdwy	-	6.54	6.94	7.54	6.54	-	4.14	-	-
Critical Hdwy Stg 1	-	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	6.54	5.54	-		-	-
Follow-up Hdwy	-	4.02	3.32	3.52	4.02	-	2.22	-	-
Pot Cap-1 Maneuver	0	115	337	271	115	0	-	-	-
Stage 1	0	177	-	-	-	0	-	-	-
Stage 2	0	-	-	339	177	0		-	-
Platoon blocked, %								-	-
Mov Cap-1 Maneuver	-	110	324	219	110	-		-	-
Mov Cap-2 Maneuver	-	110	-	219	110	-	-	-	-
Stage 1	-	170	-	-	-	-	-	-	-
Stage 2	-	-	-	282	170	-	-	-	-
Approach	EB			WB			SB		
HCM Control Delay, s	38			285.8					
HCM LOS	E			F					
HCM LOS	E			F					

Minor Lane/Major Mvmt	EBLn1V	VBLn1	SBL	SBT	SBR
- " (
Capacity (veh/h)	144	144	-	-	-
HCM Lane V/C Ratio	0.247	1 // 20			
LICINI Falle A/C IVallo	0.247	1.427			-
HCM Control Delay (s)	38	285.8	-	-	-
HCM Lane LOS	E	E			
LICINI FULL FOR	E	Г	-	-	-
HCM 95th %tile Q(veh)	0.9	13.5			

Int Delay, s/veh 5	5.2												
Movement	EBL	EBT	EBR	WB	WBT	WBR	N	BL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDIT	***	4	· · · · · ·			4	HUIT	002	4	ODIT
Traffic Vol, veh/h	6	69	14	18		8		15	66	41	9	360	41
Future Vol, veh/h	6	69	14	18		8		15	66	41	9	360	41
Conflicting Peds, #/hr	0	0	0	() 0	15		85	0	0	0	0	85
Sign Control	Stop	Stop	Stop	Sto	Stop	Stop	Fr	ee	Free	Free	Free	Free	Free
RT Channelized	-	-	None	- 12		None			-	None	-	-	None
Storage Length		-	-			-				-			
Veh in Median Storage, #		0			- 0	-			0	-	-	0	
Grade, %		0			- 0	-			0	-		0	
Peak Hour Factor	78	78	78	78	3 78	78		78	78	78	78	78	78
Heavy Vehicles, %	2	2	2			2		2	2	2	2	2	2
Mymt Flow	8	88	18	2		10		19	85	53	12	462	53
	_			_									
Major/Minor	Minor2			Minor			Majo	or1			Major2		
Conflicting Flow All	788	772	573	71:	3 771	126		99	0	0	137	0	0
Stage 1	596	596	-	14'	149	_			-	-	-	-	-
Stage 2	192	176		56-		-				-			
Critical Hdwy	7.12	6.52	6.22	7.1:		6.22	4.	12		-	4.12		
Critical Hdwy Stg 1	6.12	5.52	-	6.1		-		-		-	-		-
Critical Hdwy Stg 2	6.12	5.52	-	6.1		-					-		
Follow-up Hdwy		4.018	3.318	3.51	3 4.018	3.318	2.2	18		-	2.218		-
Pot Cap-1 Maneuver	309	330	519	34	7 331	924	9	78		-	1447		
Stage 1	490	492	-	85-		-				-	-		
Stage 2	810	753		510		-				-	-		
Platoon blocked, %													-
Mov Cap-1 Maneuver	238	293	477	250	294	911	9	78		-	1426		
Mov Cap-2 Maneuver	238	293	-	250		-				-	-		-
Stage 1	441	447	-	83		_				-	_		
Stage 2	727	737		38		-				-	_		-
Olago 2	, _ ,	, , ,		00	100								
Approach	EB			WE	3			NB			SB		
HCM Control Delay, s	23.5			20.	3			1.1			0.2		
HCM LOS	C			(0.2		
Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1WBLn	I SBL	SBT	SBR						
Capacity (veh/h)	978			307 30		-	-						
HCM Lane V/C Ratio	0.02			0.372 0.25									
HCM Control Delay (s)	8.8	0		23.5 20.8		0							
HCM Lane LOS	A	A		C (Ā							
HCM 95th %tile Q(veh)	0.1			1.7									

Synchro 9 Report Page 9 MS

Synchro 9 Report Page 10 MS

31: Brazos St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update

lutura atian												
Intersection Int Delay, s/veh	9.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		1			↑			↑			↑	
Traffic Vol, veh/h	0	122	0	0	123	0	0	0	0	0	0	(
Future Vol, veh/h	0	122	0	0	123	0	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	57	0	25	21	0	0	0	0	21
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length		-	-	-	-	-	-		-	-		
Veh in Median Storage, #		0	-	-	0	-	-	0	-	-	0	
Grade. %		0	-		0	-		0			0	
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	0	151	0	0	152	0	0	0	0	0	0	0
WWW. TIOW	Ū	101	U	· ·	102	U	· ·	U	U	· ·	Ū	
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	-	1		-	1	-		0	-	-	-	0
Stage 1		1	-	-	0	-	-	-		-		-
Stage 2		0	-		1	-						
Critical Hdwy		6.52	-	-	6.52	-	-			-		
Critical Hdwy Stg 1		5.52	-		5.52	-						
Critical Hdwy Stg 2		5.52	-	-	5.52	-	-		-	-		
Follow-up Hdwy		4.018	-	-	4.018	-	-		-	-		
Pot Cap-1 Maneuver	0	895	0	0	895	0	0		0	0		0
Stage 1	0	895	0	0	-	0	0		0	0		0
Stage 2	0	-	0	0	895	0	0		0	0		0
Platoon blocked, %	_		-	_		-	_		-	_		
Mov Cap-1 Maneuver		895	_		895	_	_		-	_		
Mov Cap-2 Maneuver		895	-		895	-	_			-		
Stage 1		895			-							
Stage 2					895	-	_		-	_		
Stage 2					070							
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.8			9.8			0			0		
HCM LOS	А			А								
Minor Lane/Major Mvmt	NBT	EBLn1V	VBLn1	SBT								
Capacity (veh/h)	-	895	895	-								
HCM Lane V/C Ratio	-	0.168	0.17	-								
HCM Control Delay (s)		9.8	9.8	-								
HCM Lane LOS		A	A	-								
HCM 95th %tile Q(veh)		0.6	0.6									

Intersection							
Int Delay, s/veh	2.8						
Movement	EB	T EBR		WBL	WBT	NBL	NBR
Lane Configurations	1	*			4	W	
Traffic Vol, veh/h	7			15	44	36	0
Future Vol, veh/h	7	9 0		15	44	36	0
Conflicting Peds, #/hr		0 0		1	0	0	0
Sign Control	Fre	e Free		Free	Free	Stop	Stop
RT Channelized		- None		-	None		None
Storage Length				-	-	0	-
Veh in Median Storage, #		0 -		-	0	0	-
Grade, %		0 -		-	0	0	-
Peak Hour Factor	5			58	58	58	58
Heavy Vehicles, %		2 2		2	2	2	2
Mvmt Flow	13	6 0		26	76	62	0
Major/Minor	Major	1	Λ	/lajor2		Minor1	
Conflicting Flow All		0 0		137	0	265	137
Stage 1					-	137	-
Stage 2					-	128	-
Critical Hdwy				4.12	-	6.42	6.22
Critical Hdwy Stg 1				-	-	5.42	-
Critical Hdwy Stg 2				-	-	5.42	-
Follow-up Hdwy				2.218	-	3.518	3.318
Pot Cap-1 Maneuver				1447	-	724	911
Stage 1				-	-	890	-
Stage 2				-	-	898	-
Platoon blocked, %					-		
Mov Cap-1 Maneuver				1447	-	710	910
Mov Cap-2 Maneuver				-	-	710	-
Stage 1				-	-	889	
Stage 2				-	-	881	-
Approach	Е	В		WB		NB	
HCM Control Delay, s		0		1.9		10.6	
HCM LOS		-				В	
Minor Lane/Major Mvmt	NBLn1 EB	T EBR	WBL	WBT			
Capacity (veh/h)	710		1447	-			
HCM Lane V/C Ratio	0.087						
HCM Control Delay (s)	10.6		7.5	0			
HCM Lane LOS	10.0 B			A			
HCM 95th %tile Q(veh)	0.3		0.1	A			
TIGHT JULI JULIE Q(VEII)	0.5		0.1				

Intersection							
Int Delay, s/veh	0.9						
Movement	EBL		EBR	NBL	NBT	SBT	SBR
Lane Configurations			7			^ ^^	7
Traffic Vol, veh/h	0		60	0	0	1256	30
Future Vol, veh/h	0		60	0	0	1256	30
Conflicting Peds, #/hr	0		0	0	0	0	15
Sign Control	Stop		Stop	Free	Free	Free	Free
RT Channelized	-		Vone	-	None	-	
Storage Length	-		0		-		50
Veh in Median Storage, #	# 0		-		-	0	-
Grade, %	0		-		0	0	-
Peak Hour Factor	89		89	89	89	89	89
Heavy Vehicles, %	2		2	2	2	2	2
Mvmt Flow	0		67	0	0	1411	34
Major/Minor	Minor2					Major2	
Conflicting Flow All	-		721			Mujorz	0
Stage 1	-		721				-
Stage 2							
Critical Hdwy			7.14				
Critical Hdwy Stg 1			7.17				
Critical Hdwy Stg 2							
Follow-up Hdwy			3.92				
Pot Cap-1 Maneuver	0		317				-
Stage 1	0		-				
Stage 2	0		-				
Platoon blocked, %							
Mov Cap-1 Maneuver			312				-
Mov Cap-2 Maneuver			-				-
Stage 1			-				-
Stage 2	-		-				-
ŭ							
Approach	EB					SB	
HCM Control Delay, s	19.7					0	
HCM LOS	C					· ·	
Minor Lane/Major Mvmt	EBLn1	SBT	SBR				
Capacity (veh/h)	312	JDI	JDK -				
HCM Lane V/C Ratio	0.216						
HCM Control Delay (s)	19.7	-					
HCM Lane LOS	17.7 C						
HCM 95th %tile Q(veh)	0.8						
HOW FOUT FOUTE Q(VEIT)	0.0	-	-				

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

	٠	→	\rightarrow	•	←	•	4	†	~	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑			^	7				ሻ	^	7
Traffic Volume (vph)	67	763	316	0	537	324	0	0	0	289	694	132
Future Volume (vph)	67	763	316	0	537	324	0	0	0	289	694	132
Confl. Peds. (#/hr)	28		19	19		28				29		19
Confl. Bikes (#/hr)			1			1						13
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	71	812	336	0	571	345	0	0	0	307	738	140
Shared Lane Traffic (%)												
Lane Group Flow (vph)	71	1148	0	0	571	345	0	0	0	307	738	140
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases	_					6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase	2.0	15.0			15.0	10.0				10.0	Γ.0	5.0
Minimum Initial (s)	2.0	15.0			15.0	10.0				10.0	5.0	
Minimum Split (s)	7.0 18.0	27.0 75.0			34.0	15.0				15.0 45.0	32.0	32.0
Total Split (s)	15.0%	62.5%			57.0 47.5%	45.0 37.5%				37.5%	45.0 37.5%	45.0 37.5%
Total Split (%)	4.0	4.0			47.5%	4.0				4.0	4.0	4.0
Yellow Time (s) All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag	5.0			Lead	5.0				5.0	5.0	5.0
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max	None				None	Max	Max
Act Effct Green (s)	11.6	70.0			55.6	95.6				40.0	40.0	40.0
Actuated g/C Ratio	0.10	0.58			0.46	0.80				0.33	0.33	0.33
v/c Ratio	0.42	0.58			0.35	0.27				0.52	0.63	0.25
Control Delay	57.9	16.5			22.9	1.4				36.1	36.5	11.9
Queue Delay	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Delay	57.9	16.5			22.9	1.4				36.1	36.5	11.9
LOS	Е	В			С	Α				D	D	В
Approach Delay		18.9			14.8						33.5	
Approach LOS		В			В						С	
Queue Length 50th (ft)	52	267			153	0				191	252	24
Queue Length 95th (ft)	100	331			214	36				282	318	73
Internal Link Dist (ft)		228			45			159			210	
Turn Bay Length (ft)	160									130		120
Base Capacity (vph)	191	1968			1639	1274				590	1179	566
Starvation Cap Reductn	0	0			0	137				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.37	0.58			0.35	0.30				0.52	0.63	0.25
Intersection Cummany												

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 75

MS Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

Splits and Phases: 1: Martin Luther King Jr. Blvd & Guadalupe St

MS Synchro 9 Report

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

	-	•	1	-	1	_
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			44	ሻሻ	7
Traffic Volume (vph)	1052	0	0	720	349	223
Future Volume (vph)	1052	0	0	720	349	223
Confl. Peds. (#/hr)		,	J	. 20	0.7	11
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	1223	0.00	0.00	837	406	259
Shared Lane Traffic (%)	1223	- 5	- 3	007	100	207
Lane Group Flow (vph)	1223	0	0	837	406	259
Turn Type	NA	- 5	- 3	NA	Prot	Perm
Protected Phases	2			6	8	i Cilli
Permitted Phases	Z			0	0	3
Detector Phases	2			6	8	3
Switch Phase	2			0	0	3
	10.0			10.0	E 0	5.0
Minimum Initial (s)	10.0			10.0	5.0	
Minimum Split (s)	30.0			15.0	10.0	29.0
Total Split (s)	87.0			87.0	33.0	33.0
Total Split (%)	72.5%			72.5%	27.5%	27.5%
Yellow Time (s)	4.0			4.0	4.0	4.0
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	5.0			5.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max			C-Max	Max	Max
Act Effct Green (s)	82.0			82.0	28.0	28.0
Actuated g/C Ratio	0.68			0.68	0.23	0.23
v/c Ratio	0.51			0.35	0.51	0.59
Control Delay	9.5			5.0	57.6	46.3
Queue Delay	0.3			0.0	0.0	0.0
Total Delay	9.8			5.0	57.6	46.3
LOS	A			A	E	D
Approach Delay	9.8			5.0	53.2	
Approach LOS	A			A	D	
Queue Length 50th (ft)	157			53	169	130
Queue Length 95th (ft)	169			57	188	138
Internal Link Dist (ft)	272			277	337	130
Turn Bay Length (ft)	212			211	331	
Base Capacity (vph)	2418			2418	801	437
Starvation Cap Reductn	521			2410	0	437
Spillback Cap Reductn	0			0	0	0
	0			0	0	0
Storage Cap Reductn Reduced v/c Ratio	0.64			0.35	0.51	0.59
Reduced WC Rallo	0.64			0.35	0.51	0.59
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12	.0					
Offset: 2 (2%), Referenced		EBT and	6:WBT, :	Start of G	ireen	
Natural Cycle: 60			,			
Control Type: Actuated-Co	ordinated					
Control Type. Actuated-Ct	Jordinaled					

MS Synchro 9 Report Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

Maximum v/c Ratio: 0.59
Intersection Signal Delay: 18.9
Intersection Capacity Utilization 57.4%
Analysis Period (min) 15
Intersection LOS: B
ICU Level of Service B

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

→ Ø2 (R)	ľøз
87 s	33 s
← Ø6 (R)	₹ Ø8
87 s	33 s

MS Synchro 9 Report

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	-	•	•	←	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† 1>		ች	^		
Traffic Volume (vph)	1109	0	8	975	0	0
Future Volume (vph)	1109	0	8	975	0	0
Confl. Peds. (#/hr)		6	6		1	
Confl. Bikes (#/hr)		1				
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	1246	0	9	1096	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1246	0	9	1096	0	0
Turn Type	NA		pm+pt	NA		ŭ
Protected Phases	2		1	6		
Permitted Phases	_		6			
Detector Phase	2		1	6		
Switch Phase				J		
Minimum Initial (s)	15.0		1.0	5.0		
Minimum Split (s)	34.0		5.5	29.0		
Total Split (s)	107.0		13.0	120.0		
Total Split (%)	89.2%			100.0%		
Yellow Time (s)	4.0		3.5	4.0		
All-Red Time (s)	1.0		1.0	1.0		
Lost Time Adjust (s)	0.0		0.0	0.0		
Total Lost Time (s)	5.0		4.5	5.0		
Lead/Lag	Lead		Lag	5.0		
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		
Act Effct Green (s)	116.4		119.1	120.0		
Actuated g/C Ratio	0.97		0.99	1.00		
v/c Ratio	0.97		0.99	0.31		
	0.36		0.02	0.31		
Control Delay	0.4		0.0			
Queue Delay				0.0		
Total Delay	0.4		0.0	0.2		
LOS Approach Dolov	A		Α	A		
Approach LOS	0.4			0.2 A		
Approach LOS	A					
Queue Length 50th (ft)	0		0	0		
Queue Length 95th (ft)	37		m0	0		
Internal Link Dist (ft)	366		445	377	331	
Turn Bay Length (ft)	0.400		115	0500		
Base Capacity (vph)	3433		491	3539		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.36		0.02	0.31		
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12						
Offset: 0 (0%) References	to phace 2.1	ERT and	6-M/RTI	Start of C	roon	

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 40

MS Synchro 9 Report Page 5

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

Splits and Phases: 5: N. Congress Ave & Martin Luther King Jr. Blvd

MS Synchro 9 Report

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	•	•	•	•	1	†	_	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	^	7		ર્ન	7		ની	7
Traffic Volume (vph)	140	748	228	290	967	138	19	Ö	35	42	i	11
Future Volume (vph)	140	748	228	290	967	138	19	0	35	42	1	11
Confl. Peds. (#/hr)	18		8	8		18	23		7	7		23
Confl. Bikes (#/hr)			3			3						1
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	167	890	271	345	1151	164	23	0	42	50	1	13
Shared Lane Traffic (%)												
Lane Group Flow (vph)	167	1161	0	345	1151	164	0	23	42	0	51	13
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	1.0	10.0		1.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	5.5	22.0		5.5	28.0	28.0	22.0	22.0	22.0	28.0	28.0	28.0
Total Split (s)	20.0	70.0		20.0	70.0	70.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	16.7%	58.3%		16.7%	58.3%	58.3%	25.0%	25.0%	25.0%	25.0%	25.0%	25.0%
Yellow Time (s)	3.5	4.0		3.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	4.5	5.0		4.5	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	75.2	65.6		85.4	71.4	71.4		25.0	25.0		25.0	25.0
Actuated g/C Ratio	0.63	0.55		0.71	0.60	0.60		0.21	0.21		0.21	0.21
v/c Ratio	0.50	0.62		0.90	0.55	0.18		0.08	0.11		0.18	0.04
Control Delay	13.3	12.9		51.1	11.9	4.0		39.4	6.2		41.1	0.2
Queue Delay	0.0	0.4		0.0	0.4	0.0		0.0	0.0		0.0	0.0
Total Delay	13.3	13.3		51.1	12.2	4.0		39.4	6.2		41.1	0.2
LOS	В	В		D	В	Α		D	Α		D	Α
Approach Delay		13.3			19.5			17.9			32.8	
Approach LOS		В			В			В			С	
Queue Length 50th (ft)	25	177		139	202	12		15	0		33	0
Queue Length 95th (ft)	68	162		#244	210	20		35	16		65	0
Internal Link Dist (ft)		377			273			135			212	
Turn Bay Length (ft)	160			100		100			100			
Base Capacity (vph)	427	1868		389	2104	913		271	367		284	360
Starvation Cap Reductn	0	272		0	413	0		0	0		0	0
Spillback Cap Reductn	0	5		0	0	0		0	0		0	0
Storage Cap Reductn	0	0		0	0	0		0	0		0	0
Reduced v/c Ratio	0.39	0.73		0.89	0.68	0.18		0.08	0.11		0.18	0.04

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 80

MS Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.90
Intersection Signal Delay: 17.1 Inte
Intersection Capacity Utilization 75.5% ICU
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles. Intersection LOS: B ICU Level of Service D

Splits and Phases: 6: Brazos St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

ħ٦

731

786

2

5.0

30.0

62.0

4.0

1.0

0.0

5.0

Lag

Yes

57.0

0.48

0.61

16.8

17.2

17.2

122

146

273

1618

222

0.71

0

0.4

C-Max

51.7%

0 731

0.93 0.93

> 0 989

↑↑ 1413

0.93

1519

1519

NA

6

6

10.0

30.0

92.0

76.7%

4.0

1.0

0.0

5.0

C-Max

87.0

0.72

0.59

5.9

0.5

6.4

28.0

126

321

0

m128

С

87.5

0.73

1.11

86.2

1.4

87.6

~363

120

495 2565

73 550

0 20

1.30 0.75

m#418

0

0

0

0

0

0

0

0

0

343

0 36

0 39

0 39

Perm

10.0

28.0

28.0

4.0

1.0

0.0

5.0

Max

23.0

0.19

0.12

41.3

0.0

41.3

25

57 37

100

335

0

0.12

0.08

40.3

40.3

25.8

С

244

0

0.17

0.08

510

510 1413

53

0.93

548

pm+pt

19

19

189

53

0.93

203

0 548 44

51

55

Intersection Summary
Cycle Length: 120
Actuated Cycle Length: 1

Lane Group Lane Configurations

Traffic Volume (vph)

Future Volume (vph)

Confl. Peds. (#/hr)

Confl. Bikes (#/hr)

Peak Hour Factor

Protected Phases

Permitted Phases Detector Phase

Minimum Split (s)

Switch Phase Minimum Initial (s)

Total Split (s)

Total Split (%)

Yellow Time (s)

All-Red Time (s)

Lead/Lag

v/c Ratio

Control Delay

Queue Delay

Approach Delay

Approach LOS

Queue Length 50th (ft)

Queue Length 95th (ft)

Internal Link Dist (ft)

Turn Bay Length (ft)

Base Capacity (vph)

Starvation Cap Reductn

Spillback Cap Reductn

Storage Cap Reductn

Reduced v/c Ratio

Total Delay

LOS

Recall Mode

Lost Time Adjust (s)

Total Lost Time (s)

Lead-Lag Optimize?

Act Effct Green (s)

Actuated g/C Ratio

Shared Lane Traffic (%) Lane Group Flow (vph)

Adj. Flow (vph)

Turn Type

Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 90

MS Synchro 9 Report Page 9 7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background Timing Plan: AM

Lane Group	Ø1	Ø9
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	9
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	5.0
Minimum Split (s)	5.5	9.5
Total Split (s)	15.0	15.0
Total Split (%)	13%	13%
Yellow Time (s)	3.5	3.5
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd ÿ9 →ø2 (R) ₩ Ø6 (R)

MS Synchro 9 Report Page 11

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

	۶	→	•	•	—	•	1	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^			† î>		٦	ર્ન	7			
Traffic Volume (vph)	152	533	0	0	1805	58	67	84	108	0	0	0
Future Volume (vph)	152	533	0	0	1805	58	67	84	108	0	0	0
Confl. Peds. (#/hr)			35			58	34		28			
Confl. Bikes (#/hr)						4			4			
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	171	599	0	0	2028	65	75	94	121	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	171	599	0	0	2093	0	67	102	121	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	26.0			5.5		26.0	26.0	26.0			
Total Split (s)	15.0	94.0			79.0		26.0	26.0	26.0			
Total Split (%)	12.5%	78.3%			65.8%		21.7%	21.7%	21.7%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	89.5	89.0			75.0		21.0	21.0	21.0			
Actuated g/C Ratio	0.75	0.74			0.62		0.18	0.18	0.18			
v/c Ratio	0.82	0.23			0.95		0.24	0.33	0.34			
Control Delay	75.1	1.0			12.5		41.1	42.1	9.0			
Queue Delay	0.0	0.1			10.2		0.3	0.0	0.0			
Total Delay	75.1	1.1			22.7		41.5	42.1	9.0			
LOS	Е	Α			С		D	D	Α			
Approach Delay		17.6			22.7			28.2				
Approach LOS		В			C			С				
Queue Length 50th (ft)	98	13			173		45	70	4			
Queue Length 95th (ft)	#195	16			m92		m68	m102	m27			
Internal Link Dist (ft)	# 170	321			675		11100	350			106	
Turn Bay Length (ft)	120	OL.			0.0			000			100	
Base Capacity (vph)	217	2624			2199		277	306	359			
Starvation Cap Reductn	0	970			3		0	0	0			
Spillback Cap Reductn	0	0			133		46	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.79	0.36			1.01		0.29	0.33	0.34			
	0,	0.00					0.27	0.00	0.01			

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 100

8: Trinity St & Martin Luther King Jr. Blvd

2022 Background Timing Plan: AM

Synchro 9 Report

Page 13

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.95
Intersection Signal Delay: 21.9 Intersection LOS: C
Intersection Capacity Utilization 89.5% ICU Level of Service E
Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd

MS

18: Guadalupe St & E. 17th St

2022 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

14 14 14 0.92 0 15 NA 4 12	EBR 47 47 18 0.92 51 51 Perm 4 12 4 12	52 52 0.92 57 0 Perm 4 12 4 12	WBT 10 10 0.92 11 68 NA 4 12	0 0 0.92 0	0 0 0.92 0	0 0 0.92 0	0 0 0.92 0	127 127 45 0.92 138	SBT 1056 1056 1056 0.92 1148	0.9
14 14 0.92 0 15 15 NA 4 12	47 47 18 0.92 51 51 Perm	52 0.92 57 0 Perm	10 10 0.92 11 68 NA 4 12	0.92	0.92	0 0.92	0.92	127 45 0.92 138	1056 1056 0.92 1148	0.9
14 14 0.92 0 15 15 NA 4 12	47 47 18 0.92 51 51 Perm	52 0.92 57 0 Perm	10 10 0.92 11 68 NA 4 12	0.92	0.92	0 0.92	0.92	127 45 0.92 138	1056 1056 0.92 1148	0.
0.92 0 15 15 NA 4 12	18 0.92 51 51 Perm	0.92 57 0 Perm	0.92 11 68 NA 4 12	0.92	0.92	0.92	0.92	45 0.92 138	0.92 1148	0.
0 15 15 NA 4 12	0.92 51 51 Perm 4 12	57 0 Perm 4 12	11 68 NA 4 12	0	0	0	0	0.92 138 0	1148	
0 15 15 NA 4 12	51 51 Perm 4 12	57 0 Perm 4 12	11 68 NA 4 12	0	0	0	0	138	1148	
15 15 NA 4 12	51 51 Perm 4 12	57 0 Perm 4 12	11 68 NA 4 12	0	0	0	0	138	1148	
15 NA 4 12	51 Perm 4 12	0 Perm 4 12	68 NA 4 12					0		
NA 4 12	Perm 4 12	Perm 4 12	NA 4 12	0	0	0	0	-	1306	
NA 4 12	Perm 4 12	Perm 4 12	NA 4 12	0	0	0	0	-	1306	
4 12	4 12	4 12	4 12							
4 12	4 12	4 12	4 12					Perm	NA	
								. 0	2 10	
4 12			112					2 10	2.0	
								2 10	2 10	
								2.10	2.0	
21.6	21.6		21.6						83.1	
0.18	0.18		0.18						0.69	
0.05	0.16		0.10						0.55	
	А									
	0									
_	_									
	13					271				
1//			244			2/1			202	
75.4	71.4		420						2202	
	_		-						_	
0.02	0.07		0.11						0.55	
	art of Gro	on								
	20.6 0.0 20.6 C 7.7 A 5 16 177 754 0 0 0.02	20.6 3.9 0.0 0.0 20.6 3.9 C A 7.7 A 5 0 16 13 177 754 714 0 0 0 0 0 0 0.02 0.07	20.6 3.9 0.0 0.0 20.6 3.9 C A 7.7 A 5 0 16 13 177 754 714 0 0 0 0 0 0	20.6 3.9 24.2 0.0 0.0 0.0 20.6 3.9 24.2 C A C 7.7 24.2 A C 5 0 34 16 13 48 177 244 754 714 628 0 0 0 0 0 0 0 0 0 0 0.02 0.07 0.11	20.6 3.9 24.2 0.0 0.0 0.0 20.6 3.9 24.2 C A C 7.7 24.2 A C 5 0 34 16 13 48 177 244 754 714 628 0 0 0 0 0 0 0 0 0 0 0.02 0.07 0.11	20.6 3.9 24.2 0.0 0.0 0.0 20.6 3.9 24.2 C A C 7.7 24.2 A C 5 0 34 16 13 48 177 244 754 714 628 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.07 0.11	20.6 3.9 24.2 0.0 0.0 0.0 20.6 3.9 24.2 C A C 7.7 24.2 A C 5 0 34 16 13 48 177 244 271 754 714 628 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.07 0.11	20.6 3.9 24.2 0.0 0.0 0.0 20.6 3.9 24.2 C A C 7.7 24.2 A C 5 0 34 16 13 48 177 244 271 754 714 628 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.07 0.11	20.6 3.9 24.2 0.0 0.0 0.0 20.6 3.9 24.2 C A C 7.7 24.2 A C 5 0 34 16 13 48 177 244 271 754 714 628 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.07 0.11	20.6 3.9 24.2 7.3 0.0 0.0 0.0 20.6 3.9 24.2 7.3 C A C A 7.7 24.2 7.3 A C A 5 0 34 161 16 13 48 196 177 244 271 262 754 714 628 2393 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type	^		10	10
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	23.0	23.0	22.5	22.5
Total Split (s)	26.0	43.0	28.0	23.0
Total Split (%)	22%	36%	23%	19%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)	C-IVIAX	None	None	IVOITE
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				

Synchro 9 Report Page 15 MS

18: Guadalupe St & E. 17th St

2022 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.55 Intersection Signal Delay: 8.2 Intersection Capacity Utilization 74.2% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service D

Splits and Phases: 18: Guadalupe St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

۶	-	\rightarrow	•	←	•	1	†	-	-	ļ	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
	ની			1 >			4413	7			
4	121	0	0	27	26	88	781	131	0	0	
4	121	0	0	27	26	88	781	131	0	0	
31								33			
0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.
	0										
5	146	0	0	33	31	106	941	158	0	0	
0	151	0	0	64	0	0	1047	158	0	0	
Perm	NA			NA		Perm	NA	Perm			
	4 12			4 12			2 10				
4 12						2 10		2 10			
4 12	4 12			4 12		2 10	2 10	2 10			
	25.6			25.6			70.4	70.4			
	0.21			0.21				0.59			
	0.43										
	30.1										
								,,			
								40			
								17		254	
	211			317			212	100		201	
	595			644			3160				
	0.25			0.10			0.39	0.17			
o phase 2:	NBTL, Sta	art of Gre	en								
	EBL 4 4 31 0.83 5 0 Perm 412 412	EBL EBT 4 121 4 121 31 0.83 0.83 0 5 146 0 151 Perm NA 412 412 412 412 412 412 612 616 60.21 0.43 30.1 0.0 30.1 C 64 85 244 595 0 0 0 0.25	EBL EBT EBR 4 121 0 4 121 0 31 0.83 0.83 0.83 0.83 5 146 0 0 151 0 Perm NA 4 12 4 12 4 12 4 12 4 12 4 12 6 0 25.6 0.21 0.43 30.1 0.0 30.1 C C 30.1 C 64 85 244 595 0 0 0 0 0.25	EBL EBT EBR WBL 4 121 0 0 31 0.83 0.83 0.83 0.83 5 146 0 0 0 151 0 0 Perm NA 412 412 412 412 412 412 412 6256 0.21 0.43 30.1 0.0 30.1 C 30.1 C 64 85 244 595 0 0 0	EBL EBT EBR WBL WBT 4 121 0 0 27 4 121 0 0 27 31 0.83 0.83 0.83 0.83 0.83 0 151 0 0 64 Perm NA NA 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412	EBL EBT EBR WBL WBT WBR 4 121 0 0 27 26 4 121 0 0 27 26 31 0.83 0.83 0.83 0.83 0.83 0.83 5 146 0 0 33 31 0 151 0 0 64 0 Perm NA NA 12 412 4 12 4 12 4 12 4 12 4 12 4 12 7 12 1 12 7	EBL EBT EBR WBL WBT WBR NBL 4 121 0 0 27 26 88 4 121 0 0 27 26 88 31 0.83 0.83 0.83 0.83 0.83 0.83 0.83 5 146 0 0 33 31 106 0 151 0 0 64 0 0 Perm NA NA Perm 412 412 210 4 12 4 12 2 210 4 12 4 12 2 10 4 12 4 12 2 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL EBT EBR WBL WBT WBR NBL NBT	EBL EBT EBR WBL WBT WBR NBL NBT NBR 4 121 0 0 27 26 88 781 131 4 121 0 0 27 26 88 781 131 31	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 4 121 0 0 0 27 26 88 781 131 0 4 121 0 0 0 27 26 88 781 131 0 31 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83	EBL EBT EBR WBL WBT WBR NBL NBT SBL SBT 4 121 0 0 27 26 88 781 131 0 0 4 121 0 0 27 26 88 781 131 0 0 31 33 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0

MS Synchro 9 Report Page 17

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type	_			
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	26.0	28.0	22.5	22.5
Total Split (s)	38.0	29.0	27.0	26.0
Total Split (%)	32%	24%	23%	22%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	2.0	2.0	1.0	1.0
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft) Internal Link Dist (ft) Turn Boy Length (ft)				
Internal Link Dist (ft) Turn Bay Length (ft)				
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph)				
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn				
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn				
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn				
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn				

19: Lavaca St & E. 17th St

2022 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background Timing Plan: AM

Control Type: Actuated-Coordinated	
Maximum v/c Ratio: 0.43	
Intersection Signal Delay: 12.2	Intersection LOS: B
Intersection Capacity Utilization 39.4%	ICU Level of Service A
Analysis Period (min) 15	

20 -		20 -	ac -	27 -	
<u>≠</u> _{Ø4}		√ ¶ø2 (R)	₩ _{Ø12}	↑ ø10	
Splits and Phases:	19: Lavaca	St & E. 1/th St			

	•	-	•	•	•	•	4	†	~	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			1>			ተተኩ	7			
Traffic Volume (vph)	4	18	0	0	17	14	88	970	49	0	0	0
Future Volume (vph)	4	18	0	0	17	14	88	970	49	0	0	C
Confl. Peds. (#/hr)						11	58					
Confl. Bikes (#/hr)						2						
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Parking (#/hr)					0							
Adj. Flow (vph)	5	21	0	0	20	17	105	1155	58	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	26	0	0	37	0	0	1260	58	0	0	0
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		19.6			19.6			85.0	85.0			
Actuated g/C Ratio		0.16			0.16			0.71	0.71			
v/c Ratio		0.09			0.14			0.36	0.05			
Control Delay		24.2			14.9			2.6	0.3			
Queue Delay		0.0			0.0			0.1	0.0			
Total Delay		24.2			14.9			2.7	0.3			
LOS		С			В			A	A			
Approach Delay		24.2			14.9			2.6				
Approach LOS		С			В			A				
Queue Length 50th (ft)		11			8			32	0			
Queue Length 95th (ft)		m21			m25			45	m0			
Internal Link Dist (ft)		233			60			281			272	
Turn Bay Length (ft)									100			
Base Capacity (vph)		638			568			3527	1137			
Starvation Cap Reductn		0			0			998	0			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.04			0.07			0.50	0.05			
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120)											
Offset: 0 (0%), Referenced		NBTL, Sta	art of Gre	en								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.0	_, _,										

MS Synchro 9 Report Page 19

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type	2		10	12
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	28.0	32.0	21.0	20.0
Total Split (s)	42.0	32.0	21.0	25.0
Total Split (%)	35%	27%	18%	21%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)	O man			
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Spillback Cap Reductn Storage Cap Reductn				

Synchro 9 Report Page 21 MS

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background Timing Plan: AM

Natural Cycle: 105 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.36

Intersection Signal Delay: 3.3 Intersection Capacity Utilization 45.8% ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: A ICU Level of Service A

Splits and Phases: 28: Lavaca St & E. 16th St <u>≠</u> Ø4 ▼ Ø2 (R) <u>≠</u>

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	→	•	•	+	4	1	†	/	/	ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተ _ጉ		ሻ	ተተተ						441	7
Traffic Volume (vph)	0	1671	324	199	966	0	0	0	0	103	682	74
Future Volume (vph)	0	1671	324	199	966	0	0	0	0	103	682	74
Confl. Peds. (#/hr)			32	32						30		37
Confl. Bikes (#/hr)						1						20
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	0	1705	331	203	986	0	0	0	0	105	696	76
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	2036	0	203	986	0	0	0	0	0	801	76
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		13	6						4	
Permitted Phases				6						4		4
Detector Phase		2		1 3	6					4	4	4
Switch Phase		10.0			F 0					F 0	F 0	F 0
Minimum Initial (s)		10.0			5.0					5.0	5.0	5.0
Minimum Split (s)		25.0			25.0					32.0	32.0	32.0
Total Split (s)		56.0			84.0					36.0	36.0	36.0
Total Split (%)		46.7%			70.0%					30.0%	30.0%	30.0%
Yellow Time (s)		4.0			4.0					4.0	4.0	4.0
All-Red Time (s)		1.0			1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0						0.0	0.0
Total Lost Time (s)		5.0			5.0						5.0	5.0
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes			C-Max					Max	Max	Max
Recall Mode Act Effct Green (s)		C-Max 51.2		79.0	79.0					IVIAX	31.0	31.0
Actuated g/C Ratio		0.43		0.66	0.66						0.26	0.26
v/c Ratio		0.43		0.63	0.00						0.20	0.20
Control Delay		45.4		39.0	3.6						36.6	4.9
Queue Delay		0.5		12.6	0.1						0.4	0.0
Total Delay		45.9		51.6	3.7						37.0	4.9
LOS		45.9 D		31.0 D	3.7 A						37.0 D	4.9 A
Approach Delay		45.9		D	11.9						34.2	^
Approach LOS		43.7 D			В						C C	
Queue Length 50th (ft)		545		104	35						203	3
Queue Length 95th (ft)		#668		177	40						242	m21
Internal Link Dist (ft)		262		177	240			197			285	IIIZI
Turn Bay Length (ft)		202		50	240			177			200	100
Base Capacity (vph)		2118		327	3347						1297	458
Starvation Cap Reductn		0		100	933						0	0
Spillback Cap Reductn		11		0	755						144	0
Storage Cap Reductn		0		0	0						0	0
Reduced v/c Ratio		0.97		0.89	0.41						0.69	0.17
Intersection Summary												
Cycle Length: 120												

intersection Summary
Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 90

MS Synchro 9 Report Page 23 34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

Lane Group	Ø1	Ø3
LaneConfigurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases	,	3
Detector Phase		
Switch Phase		
Minimum Initial (s)	8.0	5.0
Minimum Split (s)	13.0	10.0
Total Split (s)	14.0	14.0
Total Split (%)	12%	12%
Yellow Time (s)	4.0	4.0
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn Reduced v/c Ratio		
Reduced WC Rallo		
Intersection Summary		

34: Guadalupe St & W. 15th St

2022 Background Timing Plan: AM

Page 25

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.96 Intersection Signal Delay: 33.5 Intersection Capacity Utilization 86.0% Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 34: Guadalupe St & W. 15th St

MS Synchro 9 Report

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

	۶	→	\rightarrow	•	←	•	4	†	<i>></i>	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ			ተተ _ጉ			414	7			
Traffic Volume (vph)	275	1425	0	0	1045	130	131	669	158	0	0	0
Future Volume (vph)	275	1425	0	0	1045	130	131	669	158	0	0	0
Confl. Peds. (#/hr)	37					37	17		47			
Confl. Bikes (#/hr)									11			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	293	1516	0	0	1112	138	139	712	168	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	293	1516	0	0	1250	0	0	851	168	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0	33.0			
Total Split (s)	19.0	79.0			60.0		41.0	41.0	41.0			
Total Split (%)	15.8%	65.8%			50.0%		34.2%	34.2%	34.2%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			6.0	6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	74.0	74.0			55.2			35.0	35.0			
Actuated g/C Ratio	0.62	0.62			0.46			0.29	0.29			
v/c Ratio	0.90	0.48			0.54			0.58	0.36			
Control Delay	58.5	2.6			10.9			38.2	22.9			
Queue Delay	4.3	0.4			0.1			0.0	0.0			
Total Delay	62.8	2.9			11.0			38.2	22.9			
LOS	Е	Α			В			D	С			
Approach Delay		12.6			11.0			35.6				
Approach LOS		В			В			D				
Queue Length 50th (ft)	160	35			71			205	61			
Queue Length 95th (ft)	m174	m48			80			251	125			
Internal Link Dist (ft)		240			335			116			281	
Turn Bay Length (ft)	50											
Base Capacity (vph)	330	3135			2295			1465	469			
Starvation Cap Reductn	14	915			141			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.93	0.68			0.58			0.58	0.36			
Intersection Cummany												

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

35: Lavaca St & W. 15th St

2022 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.90 Intersection Signal Delay: 17.9 Intersection Capacity Utilization 86.0% Intersection LOS: B ICU Level of Service E Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 35: Lavaca St & W. 15th St

MS Synchro 9 Report Page 27

36: Colorado St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

	٠	→	*	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑₽		ሻ	ተተኈ			4			4	7
Traffic Volume (vph)	188	1379	52	71	1108	139	1	21	21	5	19	20
Future Volume (vph)	188	1379	52	71	1108	139	1	21	21	5	19	20
Confl. Peds. (#/hr)	6		82	82		6	4		34	34		4
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	200	1467	55	76	1179	148	1	22	22	5	20	21
Shared Lane Traffic (%)												
Lane Group Flow (vph)	200	1522	0	76	1327	0	0	45	0	0	25	21
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	custom
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		6
Detector Phase	5	2		1	6		4	4		8	8	6
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	15.0
Minimum Split (s)	10.0	22.0		10.0	30.0		32.0	32.0		32.0	32.0	30.0
Total Split (s)	15.0	72.0		15.0	72.0		33.0	33.0		33.0	33.0	72.0
Total Split (%)	12.5%	60.0%		12.5%	60.0%		27.5%	27.5%		27.5%	27.5%	60.0%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	C-Max
Act Effct Green (s)	79.8	72.0		74.8	67.6			28.0			28.0	67.6
Actuated g/C Ratio	0.66	0.60		0.62	0.56			0.23			0.23	0.56
v/c Ratio	0.67	0.51		0.32	0.47			0.11			0.06	0.02
Control Delay	32.5	4.3		10.2	8.7			22.8			36.4	0.1
Queue Delay	0.0	0.1		0.0	0.1			0.0			0.0	0.0
Total Delay	32.5	4.4		10.2	8.7			22.8			36.4	0.1
LOS	С	Α		В	Α			С			D	Α
Approach Delay		7.7			8.8			22.8			19.8	
Approach LOS		Α			Α			С			В	
Queue Length 50th (ft)	52	72		9	156			14			15	0
Queue Length 95th (ft)	120	94		23	213			46			39	0
Internal Link Dist (ft)		335			362			155			114	
Turn Bay Length (ft)	90			90								100
Base Capacity (vph)	306	3004		280	2819			410			416	904
Starvation Cap Reductn	0	342		0	341			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.65	0.57		0.27	0.54			0.11			0.06	0.02

Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 75
Control Type: Actuated-Coordinated

36: Colorado St & W. 15th St

2022 Background Timing Plan: AM

Page 29

TIA for Texas Capitol Complex Master Plan 2018 Update

Maximum v/c Ratio: 0.67
Intersection Signal Delay: 8.6 Intersection LOS: A
Intersection Capacity Utilization 80.4% ICU Level of Service D
Analysis Period (min) 15

Splits and Phases: 36: Colorado St & W. 15th St

ÿ1	→ Ø2 (R)	√ 04
15 s	72 s	33 s
≯ ø5	₩ Ø6 (R)	↓ Ø8
15 s	77 s	33 c

MS Synchro 9 Report

37: N. Congress Ave & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

EBT ↑↑1> 1379 1379	28 28	WBL	WBT	NBL	NBR
1379			AAA		
1379					7
		18	1407	0	1
		18	1407	0	1
	30	30		13	20
					13
0.98	0.98	0.98	0.98	0.98	0.98
1407	29	18	1436	0	1
1436	0	18	1436	0	1
NA		pm+pt	NA		Perm
2		1	6		
		6			4
2		1	6		4
5.0		5.0	5.0		5.0
					33.0
					33.0
					27.5%
					4.0
					1.0
					0.0
					5.0
			3.0		5.0
			C-May		Max
					28.0
					0.23
					0.23
					0.0
					0.0
					0.0
		A			Α
					0
		m5			0
362			356	125	
					487
					0
0		0	0		0
0		0	0		0
0.46		0.06	0.51		0.00
20					
	-BT and	6·WBTI	Start of C	reen	
u to phase 2.t	םוום ום.	U.VVDTL,	Start of C	n CCII	
	2 5.0 25.0 72.0 60.0% 4.0 1.0 0.0 5.0 Lag Yes C-Max 77.5 0.65 0.44 3.4 0.0 3.4 A 3.4 A 36 45 362 3270 166 0 0 0.46	2 2 5.0 25.0 72.0 60.0% 4.0 1.0 0.0 5.0 Lag Yes C-Max 77.5 0.65 0.44 3.4 0.0 3.4 A 3.4 A 36 45 362 3270 166 0 0 0.46	2 1 6 2 1 5.0 5.0 25.0 10.0 72.0 15.0 60.0% 12.5% 4.0 4.0 1.0 0.0 5.0 5.0 Lag Lead Yes Yes C-Max None 77.5 82.0 0.65 0.68 0.44 0.07 3.4 5.2 A A 3.4 5.2 A D 3.4 5.2 A A 3.6 3 45 m5 362 100 3270 296 166 0 0 0 0 0 0 0 0.46 0.06	2 1 6 6 2 1 6 6 2 1 6 6 2 1 6 6 2 1 6 6 2 1 6 6 2 1 6 6 2 1 6 6 2 1 6 6 72.0 5.0 5.0 5.0 25.0 10.0 25.0 72.0 15.0 87.0 60.0% 12.5% 72.5% 4.0 4.0 4.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 5.0 5.0 5.0 5.0 5.0 Lag Lead Yes Yes C-Max None C-Max 77.5 82.0 82.0 0.65 0.68 0.68 0.44 0.07 0.41 3.4 5.2 7.0 0.0 0.0 0.1 3.4 5.2 7.1 A A A 3.4 7.0 A A A 3.4 5.2 7.1 A A A 3.5 3 165 45 m5 64 362 356 100 3270 296 3474 166 0 677 0	2 1 6 6 2 1 6 2 1 6 6 2 1 6 6 2 1 6 6 2 1 6 6 6 2 1 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

37: N. Congress Ave & W. 15th St

2022 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.44 Intersection Signal Delay: 5.2 Intersection Capacity Utilization 59.0% Intersection LOS: A ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 37: N. Congress Ave & W. 15th St

MS Synchro 9 Report Page 31

38: Brazos St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

	٠	→	•	•	←	•	4	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	٦	^		٦	ተተ _ጉ			ર્ન	7		4	
Traffic Volume (vph)	79	1110	48	27	1428	83	4	2	7	2	0	
Future Volume (vph)	79	1110	48	27	1428	83	4	2	7	2	0	
Confl. Peds. (#/hr)	1		10	10		1	10		4	4		10
Confl. Bikes (#/hr)						1						1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.9
Adj. Flow (vph)	81	1144	49	28	1472	86	4	2	7	2	0	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	81	1193	0	28	1558	0	0	6	7	0	6	
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4		4	8		
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0	32.0	32.0	32.0	
Total Split (s)	15.0	78.0		10.0	73.0		32.0	32.0	32.0	32.0	32.0	
Total Split (%)	12.5%	65.0%		8.3%	60.8%		26.7%	26.7%	26.7%	26.7%	26.7%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Act Effct Green (s)	103.0	105.0		99.6	100.6			10.0	10.0		10.0	
Actuated g/C Ratio	0.86	0.88		0.83	0.84			0.08	0.08		0.08	
v/c Ratio	0.27	0.27		0.07	0.37			0.05	0.03		0.03	
Control Delay	7.6	4.1		1.9	1.7			51.7	0.3		0.2	
Queue Delay	0.0	0.0		0.0	0.1			0.0	0.0		0.0	
Total Delay	7.6	4.2		1.9	1.7			51.7	0.3		0.2	
LOS	A	A		Α	Α			D	A		A	
Approach Delay		4.4			1.8			24.0			0.2	
Approach LOS		Α			A			C			A	
Queue Length 50th (ft)	11	107		1	16			4	0		0	
Queue Length 95th (ft)	41	117		3	126			18	0		0	
Internal Link Dist (ft)		356		-	297			199	-		273	
Turn Bay Length (ft)	100			40					50			
Base Capacity (vph)	341	4413		400	4223			346	434		412	
Starvation Cap Reductn	0	1085		0	799			0	0		0	
Spillback Cap Reductn	0	0		0	0			0	0		0	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.24	0.36		0.07	0.46			0.02	0.02		0.01	
Liber C.					20							

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 70

38: Brazos St & W. 15th St

2022 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

39: San Jacinto Blvd & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background Timing Plan: AM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.37 Intersection Signal Delay: 3.0 Intersection Capacity Utilization 58.7% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service B

Splits and Phases: 38: Brazos St & W. 15th St

	•	→	*	•	←	4	4	†	1	>	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተ _ጉ		7	ተተተ						ተተቡ	7
Traffic Volume (vph)	0	843	350	160	1515	0	0	0	0	92	179	44
Future Volume (vph)	0	843	350	160	1515	0	0	0	0	92	179	4
Confl. Peds. (#/hr)			22	22						10		-
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	0	852	354	162	1530	0	0	0	0	93	181	44
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1206	0	162	1530	0	0	0	0	0	274	44
Turn Type		NA		pm+pt	NA					Perm	NA	Pern
Protected Phases		2		1	6						4	
Permitted Phases				6						4		
Detector Phase		2		1	6					4	4	1
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					7.0	7.0	7.0
Minimum Split (s)		28.0		8.0	28.0					32.0	32.0	32.0
Total Split (s)		68.0		20.0	88.0					32.0	32.0	32.0
Total Split (%)		56.7%		16.7%	73.3%					26.7%	26.7%	26.79
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0						0.0	0.0
Total Lost Time (s)		5.0		5.0	5.0						5.0	5.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					None	None	None
Act Effct Green (s)		85.1		97.9	97.9						12.1	12.1
Actuated g/C Ratio		0.71		0.82	0.82						0.10	0.10
v/c Ratio		0.35		0.42	0.37						0.55	0.2
Control Delay		2.4		7.4	3.8						55.2	7.8
Queue Delay		0.1		0.0	0.3						0.0	0.0
Total Delay		2.6		7.4	4.1						55.2	7.8
LOS		Α		Α	Α						E	F
Approach Delay		2.6			4.4						48.6	
Approach LOS		Α			Α						D	
Queue Length 50th (ft)		0		24	94						75	(
Queue Length 95th (ft)		0		m30	102						103	2
Internal Link Dist (ft)		297			282			125			272	
Turn Bay Length (ft)				70								50
Base Capacity (vph)		3438		468	4147						1119	398
Starvation Cap Reductn		979		0	1660						0	(
Spillback Cap Reductn		0		0	0						0	(
Storage Cap Reductn		0		0	0						0	(
Reduced v/c Ratio		0.49		0.35	0.62						0.24	0.11
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced t	o phase 2:	EBT and	6:WBTL,	Start of	Green							
Natural Cycle: 70												

Natural Cycle: 70 Control Type: Actuated-Coordinated

39: San Jacinto Blvd & W. 15th St

2022 Background

TIA for Texas Capitol Complex Master Plan 2018 Update

Timing Plan: AM

Maximum v/c Ratio: 0.55
Intersection Signal Delay: 8.1
Intersection Capacity Utilization 88.8%
ICU Level of Service E
Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

MS Synchro 9 Report
Page 35

40: Trinity St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: AM

NBT Lane Group WBT Lane Configurations ተተተ ተተጉ **4↑** 167 Traffic Volume (vph) 220 766 1625 644 12 Future Volume (vph) 220 766 0 0 1625 644 59 167 12 0 0 Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 Adj. Flow (vph) 227 790 0 0 1675 664 61 172 12 0 Shared Lane Traffic (%) Lane Group Flow (vph) 227 790 0 0 2339 0 0 233 12 0 0 Turn Type pm+pt NA NA NA Perm Perm Protected Phases 2 6 4 Permitted Phases Detector Phase 2 5 6 Switch Phase Minimum Initial (s) 1.0 10.0 1.0 10.0 10.0 10.0 Minimum Split (s) 5.5 28.0 5.5 28.0 28.0 28.0 Total Split (s) 20.0 92.0 72.0 28.0 28.0 28.0 Total Split (%) 16.7% 76.7% 60.0% 23.3% 23.3% 23.3% Yellow Time (s) 3.5 4.0 3.5 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.5 5.0 4.5 5.0 5.0 Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None C-Max C-Max Max Max Max Act Effct Green (s) 87.5 87.0 69.0 23.0 23.0 Actuated g/C Ratio 0.73 0.72 0.58 0.19 0.19 0.85 0.82 0.35 0.03 v/c Ratio 0.21 Control Delay 63.3 3.7 43.7 8.8 0.2 Queue Delay 0.0 0.1 0.1 0.0 0.0

8.9

8.9

Α

131

657

2847

54

0.84

0

m160

43.7

41.6

D

D

83

123

149

668

0

0

0.35 0.03

0.2

0

344

621

Reduced v/c Ratio

Total Delay

Approach Delay

Approach LOS

Queue Length 50th (ft)

Queue Length 95th (ft)

Starvation Cap Reductn

Spillback Cap Reductn

Storage Cap Reductn

Internal Link Dist (ft)

Turn Bay Length (ft) Base Capacity (vph)

LOS

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green

63.3

121

100

289 3686

0 1652

0

0.79 0.39

#227

3.8

17.1

36

42

282

Natural Cycle: 90

40: Trinity St & W. 15th St

2022 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.85
Intersection Signal Delay: 13.4 Intersection Capacity Utilization 88.8% ICU L
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: B
ICU Level of Service E

Splits and Phases: 40: Trinity St & W. 15th St

Synchro 9 Report Page 37 MS

TIA for Texas Capitol Complex Master Plan 2018 Update

11: Colorado St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background Timing Plan: AM

ntersection	
ntersection Delay, s/veh	10.1
ntersection LOS	В

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	4	201	35	0	21	31	5	0	15	20	45
Future Vol, veh/h	0	4	201	35	0	21	31	5	0	15	20	45
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	5	228	40	0	24	35	6	0	17	23	51
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		10.6				8.8				8.5		
HCM LOS		В				Α				Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	19%	2%	37%	2%	
Vol Thru, %	25%	84%	54%	91%	
Vol Right, %	56%	15%	9%	7%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	80	240	57	231	
LT Vol	15	4	21	4	
Through Vol	20	201	31	211	
RT Vol	45	35	5	16	
Lane Flow Rate	91	273	65	262	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.121	0.362	0.093	0.352	
Departure Headway (Hd)	4.797	4.785	5.163	4.832	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	740	747	687	740	
Service Time	2.874	2.847	3.244	2.893	
HCM Lane V/C Ratio	0.123	0.365	0.095	0.354	
HCM Control Delay	8.5	10.6	8.8	10.5	
HCM Lane LOS	Α	В	Α	В	
HCM 95th-tile Q	0.4	1.7	0.3	1.6	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
moroccion 200				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	4	211	16
Future Vol, veh/h	0	4	211	16
Peak Hour Factor	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	5	240	18
Number of Lanes	0	0	1	0
Number of Lanes	U	U		U
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		10.5		
HCM LOS		В		

 Intersection

 Intersection Delay, s/veh
 8.6

 Intersection LOS
 A

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ર્ન				f)				^	
Traffic Vol, veh/h	0	0	252	0	0	0	55	0	0	0	0	0
Future Vol, veh/h	0	0	252	0	0	0	55	0	0	0	0	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	290	0	0	0	63	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach			EB				WB				NB	
Opposing Approach			WB				EB				SB	
Opposing Lanes			1				1				1	
Conflicting Approach Left			SB				NB				EB	
Conflicting Lanes Left			1				1				1	
Conflicting Approach Right			NB				SB				WB	
Conflicting Lanes Right			1				1				1	
HCM Control Delay			8.9				7.6				0	
HCM LOS			Α				Α				-	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	0%	
Vol Right, %	0%	0%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	252	55	8	
LT Vol	0	0	0	0	
Through Vol	0	252	55	0	
RT Vol	0	0	0	8	
Lane Flow Rate	0	290	63	9	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0.322	0.073	0.01	
Departure Headway (Hd)	4.702	3.997	4.165	4.086	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	901	853	881	
Service Time	2.702	2.015	2.223	2.086	
HCM Lane V/C Ratio	0	0.322	0.074	0.01	
HCM Control Delay	7.7	8.9	7.6	7.1	
HCM Lane LOS	N	Α	Α	Α	
HCM 95th-tile Q	0	1.4	0.2	0	

MS Synchro 9 Report Page 3

12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background Timing Plan: AM

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
	300	JDL	301	JUK
Lane Configurations				ŗ
Traffic Vol, veh/h	0	0	0	8
Future Vol, veh/h	0	0	0	8
Peak Hour Factor	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	0	9
Number of Lanes	0	0	0	1
Approach				SB
				NB
Opposing Approach				IND
Opposing Lanes				I
Conflicting Approach Left				WB
Conflicting Lanes Left				1
Conflicting Approach Right				EB
Conflicting Lanes Right				1
HCM Control Delay				7.1
HCM LOS				Α

2022 Background

122	Dackgroun	u
	Timing Plan: A	M

Intersection	
Intersection Delay, s/veh	12.7
Intersection LOS	В

Movement	EDU	EDL	EDI	EDK	WDU	WDL	WDI	WDR	INDU	INDL	INDI	NDK
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	118	80	7	0	17	116	106	0	20	0	0
Future Vol, veh/h	0	118	80	7	0	17	116	106	0	20	0	0
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	149	101	9	0	22	147	134	0	25	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		12.2				12.1				9.6		
HCM LOS		В				В				Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	100%	58%	7%	5%	
Vol Thru, %	0%	39%	49%	86%	
Vol Right, %	0%	3%	44%	9%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	20	205	239	266	
LT Vol	20	118	17	14	
Through Vol	0	80	116	228	
RT Vol	0	7	106	24	
Lane Flow Rate	25	259	303	337	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.044	0.398	0.432	0.507	
Departure Headway (Hd)	6.276	5.528	5.141	5.421	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	569	651	699	663	
Service Time	4.336	3.568	3.179	3.458	
HCM Lane V/C Ratio	0.044	0.398	0.433	0.508	
HCM Control Delay	9.6	12.2	12.1	13.9	
HCM Lane LOS	Α	В	В	В	
HCM 95th-tile Q	0.1	1.9	2.2	2.9	

-				
Intersection				
Intersection Delay, s/veh				
Intersection LOS				
moreouten 200				
	0011	0.01	ODT	000
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	14	228	24
Future Vol, veh/h	0	14	228	24
Peak Hour Factor	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	18	289	30
Number of Lanes	0	0	1	0
0		CD		
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		13.9		
HCM LOS		В		

14: Brazos St & W. 18th St

TIA for Texas Capitol Complex Master Plan 2018 Update

ntersection	
ntersection Delay, s/veh	14.3
ntersection LOS	В

iviovement	FRO	FRL	FRI	FRK	WRU	WBL	WRI	WBR	NRO	NRL	MRI	MRK
Lane Configurations			ĵ.				ર્ન					
Traffic Vol, veh/h	0	0	13	97	0	72	172	0	0	0	0	0
Future Vol, veh/h	0	0	13	97	0	72	172	0	0	0	0	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	14	103	0	77	183	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	0	0
Approach			EB			WB						
Opposing Approach			WB			EB						
Opposing Lanes			1			1						
Conflicting Approach Left			SB									
Conflicting Lanes Left			3			0						
Conflicting Approach Right						SB						
Conflicting Lanes Right			0			3						
HCM Control Delay			10.5			15.4						
HCM LOS			В			С						

Lane	EBLn1	WBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	0%	30%	0%	0%	0%
Vol Thru, %	12%	70%	100%	100%	0%
Vol Right, %	88%	0%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	110	244	323	323	68
LT Vol	0	72	0	0	0
Through Vol	13	172	323	323	0
RT Vol	97	0	0	0	68
Lane Flow Rate	117	260	343	343	72
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.2	0.48	0.55	0.55	0.067
Departure Headway (Hd)	6.166	6.66	5.775	5.775	3.316
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	582	543	624	624	1078
Service Time	3.908	4.395	3.503	3.503	1.043
HCM Lane V/C Ratio	0.201	0.479	0.55	0.55	0.067
HCM Control Delay	10.5	15.4	15.4	15.4	6.3
HCM Lane LOS	В	С	С	С	Α
HCM 95th-tile Q	0.7	2.6	3.3	3.3	0.2

ITICISCUIOTI					
Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Lane Configurations			414	7	
Traffic Vol, veh/h	0	0	645	68	
Future Vol, veh/h	0	0	645	68	
Peak Hour Factor	0.94	0.94	0.94	0.94	
Heavy Vehicles, %	2	2	2	2	
Mvmt Flow	0	0	686	72	
Number of Lanes	0	0	2	1	
Approach			SB		
Opposing Approach					
Opposing Lanes			0		
Conflicting Approach Left			WB		
Conflicting Lanes Left			1		
Conflicting Approach Right			EB		
Conflicting Lanes Right			1		
HCM Control Delay			14.5		
HCM LOS			В		

16: San Jacinto Blvd & W. 18th St

Intersection

TIA for Texas Capitol Complex Master Plan 2018 Update

20: Colorado St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background Timing Plan: AM

Intersection	
Intersection Delay, s/veh	10.2
Intersection LOS	В

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	31	185	35	0	0	25	0	0	15	41	0
Future Vol, veh/h	0	31	185	35	0	0	25	0	0	15	41	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	35	210	40	0	0	28	0	0	17	47	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB					WB			NB		
Opposing Approach		WB					EB			SB		
Opposing Lanes		1					1			1		
Conflicting Approach Left		SB					NB			EB		
Conflicting Lanes Left		1					1			1		
Conflicting Approach Right		NB					SB			WB		
Conflicting Lanes Right		1					1			1		
HCM Control Delay		10.6					8.4			8.7		
HCM LOS		В					Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	27%	12%	0%	0%	
Vol Thru, %	73%	74%	100%	88%	
Vol Right, %	0%	14%	0%	12%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	56	251	25	238	
LT Vol	15	31	0	0	
Through Vol	41	185	25	210	
RT Vol	0	35	0	28	
Lane Flow Rate	64	285	28	270	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.09	0.374	0.04	0.354	
Departure Headway (Hd)	5.088	4.716	5.105	4.708	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	699	759	696	760	
Service Time	3.153	2.765	3.178	2.757	
HCM Lane V/C Ratio	0.092	0.375	0.04	0.355	
HCM Control Delay	8.7	10.6	8.4	10.3	
HCM Lane LOS	Α	В	Α	В	
HCM 95th-tile Q	0.3	1.7	0.1	1.6	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	0	210	28
Future Vol, veh/h	0	0	210	28
Peak Hour Factor	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	239	32
Number of Lanes	0	0	1	0
Approach			SB	
Opposing Approach			NB	
Opposing Lanes			1	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			10.3	
HCM LOS			В	

ntersection	
ntersection Delay, s/veh	8.4
tersection LOS	Α

EBU	EBL	EBT	WBU	WBT	WBR	SBU	SBL	SBR
		ર્ન		4			W	
0	0	28	0	206	16	0	38	0
0	0	28	0	206	16	0	38	0
0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
2	2	2	2	2	2	2	2	2
0	0	32	0	234	18	0	43	0
0	0	1	0	1	0	0	1	0
		EB		WB			SB	
		WB		EB				
		1		1			0	
		SB					WB	
		1		0			1	
				SB			EB	
		0		1			1	
		7.5		8.6			8	
		Α		A			Α	
	0 0 0.88 2	0 0 0 0 0.88 0.88 2 2 0 0	0 0 28 0 0 0 28 0.88 0.88 0.88 2 2 2 2 0 0 32 0 0 1 EB WB 1 SB 1	0 0 28 0 0 0 28 0 0.88 0.88 0.88 0.88 2 2 2 2 2 0 0 32 0 0 0 1 0 EB WB 1 SB 1 0 7.5	0 0 28 0 206 0 0 28 0 206 0.88 0.88 0.88 0.88 2 2 2 2 2 2 2 2 0 0 32 0 234 0 0 1 0 1 EB WB WB SB 1 1 1 SB 1 0 SB 0 1 7.5 8.6	0 0 28 0 206 16 0 0 0 28 0 206 16 0.88 0.88 0.88 0.88 0.88 2 2 2 2 2 2 2 2 2 0 0 32 0 234 18 0 0 1 0 1 0 1 0 EB WB WB SB 1 1 1 SB 1 0 5 SB 1 0 5 SB 1 0 5 SB 1 7.5 8.6	Color	Color

Lane	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	100%	
Vol Thru, %	100%	93%	0%	
Vol Right, %	0%	7%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	28	222	38	
LT Vol	0	0	38	
Through Vol	28	206	0	
RT Vol	0	16	0	
Lane Flow Rate	32	252	43	
Geometry Grp	1	1	1	
Degree of Util (X)	0.037	0.28	0.057	
Departure Headway (Hd)	4.199	3.989	4.747	
Convergence, Y/N	Yes	Yes	Yes	
Cap	840	896	759	
Service Time	2.286	2.035	2.747	
HCM Lane V/C Ratio	0.038	0.281	0.057	
HCM Control Delay	7.5	8.6	8	
HCM Lane LOS	Α	Α	Α	
HCM 95th-tile Q	0.1	1.2	0.2	

MS Synchro 9 Report Page 11

EBT EBR

Free Free

0

87 87

1266 107

Major1

0 0

NBLn1 EBT EBR WBL WBT

0.063

15

С

0.2

- - 494

- - 0.34

- - 16

- - C - - 1.5

- None

2

93

†1

1101 93

WBL WBT

† †† 146 776

146 776

Free Free

40

87 87

2 2

Major2

1373

4.14

2.22

496 -

494 -

2.5

168 892

1 0

- None

0

0

NBL

0

0

0

0

Minor1

2102

1320

782

6.84

5.84

5.84

3.52

44

214

29

29

214

271

15

Stop

21

21

5

Stop

None

87

24

692

6.94

3.32

386

384

1.2

Intersection
Int Delay, s/veh

Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, # Grade, %

Traffic Vol, veh/h

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Mymt Flow

Major/Minor

Critical Hdwy

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2 Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Approach
HCM Control Delay, s

Minor Lane/Major Mvmt

Capacity (veh/h) HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

HCM LOS

Follow-up Hdwy

2022 Background

Timing Plan: AM

9: Guadalupe St & W. 18th St
TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection												
Int Delay, s/veh 2	2.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		†	7		ર્ન						र्नी	
Traffic Vol, veh/h	0	13	47	60	10	0	0	0	0	75	1093	1
Future Vol, veh/h	0	13	47	60	10	0	0	0	0	75	1093	1
Conflicting Peds, #/hr	0	0	0	13	0	0	0	0	0	0	0	3
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Fre
RT Channelized	-	-	None		-	None	-	-	None	-	-	Non
Storage Length	-	-	0	-	-	-	-	-	-	-	-	
Veh in Median Storage, #	-	0	-	-	0	-	-	-	-	-	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	14	49	63	11	0	0	0	0	79	1151	10
Major/Minor	Minor2			Minor1						Major2		
Conflicting Flow All		1355	635	753	1364					0	0	(
Stage 1		1355	-	0	0					-	-	
Stage 2		0	-	753	1364	-						
Critical Hdwy		6.54	6.94	7.54	6.54	-				4.14		
Critical Hdwy Stg 1		5.54	-	7.0		-				-		
Critical Hdwy Stg 2		-	-	6.54	5.54	-				_		
Follow-up Hdwy		4.02	3.32	3.52		-				2.22		
Pot Cap-1 Maneuver	0	148	421	298	146	0						
Stage 1	0	216		270		0						
Stage 2	0		-	368	214	0				-		
Platoon blocked, %	-					-						
Mov Cap-1 Maneuver		143	406	243	141	-				_		
Mov Cap-2 Maneuver		143	-	243	141							
Stage 1		208	-		-	-				_		
Stage 2		- 200	-	302	206	-				-		
olago 2				002	200							
Approach	EB			WB						SB		
HCM Control Delay, s	18.9			29.4								
HCM LOS	С			D								
Minor Long/Major Maret	EDI =1	EDI 50	MDI n1	CDI CDT	CDD							
Minor Lane/Major Mvmt	EBLn1			SBL SBT	SBR							
Capacity (veh/h)	143	406	220		-							
HCM Lane V/C Ratio	0.096	0.122			-							
HCM Control Delay (s)	32.8	15.1	29.4		-							
HCM Lane LOS	D	С	D		-							
HCM 95th %tile Q(veh)	0.3	0.4	1.4		-							

MS	Synchro 9 Report
	Page 1

MS Synchro 9 Report
Page 2

Int Delay, s/veh	4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			1			ተ ተጉ				
Traffic Vol, veh/h	4	69	0	0	34	19	88	541	172	0	0	(
Future Vol. veh/h	4	69	0	0	34	19	88	541	172	0	0	C
Conflicting Peds, #/hr	0	0	0	0	0	29	17	0	0	0	0	C
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-			-	0		-	-		
Veh in Median Storage, #		0	-		0	-	-	0	-	-	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	4	73	0	0	36	20	94	576	183	0	0	0
Major/Minor	Minor2			Minor1			Major1					
Conflicting Flow All	482	963	-	-	871	408	17	0	0			
Stage 1	17	17	-	-	854	-	-	-	-			
Stage 2	465	946	-		17	-	-		-			
Critical Hdwy	6.44	6.54	-		6.54	7.14	5.34	-	-			
Critical Hdwy Stg 1	-	-	-	-	5.54	-	-	-	-			
Critical Hdwy Stg 2	6.74	5.54	-		-	-	-	-	-			
Follow-up Hdwy	3.82	4.02		-	4.02	3.92	3.12		-			
Pot Cap-1 Maneuver	508	254	0	0	288	506	1133	-	-			
Stage 1	-	-	0	0	373	-	-		-			
Stage 2	500	338	0	0	-	-	-	-	-			
Platoon blocked, %								-	-			
Mov Cap-1 Maneuver	402	229	-		260	506	1133	-	-			
Mov Cap-2 Maneuver	402	229	-	-	260	-	-	-	-			
Stage 1	-	-	-	-	342	-	-	-	-			
Stage 2	394	310	-	-	-	-	-	-	-			
Approach	EB			WB			NB					
HCM Control Delay, s	27.7			18.9			0.9					
HCM LOS	D			С								
Minor Lane/Major Mvmt	NBL	NBT	NBR E	3Ln1WBLn1								
Capacity (veh/h)	1133	-	-	235 315								
HCM Lane V/C Ratio	0.083	-	-	0.33 0.179								
HCM Control Delay (s)	8.5	-	-	27.7 18.9								
HCM Lane LOS	Α	-	-	D C								
HCM 95th %tile Q(veh)	0.3			1.4 0.6								

Interception									
Intersection Int Delay, s/veh	2.9								
		EDT				WDT	WBR	CDI	CDD
Movement	EBL	EBT				WBT	WBR	SBL	SBR
Lane Configurations	400	4				ĵ»	100	Y	47
Traffic Vol, veh/h	123	129				57	103	14	17
Future Vol, veh/h	123	129				57	103	14	17
Conflicting Peds, #/hr	0	0				0	_ 0	0	0
Sign Control	Free	Free				Free	Free	Stop	Stop
RT Channelized	-	None				-	None	-	None
Storage Length	-	-				-	-	0	-
Veh in Median Storage, #		0				0	-	0	-
Grade, %	-	0				0	-	0	-
Peak Hour Factor	92	92				92	92	92	92
Heavy Vehicles, %	2	2				2	2	2	2
Mvmt Flow	134	140				62	112	15	18
Major/Minor	Major1				N	lajor2		Minor2	
Conflicting Flow All	174	0				-	0	526	118
Stage 1		-				-	-	118	-
Stage 2		-					-	408	
Critical Hdwy	4.12	-				-	-	6.42	6.22
Critical Hdwy Stg 1								5.42	
Critical Hdwy Stg 2		-					-	5.42	-
Follow-up Hdwy	2.218							3.518	3.318
Pot Cap-1 Maneuver	1403							512	934
Stage 1	1703							907	754
Stage 2						-		671	
Platoon blocked, %								0/1	-
Mov Cap-1 Maneuver	1403							459	934
Mov Cap-1 Maneuver	1403							459	734
Stage 1						_		907	
						-		601	-
Stage 2						-		601	
	F.0					ME		65	
Approach	EB					WB		SB	
HCM Control Delay, s	3.8					0		11	
HCM LOS								В	
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR S					
Capacity (veh/h)	1403	-	-	-	637				
HCM Lane V/C Ratio	0.095	-	-		0.053				
HCM Control Delay (s)	7.8	0	-	-	11				
HCM Lane LOS	Α	Α	-	-	В				
HCM 95th %tile Q(veh)	0.3	-	-	-	0.2				
HCM Lane LOS HCM 95th %tile Q(veh)					_				

Intersection						
Int Delay, s/veh	3.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	ĵ.	
Traffic Vol, veh/h	35	21	154	70	262	257
Future Vol, veh/h	35	21	154	70	262	257
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	. 0	-		0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	38	23	167	76	285	279
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	835	424	564	0		0
Stage 1	424	-	-	-		-
Stage 2	411	-	-	-		-
Critical Hdwy	7.12	6.22	4.12	-		-
Critical Hdwy Stg 1	6.12	-		-		-
Critical Hdwy Stg 2	6.12	-	-	-		-
Follow-up Hdwy	3.518	3.318	2.218	-		-
Pot Cap-1 Maneuver	287	630	1008	-		-
Stage 1	608	-	-	-	-	-
Stage 2	618		-	-		-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	249	630	1008		-	-
Mov Cap-2 Maneuver	249	-	-	-	-	-
Stage 1	503	-	-		-	-
Stage 2	511		-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	18.8		6.4		0	
HCM LOS	С					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1008	- 322				
HCM Lane V/C Ratio	0.166	- 0.189				
HCM Control Delay (s)	9.3	0.107				
HCM Lane LOS	7.5 A	A C				
HCM 95th %tile Q(veh)	0.6	- 0.7				
HOW FOUR FOUNC Q(VEII)	0.0	- 0.7				

Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, %	5.5 EBL 27 27 0 Stop	EBT 0 0 0	EBR 0	W	3L \	WBT	WBR	NBL	NBT	NBR	CDI	ODT	
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, %	27 27 0	4 0 0		W	3L \	WBT	WBR	NRI	MDT	NIDD	CDI	007	
Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, %	27 0	0	0							INDK	SBL	SBT	SBF
Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, %	27 0	0	0			٦		ሻ	^				
Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, %	0				0	0	0	344	223	0	0	0	(
Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, %	-	0	0		0	0	0	344	223	0	0	0	(
RT Channelized Storage Length Veh in Median Storage, # Grade, %	Stop	_	5		0	0	0	6	0	0	0	0	C
Storage Length Veh in Median Storage, # Grade, %		Stop	Stop	Fr	ee	Free	Free	Free	Free	Free	Stop	Stop	Stop
Veh in Median Storage, # Grade, %	-	-	None		-	-	None	-	-	None	-	-	None
Grade, %	-	-	-		-	-	-	115	-	-	-	-	
	-	0	-		-	0	-	-	0	-	-	-	
	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	88	88	88		88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mvmt Flow	31	0	0		0	0	0	391	253	0	0	0	0
Major/Minor	Minor2			Majo	r2			Major1					
Conflicting Flow All	890	1042	-		-	-	0	7	0	-			
Stage 1	7	7	-		-	-	-	-	-	-			
Stage 2	883	1035	-		-	-	-	-	-	-			
Critical Hdwy	6.08	6.53	-		-	-	-	4.13	-	-			
Critical Hdwy Stg 1	5.43	5.53	-		-	-	-	-	-	-			
Critical Hdwy Stg 2	6.03	5.53	-		-	-	-	-	-	-			
Follow-up Hdwy	3.669	4.019	-		-	-	-	2.219	-	-			
Pot Cap-1 Maneuver	332	229	0		0	-	-	1613	-	0			
Stage 1	974	890	0		0	-	-	-	-	0			
Stage 2	339	308	0		0	-	-	-	-	0			
Platoon blocked, %						-	-		-				
Mov Cap-1 Maneuver	249	0	-		-	-	-	1613	-	-			
Mov Cap-2 Maneuver	249	0	-		-	-	-	-	-	-			
Stage 1	968	0	-		-	-	-	-	-	-			
Stage 2	255	0	-		-	-	-		-	-			
Approach	EB			V	/B			NB					
HCM Control Delay, s	21.5				0			4.8					
HCM LOS	С												
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	WBT WE	BR_								
Capacity (veh/h)	1613	-	249	-	-								
HCM Lane V/C Ratio	0.242	-	0.123	-	-								
HCM Control Delay (s)	7.9	-	21.5	-	-								
HCM Lane LOS	Α	-	С	-	-								
HCM 95th %tile Q(veh)	1	-	0.4	-	-								

2022 Background
Timing Plan: AM

Int Delay, s/veh Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow Major/Minor Conflicting Flow All	EBL 0 0 0 Stop 92 2 0 Minor2	EBT 20 20 0 Stop - 0 0 92 22 22	59 59 22 Stop None 40 - - 92 2 64	WBL 71 71 0 Slop 92 2 77 Minor1	WBT 121 121 0 Stop 0 0 92 2 132	0 0 0 Stop None 92 2 0 0	NBL 0 0 Free 92 2 0	- - 0 92 2	0 0 0 Free None - - - 92 2	SBL 47 47 44 Free 92 2 51	SBT 549 549 0 Free 0 0 92 2 597	103 103 0 Free None 50 - - 92 2 112
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow Major/Minor	0 0 Stop - - - 92 2 0	20 20 0 Stop - 0 0 92 2 22	59 59 22 Stop None 40 - - 92 2 64	71 71 0 Stop - - - - 92 2 77	121 121 0 Stop - 0 0 92 2 132	0 0 0 Stop None - - - 92 2	0 0 0 Free - - - - - 92	0 0 0 Free - - 0 92 2	0 0 0 Free None - - - 92 2	47 47 4 Free - - - - 92	549 549 0 Free - 0 0 92 2	103 103 0 Free None 50 -
Traffic Vol, veh/h Future Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow Major/Minor	0 0 Stop - - - - 92 2 0	20 20 0 Stop - 0 0 92 2 22	59 59 22 Stop None 40 - - 92 2 64	71 0 Stop - - - - 92 2 77	121 121 0 Stop 0 0 92 2 132	0 0 Stop None - - - 92 2	0 0 Free - - - - 92 2	0 0 Free - - 0 92 2	0 0 Free None - - - - 92 2	47 4 Free - - - - 92 2	549 549 0 Free - 0 0 92 2	103 103 0 Free None 50 - - 92 2
Future Vol, veh/h Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow Major/Minor	0 0 Stop - - - - 92 2 0	20 0 Stop 0 0 92 2 22	59 22 Stop None 40 - - 92 2 64	71 0 Stop - - - - 92 2 77	121 0 Stop - 0 0 92 2 132	0 0 Stop None - - - 92 2	0 0 Free - - - - 92 2	0 0 Free - - 0 92 2	0 0 Free None - - - - 92 2	47 4 Free - - - - 92 2	549 0 Free - 0 0 92 2	103 0 Free None 50 - - 92 2
Conflicting Peds, #/hr Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow Major/Minor	0 Stop - - - - 92 2 0	0 Stop - 0 0 92 2 22	22 Stop None 40 - - 92 2 64	0 Stop - - - - - 92 2 77 Minor1	0 Stop - 0 0 92 2 132	O Stop None - - - 92 2	92 2	0 Free - - 0 92 2	0 Free None - - - 92 2	4 Free - - - - - 92 2	0 Free - 0 0 92 2	0 Free None 50 - - 92 2
Sign Control RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow Major/Minor	Stop 92 2 0	Stop 0 0 92 2 22	Stop None 40 - - 92 2 64	Stop	Stop - 0 0 92 2 132	Stop None - - - 92 2	Free 92 2	Free 0 92 2	Free None - - - 92 2	Free 92 2	Free - 0 0 92 2	Free None 50 - 92 2
RT Channelized Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow Major/Minor	92 2 0	- 0 0 92 2 22 22	None 40 - - 92 2 64	92 2 77 Minor1	0 0 92 2 132	None 92 2	- - - 92 2	- - 0 92 2	None - - - 92 2	- - - - 92 2	0 0 92 2	None 50 - - 92 2
Storage Length Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mymt Flow Major/Minor	92 2 0 Minor2	0 0 92 2 22	40 - - 92 2 64	92 2 77 Minor1	0 0 92 2 132	- - - 92 2	92 2	- 0 92 2	92	92 2	0 0 92 2	50 - - 92 2
Veh in Median Storage, # Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor	92 2 0 Minor2	0 0 92 2 22	92 2 64	92 2 77 Minor1	0 0 92 2 132	- 92 2	92 2	- 0 92 2	92 2	92 2	0 0 92 2	92 2
Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor	92 2 0 Minor2	0 92 2 22 703	92 2 64	92 2 77 Minor1	0 92 2 132	- 92 2	92 2	0 92 2	92 2	92 2	92 2	92 2
Peak Hour Factor Heavy Vehicles, % Mvmt Flow Major/Minor	92 2 0 Minor2	92 2 22 703	92 2 64	92 2 77 Minor1	92 2 132	92 2	92 2	92 2	92 2	92 2	92 2	92 2
Heavy Vehicles, % Mvmt Flow Major/Minor	2 0 Minor2	2 22 703	2 64	2 77 Minor1	2 132	2	2	2	2	2	2	2
Mvmť Flow Major/Minor	0 Minor2	703	64	77 Minor1	132							
Major/Minor	Minor2	703		Minor1		0	0	0	0	51	597	112
			320		70-							
			320		70-					Major2		
	-		020		703	-				4	0	0
Stage 1		699	_	4	4						-	_
Stage 2		4		433	699							
Critical Hdwy		6.54	6.94	7.54	6.54					4.14		
Critical Hdwy Stg 1		5.54	0.74	7.54	0.54					7.17		
Critical Hdwy Stg 2		0.01	-	6.54	5.54							
Follow-up Hdwy		4.02	3.32	3.52	4.02					2.22		
Pot Cap-1 Maneuver	0	360	676	503	360	0				1616	_	
Stage 1	0	440	- 070	-	300	0				1010		
Stage 2	0	110		571	440	0					_	
Platoon blocked. %	U			371	110	U						
Mov Cap-1 Maneuver		340	676	414	340					1616		
Mov Cap-1 Maneuver		340	-	414	340					1010		
Stage 1		417		717	340							
Stage 2	-	-	-	464	417	-				-		
Approach	EB			WB						SB		
HCM Control Delay, s	12.3			27.4						0.6		
HCM LOS	В			D								
Minor Lane/Major Mvmt	EBLn1 E	BI n2V	VBI n1	SBL SBT	SBR							
Capacity (veh/h)	340	676	364	1616 -	JDIK							
HCM Lane V/C Ratio	0.064											
HCM Control Delay (s)	16.3	10.9	27.4	7.3 0.1								
HCM Lane LOS	10.3 C	10.9 B	27.4 D	7.3 U.1								
HCM 95th %tile Q(veh)	0.2	0.3	3.4	0.1 -								

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ች			ተተቡ		
Traffic Vol, veh/h	35	0	103	534	0	0
Future Vol, veh/h	35	0	103	534	0	0
Conflicting Peds, #/hr	3	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0	-	-	-		-
Veh in Median Storage, #	0	-	-	0		-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	40	0	118	614	0	0
Major/Minor	Minor2		Major1			
Conflicting Flow All	485	-	0	0		
Stage 1	0	-	-	-		
Stage 2	485	-	-	-		
Critical Hdwy	5.74	-	5.34	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	6.04	-	-	-		
Follow-up Hdwy	3.82	-	3.12	-		
Pot Cap-1 Maneuver	556	0	-	-		
Stage 1	-	0	-	-		
Stage 2	534	0	-	-		
Platoon blocked, %				-		
Mov Cap-1 Maneuver	556	-		-		
Mov Cap-2 Maneuver	556	-		-		
Stage 1	-	-		-		
Stage 2	534	-	-	-		
Approach	EB		NB			
HCM Control Delay, s	12		IND			
HCM Control Delay, S HCM LOS	12 B					
HCW LOS	D					
Minor Lane/Major Mvmt	NBL	NBT EBLn1				
Capacity (veh/h)		- 556				
HCM Lane V/C Ratio		- 0.072				
HCM Control Delay (s)	-	- 12				
HCM Lane LOS	-	- B				
HCM 95th %tile Q(veh)		- 0.2				
/011 /0110 ((/011)		0.2				

Intersection Int Delay, s/veh	1.8											
,,		EDT	EDD	WDI	WDT	14/00	NO	NDT	NDD	0.01	ODT	0.01
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ĵ.			ની						41	7
Traffic Vol, veh/h	0	13	47	40	8	0	0	0	0	23	1108	18
Future Vol, veh/h	0	13	47	40	8	0	0	0	0	23	1108	18
Conflicting Peds, #/hr	0	0	0	20	0	0	0	0	0	0	0	24
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	(
Veh in Median Storage, #	-	0	-	-	0	-	-	-	-	-	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	14	51	43	9	0	0	0	0	25	1204	20
Major/Minor	Minor2			Minor1						Major2		
Conflicting Flow All	-	1278	646	679	1278					0	0	(
Stage 1		1278	-	0.7	0						-	,
Stage 2		0	-	679	1278							
Critical Hdwy		6.54	6.94	7.54	6.54	-				4.14		
Critical Hdwy Stg 1		5.54	-	7.01	-	-						
Critical Hdwy Stg 2		-	-	6.54	5.54	-						
Follow-up Hdwy		4.02	3.32	3.52	4.02	-				2.22		
Pot Cap-1 Maneuver	0	165	414	338	165	0				2.22		
Stage 1	0	235		-	-	0						
Stage 2	0	200		408	235	0						
Platoon blocked, %	U			100	200	U						
Mov Cap-1 Maneuver		161	405	276	161							
Mov Cap-2 Maneuver		161	100	276	161							
Stage 1		230		-	101	_						
Stage 2		230		335	230							
Stage 2				333	230							
Approach	FB			WB						SB		
HCM Control Delay, s	20			23.4						JD		
HCM LOS	20 C			23.4 C								
TICIVI EOS	C			C								
Minor Lane/Major Mvmt	EBLn1V	VBI n1	SBL	SBT SBR								
Capacity (veh/h)	305	247	-									
HCM Lane V/C Ratio	0.214											
HCM Control Delay (s)	20	23.4										
HCM Lane LOS	20 C	23.4 C										
HCM 95th %tile Q(veh)	0.8	0.8										
HOM ADM WING (VGU)	0.8	0.8	-									

.4 EBL 3 3 3 0 Stop	EBT 25 25 0 Stop - 0 0 79 2 32	34 34 0 Stop None - - - 79 2	WBL 10 10 0 Stop 79 2	WBT 7 7 0 Stop - 0 0 7 7	WBR 5 5 15 Stop None -	NBL 15 15 3 Free -	NBT 286 286 0 Free - 0	NBR 8 8 0 Free None	SBL 2 2 0 Free	\$BT 47 47 0 Free	SBF 16 16 3 Free None
3 3 0 Stop - - - - 79 2	25 25 0 Stop - 0 0 79 2	34 34 0 Stop None - - - 79 2	10 10 0 Stop - - - - - 79	7 7 0 Stop - 0	5 5 15 Stop None	15 15 3 Free -	286 286 0 Free	8 8 0 Free None	2 2 0 Free	47 47 0 Free	16 16 3 Free
3 0 Stop - - - - 79 2	25 25 0 Stop - 0 0 79 2	34 0 Stop None - - - 79 2	10 0 Stop - - - - 79	7 7 0 Stop - - 0	5 15 Stop None	15 3 Free -	286 286 0 Free	8 0 Free None	2 0 Free	47 47 0 Free	16 Free
3 0 Stop - - - - 79 2	25 0 Stop - - 0 0 79 2	34 0 Stop None - - - 79 2	10 0 Stop - - - - 79	7 0 Stop - - 0 0	5 15 Stop None	15 3 Free -	286 0 Free -	8 0 Free None	2 0 Free	47 0 Free	16 Free
0 Stop - - - - - 79	0 Stop - - 0 0 79 2	0 Stop None - - - 79 2	0 Stop - - - - - 79	0 Stop - - 0 0	15 Stop None	3 Free	0 Free	0 Free None	0 Free	0 Free	Free
Stop 79 2	Stop - 0 0 79 2	Stop None - - - 79 2	Stop - - - - - 79	Stop - - 0 0	Stop None	Free - -	Free -	Free None	Free	Free -	Free
- - - 79 2	0 0 79 2	None 79 2	- - - - 79	- 0 0	None -	-	-	None -	-	-	
- - 79 2	0 0 79 2	- - 79 2	- 79	0		-	-	-	-		None
- 79 2	0 79 2	- 79 2	- 79	0			-	-			TAOUL
- 79 2	0 79 2	- 79 2	- 79	0		-	Λ		-	-	
79 2	79 2	79 2	79	_	-			-	-	0	
2	2	2		70		-	0	-	-	0	
		2	2		79	79	79	79	79	79	79
				2	2	2	2	2	2	2	2
			13	9	6	19	362	10	3	59	20
Minor2			Minor1			Maior1			Maior2		
506	488	73	517	493	382		0	0		0	(
		-			-	-	-	-		-	
						1.12			1.12		
		3 318			3 318	2 218			2 218		
						1314			1100		
003	373		073	022							
/51	470	986	<i>/</i> 110	167	656	151/			1160		
						1314			1107		
					-	-		-	-	-	
5/2	202	-	019	017	-	-					
ER			W/R			NR			SB		
						0.4			0.2		
D			D								
NIDI	NDT	NIDD I	EDI n1\M/DI n1	CDI	CDT	CDD					
						-					
		-			-	-					
		-		,,		-					
	Minor2 506 78 428 7.12 6.12 3.518 477 931 605 451 913 572 EB 11.2 B NBL 1514 0.013 7.4 A	Minor2 506 488 78 78 78 428 410 7.12 6.52 6.12 5.52 6.12 5.52 6.13 5.58 477 480 931 830 605 595 451 470 451 470 451 470 572 585 EB 11.2 B NBL NBT 1514 - 0.013 - 7.4 0 A A	Minor2 506 488 73 78 78 - 428 410 - 7.12 6.52 6.22 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.13 3.318 477 480 989 931 830 - 605 595 - 451 470 986 451 470 - 913 825 - 572 585 - EB 11.2 B NBL NBT NBRI 1514 - 0.013 - 7.4 0 - A A A -	Minor2 Minor1 506 488 73 517 78 78 - 405 428 410 - 112 7.12 6.52 6.22 7.12 6.12 5.52 - 6.12 5.51 5.52 - 6.12 3.518 4.018 3.318 3.518 477 480 989 469 931 830 - 622 605 595 - 893 451 470 986 419 451 470 - 419 913 825 - 612 572 585 - 819 EB WB 11.2 13.1 B NBL NBT NBR EBLn1WBLn1 1514 - - 657 473 0.013 - 0.119 0.059 7.4 0 -	Minor2 Minor1 506 488 73 517 493 78 78 - 405 405 428 410 - 112 88 7.12 6.52 6.52 7.12 6.52 6.12 5.52 - 6.12 5.52 3.518 4.018 3.318 3.518 4018 477 480 989 469 477 931 830 - 622 598 605 595 - 893 822 451 470 986 419 467 451 470 - 419 467 913 825 - 612 588 572 585 - 819 817 EB WB 11.2 13.1 B NBL NBT NBR EBLn1WBLn1 SBL 1514 - 657 473 1169 <td>Minor2 Minor1 506 488 73 517 493 382 78 78 - 405 405 - 428 410 - 112 88 - 7.12 6.52 6.22 7.12 6.52 6.22 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 3.518 4.018 3.318 3.518 4.018 3.318 477 480 989 469 477 665 931 830 - 622 598 - 605 595 - 893 822 - 451 470 986 419 467 - 913 825 - 612 588 - 572 585 - 819 <</td> <td>Minor2 Minor1 Major1 506 488 73 517 493 382 83 78 78 - 405 405 - - - 428 410 - 1112 88 - - - 7.12 6.52 6.52 6.22 7.12 6.52 6.22 4.12 6.12 5.52 - 6.12 5.52 - - - 6.12 5.52 - 6.12 5.52 -</td> <td>Minor2 Minor1 Major1 506 488 73 517 493 382 83 0 78 78 - 405 405 - - - 428 410 - 112 88 - - - 7.12 6.52 6.52 7.12 6.52 6.22 4.12 - 6.12 5.52 - 6.12 5.52 - - - 6.12 5.52 - 6.12 5.52 - - - 6.12 5.52 - 6.12 5.52 - - - 3.518 4.018 3.318 2.218 - - - - 451 4.018 3.318 2.218 -</td> <td>Minor2 Minor1 Major1 506 488 73 517 493 382 83 0 0 78 78 - 405 405 - - - - - 428 410 - 112 88 -</td> <td>Minor2 Minor1 Major1 Major2 506 488 73 517 493 382 83 0 0 372 78 78 - 405 405 - - - - - - 428 410 - 112 88 -</td> <td>Minor2 Minor1 493 382 83 0 0 372 0 78 78 - 405 405 -</td>	Minor2 Minor1 506 488 73 517 493 382 78 78 - 405 405 - 428 410 - 112 88 - 7.12 6.52 6.22 7.12 6.52 6.22 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 3.518 4.018 3.318 3.518 4.018 3.318 477 480 989 469 477 665 931 830 - 622 598 - 605 595 - 893 822 - 451 470 986 419 467 - 913 825 - 612 588 - 572 585 - 819 <	Minor2 Minor1 Major1 506 488 73 517 493 382 83 78 78 - 405 405 - - - 428 410 - 1112 88 - - - 7.12 6.52 6.52 6.22 7.12 6.52 6.22 4.12 6.12 5.52 - 6.12 5.52 - - - 6.12 5.52 - 6.12 5.52 -	Minor2 Minor1 Major1 506 488 73 517 493 382 83 0 78 78 - 405 405 - - - 428 410 - 112 88 - - - 7.12 6.52 6.52 7.12 6.52 6.22 4.12 - 6.12 5.52 - 6.12 5.52 - - - 6.12 5.52 - 6.12 5.52 - - - 6.12 5.52 - 6.12 5.52 - - - 3.518 4.018 3.318 2.218 - - - - 451 4.018 3.318 2.218 -	Minor2 Minor1 Major1 506 488 73 517 493 382 83 0 0 78 78 - 405 405 - - - - - 428 410 - 112 88 -	Minor2 Minor1 Major1 Major2 506 488 73 517 493 382 83 0 0 372 78 78 - 405 405 - - - - - - 428 410 - 112 88 -	Minor2 Minor1 493 382 83 0 0 372 0 78 78 - 405 405 -

Intersection												
Int Delay, s/veh	9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		•			•			•			•	
Traffic Vol, veh/h	0	36	0	0	18	0	0	0	0	0	0	
Future Vol, veh/h	0	36	0	0	18	0	0	0	0	0	0	
Conflicting Peds, #/hr	0	0	0	11	0	11	12	0	0	0	0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	-	-	None	-	-	None	-	-	None		-	Non
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-		0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	39	0	0	20	0	0	0	0	0	0	
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	-	1	-	-	1	-	-	0	-		-	
Stage 1	-	1	-	-	0	-	-	-	-	-	-	
Stage 2	-	0	-	-	1	-	-	-	-	-	-	
Critical Hdwy	-	6.52	-	-	6.52	-	-	-	-	-	-	
Critical Hdwy Stg 1	-	5.52	-	-	5.52	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	5.52	-	-	5.52	-	-	-	-	-	-	
Follow-up Hdwy	-	4.018	-	-	4.018	-	-	-	-	-	-	
Pot Cap-1 Maneuver	0	895	0	0	895	0	0	-	0	0	-	
Stage 1	0	895	0	0	-	0	0		0	0	-	
Stage 2	0	-	0	0	895	0	0	-	0	0	-	
Platoon blocked, %											-	
Mov Cap-1 Maneuver	-	895	-	-	895	-	-	-	-	-	-	
Mov Cap-2 Maneuver		895	-	-	895	-	-			-	-	
Stage 1	-	895	-	-		-	-		-	-		
Stage 2	-	-			895	-	-	-	-		-	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.2			9.1			0			0		
HCM LOS	Α			Α								
Minor Lane/Major Mvmt	NBT	EBLn1\		SBT								
Capacity (veh/h)	-	895	895	-								
HCM Lane V/C Ratio	-	0.044	0.022	-								
HCM Control Delay (s)	-	9.2	9.1	-								
HCM Lane LOS	-	Α	Α	-								
HCM 95th %tile Q(veh)		0.1	0.1	-								

Intersection (2.2								
Int Delay, s/veh	2.3								
Movement	E	BT	EBR		WBL	WBT	NBL	NBR	
Lane Configurations		Þ				ર્ન	¥		
Traffic Vol, veh/h		35	0		3	13	14	0	
Future Vol, veh/h		35	0		3	13	14	0	
Conflicting Peds, #/hr		0	0		25	0	0	0	
Sign Control	Fi	ree	Free		Free	Free	Stop	Stop	
RT Channelized		-	None		-	None	-	None	
Storage Length		-	-		-	-	0	-	
Veh in Median Storage, #		0	-		-	0	0	-	
Grade, %		0	-		-	0	0	-	
Peak Hour Factor		83	83		83	83	83	83	
Heavy Vehicles, %		2	2		2	2	2	2	
Mvmt Flow		42	0		4	16	17	0	
Major/Minor	Maj	or1		N	/lajor2		Minor1		
Conflicting Flow All		0	0		67	0	90	67	
Stage 1		-	-		-	-	67	-	
Stage 2		-	-		-	-	23	-	
Critical Hdwy		-	-		4.12	-	6.42	6.22	
Critical Hdwy Stg 1		-	-		-	-	5.42	-	
Critical Hdwy Stg 2		-	-		-	-	5.42	-	
Follow-up Hdwy		-	-		2.218	-	3.518	3.318	
Pot Cap-1 Maneuver		-	-		1535	-	910	997	
Stage 1		-	-		-	-	956	-	
Stage 2		-	-		-	-	1000	-	
Platoon blocked, %		-	-			-			
Mov Cap-1 Maneuver		-	-		1535	-	886	973	
Mov Cap-2 Maneuver		-	-		-	-	886	-	
Stage 1		-	-		-	-	933	-	
Stage 2		-	-		-	-	997		
Approach		EB			WB		NB		
HCM Control Delay, s		0			1.4		9.1		
HCM LOS							А		
Minor Lane/Major Mvmt	NBLn1 E	ВТ	EBR	WBL	WBT				
Capacity (veh/h)	886	-	-	1535	-				
HCM Lane V/C Ratio	0.019			0.002					
HCM Control Delay (s)	9.1	-		7.4	0				
HCM Lane LOS	A			A	A				
HCM 95th %tile Q(veh)	0.1	-		0	-				
	0.1			J					

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBF	R NBL	NBT	SBT	SBR
Lane Configurations	LUL	1		INDI	<u> </u>	JDIK 7
Traffic Vol. veh/h	0	4		0	339	34
Future Vol. veh/h	0	4		0	339	34
Conflicting Peds, #/hr	0			0	0	122
Sign Control	Stop	Sto		Free	Free	Free
RT Channelized		None		None		
Storage Length				-		50
Veh in Median Storage, #	# 0			-	0	-
Grade, %	0			0	0	
Peak Hour Factor	83	8:	83	83	83	83
Heavy Vehicles, %	2		2 2	2	2	2
Mvmt Flow	0	5-	1 0	0	408	41
Major/Minor	Minor2				Major2	
Conflicting Flow All	- 141111012	320	5		- Widjoiz	0
Stage 1			-			-
Stage 2						
Critical Hdwy		7.1				
Critical Hdwy Stg 1						
Critical Hdwy Stg 2	-					
Follow-up Hdwy		3.9	2			-
Pot Cap-1 Maneuver	0	57.				
Stage 1	0		-			-
Stage 2	0		-			-
Platoon blocked, %					-	-
Mov Cap-1 Maneuver	-	50	5			-
Mov Cap-2 Maneuver	-		-		-	-
Stage 1	-		-			-
Stage 2	-		-		-	-
Approach	EB				SB	
HCM Control Delay, s	13				0	
HCM LOS	В				v	
Minor Lane/Major Mvmt	EBLn1	SBT SBF)			
Capacity (veh/h)	506		-			
HCM Lane V/C Ratio	0.107					
HCM Control Delay (s)	13		-			
HCM Lane LOS	13 B		-			
HCM 95th %tile Q(veh)	0.4		-			
HOW FORT TOUR Q(VEII)	0.4					

MS Synchro 9 Report Page 13

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	\rightarrow	•	←	*	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† }			^	7				ሻ	^	7
Traffic Volume (vph)	152	369	131	0	1183	681	0	0	0	190	632	232
Future Volume (vph)	152	369	131	0	1183	681	0	0	0	190	632	232
Confl. Peds. (#/hr)	30		69	69		30				41		69
Confl. Bikes (#/hr)			1			6						3
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	162	393	139	0	1259	724	0	0	0	202	672	247
Shared Lane Traffic (%)												
Lane Group Flow (vph)	162	532	0	0	1259	724	0	0	0	202	672	247
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases						6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase												
Minimum Initial (s)	2.0	15.0			15.0	10.0				10.0	5.0	5.0
Minimum Split (s)	7.0	27.0			34.0	15.0				15.0	32.0	32.0
Total Split (s)	25.0	92.0			67.0	43.0				43.0	43.0	43.0
Total Split (%)	18.5%	68.1%			49.6%	31.9%				31.9%	31.9%	31.9%
Yellow Time (s)	4.0	4.0			4.0	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag				Lead							
Lead-Lag Optimize?	Yes	C Man			Yes	Mana				Mana		Mari
Recall Mode	None	C-Max			C-Max	None				None 38.0	Max	Max
Act Effct Green (s)	20.0 0.15	87.0 0.64			62.0 0.46	100.0 0.74				0.28	38.0 0.28	38.0 0.28
Actuated g/C Ratio v/c Ratio	0.15	0.04			0.46	0.74				0.28	0.28	0.49
Control Delay	65.1	10.1			26.0	2.5				42.3	47.0	19.2
Queue Delay	0.0	0.0			18.6	0.2				0.0	0.0	0.0
Total Delay	65.1	10.1			44.6	2.7				42.3	47.0	19.2
LOS	05.1 E	В			44.0 D	2.7 A				42.3 D	47.0 D	19.2 B
Approach Delay	E	22.9			29.3	А				D	40.1	Б
Approach LOS		22.7 C			27.3 C						40.1	
Queue Length 50th (ft)	135	92			433	22				144	275	67
Queue Length 95th (ft)	213	120			514	m49				220	345	153
Internal Link Dist (ft)	213	228			45	11177		159		220	210	133
Turn Bay Length (ft)	160	220			73			137		130	210	120
Base Capacity (vph)	262	2121			1625	1174				498	996	502
Starvation Cap Reductn	0	0			392	80				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.62	0.25			1.02	0.66				0.41	0.67	0.49
	0.02	1,20			7.02	5.00				3.11	2.07	2.17

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 80

MS Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: PM

MS Synchro 9 Report Page 2

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: PM

	-	•	1	←	1	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	*	LUK	WDE	**	ሻሻ	TVDIC
Traffic Volume (vph)	538	0	0	1321	871	243
Future Volume (vph)	538	0	0	1321	871	243
Confl. Peds. (#/hr)	330	U	U	1321	0/1	81
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	591	0.91	0.91	1452	957	267
	140	U	U	1402	907	207
Shared Lane Traffic (%)	591	0	0	1452	957	267
Lane Group Flow (vph)		U	0			
Turn Type	NA			NA	Prot	Perm
Protected Phases	2			6	8	_
Permitted Phases	_					3
Detector Phase	2			6	8	3
Switch Phase						
Minimum Initial (s)	10.0			10.0	5.0	5.0
Minimum Split (s)	30.0			15.0	10.0	10.0
Total Split (s)	86.0			86.0	49.0	49.0
Total Split (%)	63.7%			63.7%	36.3%	36.3%
Yellow Time (s)	4.0			4.0	4.0	4.0
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	5.0			5.0	5.0	5.0
Lead/Lag	5.0			0.0	0.0	0.0
Lead-Lag Optimize?						
Recall Mode	C-Max			C-Max	Max	Max
					44.0	44.0
Act Effct Green (s)	81.0			81.0		
Actuated g/C Ratio	0.60			0.60	0.33	0.33
v/c Ratio	0.28			0.68	0.86	0.42
Control Delay	13.9			13.9	61.0	18.9
Queue Delay	0.3			0.3	0.0	0.0
Total Delay	14.2			14.2	61.0	18.9
LOS	В			В	Е	В
Approach Delay	14.2			14.2	51.8	
Approach LOS	В			В	D	
Queue Length 50th (ft)	124			256	444	84
Queue Length 95th (ft)	152			311	517	117
Internal Link Dist (ft)	272			277	337	
Turn Bay Length (ft)	212			211	337	
Base Capacity (vph)	2123			2123	1118	631
Starvation Cap Reductn	880			137	0	031
	000			211	0	0
Spillback Cap Reductn						-
Storage Cap Reductn	0			0	0	0
Reduced v/c Ratio	0.48			0.76	0.86	0.42
Intersection Summary						
Cycle Length: 135						
Actuated Cycle Length: 13	5					
Offset: 0 (0%), Referenced		-BT and	6·WRT ⁴	Start of G	roon	
	i to priase 2.i	_DT and	U.VVDI,	Start or G	ICCII	
Natural Cycle: 60	P t . 1					
Control Type: Actuated-Co	ordinated					

MS Synchro 9 Report
Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: PM

Maximum v/c Ratio: 0.86
Intersection Signal Delay: 28.3 Intersection LOS: C
Intersection Capacity Utilization 88.6% ICU Level of Service E
Analysis Period (min) 15

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	-	•	•	←	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ 1>		*	^		
Traffic Volume (vph)	752	0	13	1265	0	0
Future Volume (vph)	752	0	13	1265	0	0
Confl. Peds. (#/hr)		33	33		35	
Confl. Bikes (#/hr)		4				
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	800	0	14	1346	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	800	0	14	1346	0	0
Turn Type	NA		pm+pt	NA		
Protected Phases	2		1	6		
Permitted Phases			6			
Detector Phase	2		1	6		
Switch Phase						
Minimum Initial (s)	15.0		3.0	15.0		
Minimum Split (s)	34.0		8.0	20.0		
Total Split (s)	121.0		14.0	135.0		
Total Split (%)	89.6%			100.0%		
Yellow Time (s)	4.0		4.0	4.0		
All-Red Time (s)	1.0		1.0	1.0		
Lost Time Adjust (s)	0.0		0.0	0.0		
Total Lost Time (s)	5.0		5.0	5.0		
Lead/Lag	Lead		Lag	3.0		
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		
Act Effct Green (s)	127.4		133.0	135.0		
Actuated g/C Ratio	0.94		0.99	1.00		
v/c Ratio	0.74		0.02	0.38		
Control Delay	0.24		0.02	0.38		
Queue Delay	0.7		0.0	0.0		
Total Delay	0.0		0.0	0.0		
LOS	0.7 A		0.1 A	0.3 A		
Approach Delay	0.7		А	0.3		
Approach LOS	0.7 A			0.3 A		
Queue Length 50th (ft)	0		0	3		
Queue Length 95th (ft)	42		m0	0		
Internal Link Dist (ft)	366		IIIU	377	331	
Turn Bay Length (ft)	300		115	3//	331	
	3339		686	3539		
Base Capacity (vph)	3339		080	3539		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.24		0.02	0.38		
	0.24		0.02	0.36		
Intersection Summary						
Cycle Length: 135						
Actuated Cycle Length: 13	5					
Offset: 0 (0%), Referenced		EBT and	6:WBTL	. Start of G	Green	
Natural Cyclo: 4E	p.1.000 Z.1		2	.,		

MS Synchro 9 Report
Page 5

Natural Cycle: 45

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: PM

Splits and Phases: 5: N. Congress Ave & Martin Luther King Jr. Blvd

MS Synchro 9 Report

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	\rightarrow	•	—	•	1	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		ሻ	^	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	89	745	31	45	887	134	124	23	303	98	25	248
Future Volume (vph)	89	745	31	45	887	134	124	23	303	98	25	248
Confl. Peds. (#/hr)	44		7	7		44	22		23	23		22
Confl. Bikes (#/hr)			4			3						
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	92	768	32	46	914	138	128	24	312	101	26	256
Shared Lane Traffic (%)												
Lane Group Flow (vph)	92	800	0	46	914	138	0	152	312	0	127	256
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	3.0	10.0		3.0	10.0	10.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	8.0	22.0		8.0	28.0	28.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (s)	15.0	89.0		15.0	89.0	89.0	31.0	31.0	31.0	31.0	31.0	31.0
Total Split (%)	11.1%	65.9%		11.1%	65.9%	65.9%	23.0%	23.0%	23.0%	23.0%	23.0%	23.0%
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	95.9	89.7		93.0	86.6	86.6		26.0	26.0		26.0	26.0
Actuated g/C Ratio	0.71	0.66		0.69	0.64	0.64		0.19	0.19		0.19	0.19
v/c Ratio	0.23	0.34		0.10	0.40	0.15		0.74	0.58		0.67	0.54
Control Delay	5.2	7.3		2.1	5.5	2.0		73.1	10.3		69.2	12.5
Queue Delay	0.0	0.3		0.0	0.3	0.0		0.0	0.2		0.0	0.0
Total Delay	5.2	7.5		2.1	5.8	2.0		73.1	10.5		69.2	12.5
LOS	Α	Α		Α	Α	Α		Е	В		E	В
Approach Delay		7.3			5.2			31.0			31.3	
Approach LOS		Α			Α			С			С	
Queue Length 50th (ft)	15	104		2	117	10		127	5		104	17
Queue Length 95th (ft)	24	112		6	156	28		#233	92		#193	101
Internal Link Dist (ft)		377			273			135			212	
Turn Bay Length (ft)	160			100		100			100			
Base Capacity (vph)	437	2334		512	2269	901		206	536		189	477
Starvation Cap Reductn	0	799		0	648	0		0	0		0	0
Spillback Cap Reductn	0	289		0	0	0		0	24		0	0
Storage Cap Reductn	0	0		0	0	0		0	0		0	0
Reduced v/c Ratio	0.21	0.52		0.09	0.56	0.15		0.74	0.61		0.67	0.54

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 70

MS Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: PM

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.74
Intersection Signal Delay: 13.6 Intersection Capacity Utilization 78.7% ICU
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles. Intersection LOS: B ICU Level of Service D

MS Synchro 9 Report

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	-	•	1	T		-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		ħ₽		7	^					ሻ	^	
Fraffic Volume (vph)	0	1084	29	341	1122	0	0	0	0	38	200	1
uture Volume (vph)	0	1084	29	341	1122	0	0	0	0	38	200	1
Confl. Peds. (#/hr)			37	37						72		
Confl. Bikes (#/hr)			7									
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.
Adj. Flow (vph)	0	1166	31	367	1206	0	0	0	0	41	215	1
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1197	0	367	1206	0	0	0	0	41	215	1!
Turn Type		NA		pm+pt	NA					Perm	NA	Per
Protected Phases		2		1	6						4	
Permitted Phases				6						4		
Detector Phase		2		1	6					4	4	
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					5.0	5.0	5
Minimum Split (s)		32.0		8.0	30.0					30.0	30.0	30
Total Split (s)		78.0		25.0	103.0					32.0	32.0	32
Total Split (%)		57.8%		18.5%	76.3%					23.7%	23.7%	23.7
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	C
Total Lost Time (s)		5.0		5.0	5.0					5.0	5.0	5
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					Max	Max	M
Act Effct Green (s)		74.2		98.0	98.0					27.0	27.0	27
Actuated g/C Ratio		0.55		0.73	0.73					0.20	0.20	0.:
v/c Ratio		0.62		0.92	0.47					0.13	0.30	0.3
Control Delay		16.2		65.4	4.3					45.8	47.4	15
Queue Delay		0.5		2.6	0.3					0.0	0.0	C
Total Delay		16.8		68.0	4.6					45.8	47.4	15
LOS		В		E	Α					D	D	
Approach Delay		16.8			19.4						35.2	
Approach LOS		В			В						D	
Queue Length 50th (ft)		312		221	123					30	85	
Queue Length 95th (ft)		386		m#368	m129					65	124	
Internal Link Dist (ft)		273			321			343			244	
Turn Bay Length (ft)				120						100		10
Base Capacity (vph)		1934		410	2569					312	707	31
Starvation Cap Reductn		336		12	626					0	0	
Spillback Cap Reductn		0		0	0					0	0	
Storage Cap Reductn		0		0	0					0	0	
Reduced v/c Ratio		0.75		0.92	0.62					0.13	0.30	0.:
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135		EDT '	/ WDT	CI-4.	C							
Offset: 0 (0%), Referenced to Natural Cycle: 90	o phase 2:	EB1 and	6:WBfL	, Start of	Green							

MS Synchro 9 Report
Page 9

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background Timing Plan: PM

MS Synchro 9 Report
Page 10

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	\rightarrow	•	←	•	1	†	<i>></i>	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^			∱ î>		ሻ	ર્ની	7			
Traffic Volume (vph)	85	1116	0	0	1198	52	215	321	486	0	0	0
Future Volume (vph)	85	1116	0	0	1198	52	215	321	486	0	0	0
Confl. Peds. (#/hr)			34			89	17		151			
Confl. Bikes (#/hr)						4			13			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	88	1151	0	0	1235	54	222	331	501	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	88	1151	0	0	1289	0	200	353	501	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	104.0			89.0		31.0	31.0	31.0			
Total Split (%)	11.1%	77.0%			65.9%		23.0%	23.0%	23.0%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes	0.14			Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	99.0	99.0			86.6		26.0	26.0	26.0			
Actuated g/C Ratio	0.73	0.73			0.64		0.19	0.19	0.19			
v/c Ratio	0.31	0.44			0.58		0.64	1.04	1.62			
Control Delay	5.6	1.4			7.3 0.7		70.0	120.2	324.4 0.0			
Queue Delay	0.0	0.0			8.0		1.4	21.5 141.7	324.4			
Total Delay	5.6	1.5 A					71.5 E	141.7 F	324.4 F			
LOS Approach Delay	А	1.8			A 8.0		E	215.2	r			
Approach LOS		1.0 A			6.0 A			215.2 F				
	3	23			115		180	~354	~548			
Queue Length 50th (ft) Queue Length 95th (ft)	m14	23 25			128		269	~354 #566	~548 #770			
Internal Link Dist (ft)	M14	321			699		269	350	#//0		106	
Turn Bay Length (ft)	120	321			099			330			100	
Base Capacity (vph)	310	2595			2231		313	339	309			
Starvation Cap Reductn	0	2393			532		0	339	309			
	0	0			032		30	33	0			
Spillback Cap Reductn Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.28	0.48			0.76		0.71	1.15	1.62			
Reduced WC Rallo	0.20	0.40			0.70		0.71	1.10	1.02			

Intersection Summary

Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 65

MS Synchro 9 Report Page 11 8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background Timing Plan: PM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.62 Intersection Signal Delay: 66.8 Intersection Capacity Utilization 83.2% Intersection LOS: E ICU Level of Service E Analysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd Tø4 Ø2 (R) ▼ Ø6 (R)

MS Synchro 9 Report Page 12

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	1	•	•	4	†	1	-	↓	4
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
ane Configurations		↑	7		ર્ન						414	
raffic Volume (vph)	0	20	12	164	96	0	0	0	0	47	1156	
uture Volume (vph)	0	20	12	164	96	0	0	0	0	47	1156	
Confl. Peds. (#/hr)			68							44		
Confl. Bikes (#/hr)									2			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.
Parking (#/hr)		0										
dj. Flow (vph)	0	21	13	171	100	0	0	0	0	49	1204	
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	21	13	0	271	0	0	0	0	0	1276	
urn Type		NA	Perm	Perm	NA					Perm	NA	
Protected Phases		4 12			4 12						2 10	
Permitted Phases			4 12	4 12						2 10		
Detector Phase		4 12	4 12	4 12	4 12					2 10	2 10	
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
/ellow Time (s)												
All-Red Time (s)												
ost Time Adjust (s)												
Fotal Lost Time (s)												
Lead/Lag												
_ead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		31.5	31.5		31.5						79.5	
Actuated g/C Ratio		0.23	0.23		0.23						0.59	
/c Ratio		0.05	0.03		0.79						0.62	
Control Delay		21.9	0.2		35.0						12.4	
Queue Delay		0.0	0.0		0.0						0.0	
otal Delay		21.9	0.2		35.1						12.4	
.OS		C	A		D						В	
Approach Delay		13.6	,,		35.1						12.4	
Approach LOS		В			D						В	
Queue Length 50th (ft)		10	0		85						200	
Queue Length 95th (ft)		24	0		108						256	
nternal Link Dist (ft)		177	Ū		244			271			262	
Turn Bay Length (ft)		177			211			2/1			202	
Base Capacity (vph)		533	509		472						2071	
Starvation Cap Reductn		0	0		1						0	
Spillback Cap Reductn		0	0		0						0	
Storage Cap Reductn		0	0		0						0	
Reduced v/c Ratio		0.04	0.03		0.58						0.62	
ntersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												
Offset: 0 (0%), Referenced t	o phase 2:	SBTL, St	art of Gre	en								

MS Synchro 9 Report Page 13 18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases	2	4	10	12
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	21.0	21.0	22.5	22.5
Total Split (s)	56.0	29.0	24.0	26.0
Total Split (%)	41%	21%	18%	19%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
reduced we read				
Intersection Summary				

Synchro 9 Report Page 14 MS

18: Guadalupe St & E. 17th St

2022 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.79
Intersection Signal Delay: 16.3 Intersection LOS: B
Intersection Capacity Utilization 75.6% ICU Level of Service D
Analysis Period (min) 15

Splits and Phases: 18: Guadalupe St & E. 17th St

MS Synchro 9 Report Page 15

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background
Timing Plan: PM

	•	-	\rightarrow	•	←	•	4	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			ĥ			414	7			
Traffic Volume (vph)	11	64	0	0	133	123	65	1041	69	0	0	0
Future Volume (vph)	11	64	0	0	133	123	65	1041	69	0	0	0
Confl. Peds. (#/hr)	34								47			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)		0										
Adj. Flow (vph)	12	70	0	0	145	134	71	1132	75	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	82	0	0	279	0	0	1203	75	0	0	C
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		31.3			31.3			79.7	79.7			
Actuated g/C Ratio		0.23			0.23			0.59	0.59			
v/c Ratio		0.23			0.65			0.40	0.09			
Control Delay		21.8			30.4			8.7	2.4			
Queue Delay		0.0			0.0			0.1	0.0			
Total Delay		21.8			30.4			8.8	2.4			
LOS		C C			C			Α.	Α.			
Approach Delay		21.8			30.4			8.4	,,			
Approach LOS		C C			C			Α.				
Queue Length 50th (ft)		33			129			149	2			
Queue Length 95th (ft)		m63			183			102	13			
Internal Link Dist (ft)		244			319			272	13		254	
Turn Bay Length (ft)		277			317			212	100		234	
Base Capacity (vph)		508			592			3048	809			
Starvation Cap Reductn		0			0			443	009			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.16			0.47			0.46	0.09			
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135	j .											
Offset: 0 (0%), Referenced		NBTL, St	art of Gre	en								
Natural Cycle: 100												

MS Synchro 9 Report
Page 16

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	26.0	28.0	22.5	22.5
Total Split (s)	54.0	28.0	25.0	28.0
Total Split (%)	40%	21%	19%	21%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)	o max	110110	110110	140110
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

Synchro 9 Report Page 17 MS

19: Lavaca St & E. 17th St

2022 Background
Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.65

Intersection Signal Delay: 12.8

Intersection Capacity Utilization 46.0%

ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: B
ICU Level of Service A

Splits and Phases: 19: Lavaca St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	*	1	•	•	1	Ť		-	¥	4
_ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SE
ane Configurations		4			1>			414	7			
raffic Volume (vph)	11	44	0	0	55	28	64	1123	52	0	0	
uture Volume (vph)	11	44	0	0	55	28	64	1123	52	0	0	
Confl. Peds. (#/hr)						167	87					
Confl. Bikes (#/hr)						2						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.
Parking (#/hr)					0							
Adj. Flow (vph)	12	46	0	0	58	29	67	1182	55	0	0	
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	58	0	0	87	0	0	1249	55	0	0	
Turn Type	Perm	NA	U	U	NA	U	Perm	NA	Perm	U	U	
Protected Phases	1 Citii	4 12			4 12		T CITII	2 10	T CITII			
Permitted Phases	4 12	7 12			7 12		2 10	2 10	2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		20.8			20.8			90.2	90.2			
Actuated g/C Ratio		0.15			0.15			0.67	0.67			
ı/c Ratio		0.22			0.36			0.37	0.05			
Control Delay		29.7			26.0			6.0	2.1			
Queue Delay		0.0			0.0			0.5	0.0			
Total Delay		29.7			26.0			6.4	2.1			
_OS		С			С			Α	Α			
Approach Delay		29.7			26.0			6.2				
Approach LOS		С			С			Α				
Queue Length 50th (ft)		34			37			141	6			
Queue Length 95th (ft)		m52			64			m127	m5			
nternal Link Dist (ft)		233			60			281			272	
Furn Bay Length (ft)									100			
Base Capacity (vph)		568			488			3355	1083			
Starvation Cap Reductn		0			0			1459	0			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.10			0.18			0.66	0.05			
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135	to phase 2:											

MS Synchro 9 Report Page 19

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases	-	•		
Detector Phase				
Switch Phase				
	45.0	45.0		
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	28.0	32.0	21.0	20.0
Total Split (s)	55.0	32.0	24.0	24.0
Total Split (%)	41%	24%	18%	18%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
	C Marri	Mana	Mana	Name
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Neudeca Mc Nallo				
Intersection Summary				

MS Synchro 9 Report Page 20

28: Lavaca St & E. 16th St

2022 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 105
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.37
Intersection Signal Delay: 8.4 Intersection Capacity Utilization 54.6% ICU Level of Service A
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 28: Lavaca St & F. 16th St

55 s		32 s	24 s	24 s
Ø2 (R)		± ₀₄	↑ Ø10	± 012
opino ana i nases.	Zu. Lavaca St & L. Tutti St			

MS Synchro 9 Report
Page 21

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: PM

	۶	-	•	•	←	•	4	†	/	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		ተተኈ		ሻ	ተተተ						ተተኩ	i
Traffic Volume (vph)	0	918	97	217	1741	0	0	0	0	152	906	41
Future Volume (vph)	0	918	97	217	1741	0	0	0	0	152	906	41
Confl. Peds. (#/hr)			18	18						20		2
Confl. Bikes (#/hr)												2
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.8
Adj. Flow (vph)	0	1067	113	252	2024	0	0	0	0	177	1053	48
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1180	0	252	2024	0	0	0	0	0	1230	48
Turn Type		NA		pm+pt	NA					Perm	NA	Perr
Protected Phases		2		13	6						4	
Permitted Phases				6						4		
Detector Phase		2		13	6					4	4	
Switch Phase												
Minimum Initial (s)		10.0			5.0					5.0	5.0	5.
Minimum Split (s)		25.0			25.0					32.0	32.0	32.
Total Split (s)		58.0			88.0					47.0	47.0	47.
Total Split (%)		43.0%			65.2%					34.8%	34.8%	34.89
Yellow Time (s)		4.0			4.0					4.0	4.0	4.
All-Red Time (s)		1.0			1.0					1.0	1.0	1.
Lost Time Adjust (s)		0.0			0.0						0.0	0.
Total Lost Time (s)		5.0			5.0						5.0	5.
Lead/Lag		Lag			0.0						0.0	0.
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Ma
Act Effct Green (s)		53.0		83.0	83.0					max	42.0	42.
Actuated g/C Ratio		0.39		0.61	0.61						0.31	0.3
v/c Ratio		0.60		0.67	0.65						0.79	0.9
Control Delay		33.6		27.0	7.2						44.5	57.
Queue Delay		0.0		9.0	0.3						0.0	0.
Total Delay		33.6		36.0	7.5						44.5	57.
LOS		C		D	A						D	07.
Approach Delay		33.6		J	10.6						48.2	
Approach LOS		C			В						D	
Queue Length 50th (ft)		294		87	136						316	28
Queue Length 95th (ft)		323		m141	139						365	#50
Internal Link Dist (ft)		262			240			197			285	11 00
Turn Bay Length (ft)		202		50	210			177			200	10
Base Capacity (vph)		1969		378	3126						1564	52
Starvation Cap Reductn		0		93	411						0	02
Spillback Cap Reductn		0		0	0						0	
Storage Cap Reductn		0		0	0						0	
Reduced v/c Ratio		0.60		0.88	0.75						0.79	0.9
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135 Offset: 0 (0%), Referenced to	nhase 2	FRT and	6·WRTI	Start of 0	Green							
Natural Cycle: 80	priuse Z.	unu	5. W D I L	, otali or (5. 5011							

MS Synchro 9 Report
Page 22

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: PM

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	5.0	8.0
Minimum Split (s)	10.0	13.0
Total Split (s)	15.0	15.0
Total Split (%)	11%	11%
Yellow Time (s)	4.0	4.0
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

MS Synchro 9 Report Page 23

34: Guadalupe St & W. 15th St

2022 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.93
Intersection Signal Delay: 28.3 Intersection Capacity Utilization 78.4% ICU
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycless.

Intersection LOS: C ICU Level of Service D

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 34: Guadalupe St & W. 15th St

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	\rightarrow	•	←	•	4	†	*	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ			ተ ተጉ			ተተቡ	7			
Traffic Volume (vph)	120	918	0	0	1638	67	393	889	160	0	0	0
Future Volume (vph)	120	918	0	0	1638	67	393	889	160	0	0	0
Confl. Peds. (#/hr)	48					48	31		18			
Confl. Bikes (#/hr)			2						28			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	133	1020	0	0	1820	74	437	988	178	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	133	1020	0	0	1894	0	0	1425	178	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0	33.0			
Total Split (s)	20.0	86.0			66.0		49.0	49.0	49.0			
Total Split (%)	14.8%	63.7%			48.9%		36.3%	36.3%	36.3%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			6.0	6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	81.0	81.0			65.0			43.0	43.0			
Actuated g/C Ratio	0.60	0.60			0.48			0.32	0.32			
v/c Ratio	0.67	0.33			0.78			0.91	0.32			
Control Delay	69.5	3.2			13.1			53.4	14.6			
Queue Delay	0.0	0.1			0.0			0.0	0.0			
Total Delay	69.5	3.4			13.1			53.4	14.6			
LOS	E	Α			В			D	В			
Approach Delay		11.0			13.1			49.1				
Approach LOS		В			В			D				
Queue Length 50th (ft)	83	44			120			438	39			
Queue Length 95th (ft)	m149	50			119			504	101			
Internal Link Dist (ft)		240			335			116			281	
Turn Bay Length (ft)	50											
Base Capacity (vph)	248	3051			2428			1572	553			
Starvation Cap Reductn	0	872			0			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.54	0.47			0.78			0.91	0.32			

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

MS Synchro 9 Report Page 25

35: Lavaca St & W. 15th St

2022 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection LOS: C

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.91
Intersection Signal Delay: 25.0 Intersection Capacity Utilization 78.4% ICU L
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal. ICU Level of Service D

Splits and Phases: 35: Lavaca St & W. 15th St

MS Synchro 9 Report

36: Colorado St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	\rightarrow	•	—	•	4	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ _ጉ		ሻ	^			4			ર્ન	7
Traffic Volume (vph)	28	1082	21	22	1401	14	8	27	110	130	6	273
Future Volume (vph)	28	1082	21	22	1401	14	8	27	110	130	6	273
Confl. Peds. (#/hr)	33		35	35		33	98		6	6		98
Confl. Bikes (#/hr)			1			2			2			1
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	32	1244	24	25	1610	16	9	31	126	149	7	314
Shared Lane Traffic (%)												
Lane Group Flow (vph)	32	1268	0	25	1626	0	0	166	0	0	156	314
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	custom
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		6
Detector Phase	5	2		1	6		4	4		8	8	6
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	15.0
Minimum Split (s)	10.0	20.0		10.0	22.0		36.0	36.0		10.0	10.0	22.0
Total Split (s)	10.0	79.0		10.0	79.0		46.0	46.0		46.0	46.0	79.0
Total Split (%)	7.4%	58.5%		7.4%	58.5%		34.1%	34.1%		34.1%	34.1%	58.5%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	C-Max
Act Effct Green (s)	81.0	78.0		81.0	78.0			41.0			41.0	78.0
Actuated g/C Ratio	0.60	0.58		0.60	0.58			0.30			0.30	0.58
v/c Ratio	0.19	0.43		0.11	0.55			0.29			0.51	0.38
Control Delay	6.6	6.5		5.5	8.9			14.4			45.7	3.0
Queue Delay	0.0	0.2		0.0	0.1			0.0			0.0	0.0
Total Delay	6.6	6.7		5.5	9.0			14.4			45.7	3.0
LOS	Α	Α		Α	Α			В			D	Α
Approach Delay		6.7			9.0			14.4			17.2	
Approach LOS		Α			Α			В			В	
Queue Length 50th (ft)	0	105		3	357			35			113	0
Queue Length 95th (ft)	0	120		7	179			87			180	38
Internal Link Dist (ft)		335			362			155			114	
Turn Bay Length (ft)	90			90								100
Base Capacity (vph)	167	2927		236	2931			566			307	826
Starvation Cap Reductn	0	666		0	327			0			0	0
Spillback Cap Reductn	0	0		0	62			0			0	14
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.19	0.56		0.11	0.62			0.29			0.51	0.39

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 75

Synchro 9 Report Page 27 MS

36: Colorado St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background
Timing Plan: PM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.55 Intersection Signal Delay. 9.5 Intersection Capacity Utilization 88.6% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service E

Splits and Phases: 36: Colorado St & W. 15th St

MS Synchro 9 Report

37: N. Congress Ave & W. 15th St

2022 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

	-	*	•	•	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ተተኈ		ሻ	^ ^		7
Traffic Volume (vph)	1380	0	0	1198	0	1
Future Volume (vph)	1380	0	0	1198	0	1
Confl. Peds. (#/hr)		49	49		40	14
Confl. Bikes (#/hr)						4
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	1605	0	0	1393	0	1
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1605	0	0	1393	0	1
Turn Type	NA		pm+pt	NA		Perm
Protected Phases	2		1	6		
Permitted Phases			6			4
Detector Phase	2		1	6		4
Switch Phase				J		
Minimum Initial (s)	5.0		5.0	5.0		5.0
Minimum Split (s)	25.0		10.0	25.0		33.0
Total Split (s)	92.0		10.0	102.0		33.0
Total Split (%)	68.1%		7.4%	75.6%		24.4%
Yellow Time (s)	4.0		4.0	4.0		4.0
All-Red Time (s)	1.0		1.0	1.0		1.0
Lost Time Adjust (s)	0.0		0.0	0.0		0.0
, ,,			5.0			5.0
Total Lost Time (s)	5.0			5.0		5.0
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?	Yes		Yes	CM		14-
Recall Mode	C-Max		None	C-Max		Max
Act Effct Green (s)	97.0			97.0		28.0
Actuated g/C Ratio	0.72			0.72		0.21
v/c Ratio	0.44			0.38		0.00
Control Delay	4.5			5.9		0.0
Queue Delay	0.0			0.1		0.0
Total Delay	4.5			6.0		0.0
LOS	Α			Α		Α
Approach Delay	4.5			6.0		
Approach LOS	А			Α		
Queue Length 50th (ft)	81			171		0
Queue Length 95th (ft)	92			87		0
Internal Link Dist (ft)	362			356	125	
Turn Bay Length (ft)						
Base Capacity (vph)	3653			3653		391
Starvation Cap Reductn	365			882		0
Spillback Cap Reductn	0			230		0
Storage Cap Reductn	0			0		0
Reduced v/c Ratio	0.49			0.50		0.00
	0.17			0.00		0.00
Intersection Summary Cycle Length: 135						
	\F					
Actuated Cycle Length: 13						
Offset: 0 (0%), Referenced	d to phase 2:I	EBT and	l 6:WBTL	, Start of G	ireen	
Natural Cycle: 70						

MS Synchro 9 Report Page 29

37: N. Congress Ave & W. 15th St

2022 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.44 Intersection Signal Delay: 5.2 Intersection Capacity Utilization 58.3% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service B

Splits and Phases: 37: N. Congress Ave & W. 15th St

MS Synchro 9 Report

38: Brazos St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	٠	→	\rightarrow	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^		ሻ	ተ ተጉ			4	7		4	
Traffic Volume (vph)	5	1368	38	10	1055	5	133	3	117	65	3	87
Future Volume (vph)	5	1368	38	10	1055	5	133	3	117	65	3	87
Confl. Peds. (#/hr)	8		10	10		8	5		19	19		5
Confl. Bikes (#/hr)						1						1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	5	1471	41	11	1134	5	143	3	126	70	3	94
Shared Lane Traffic (%)												
Lane Group Flow (vph)	5	1512	0	11	1139	0	0	146	126	0	167	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4		4	8		
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0	32.0	32.0	32.0	
Total Split (s)	12.0	77.0		12.0	77.0		46.0	46.0	46.0	46.0	46.0	
Total Split (%)	8.9%	57.0%		8.9%	57.0%		34.1%	34.1%	34.1%	34.1%	34.1%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Act Effct Green (s)	96.6	96.6		99.1	99.1			23.6	23.6		23.6	
Actuated g/C Ratio	0.72	0.72		0.73	0.73			0.17	0.17		0.17	
v/c Ratio	0.02	0.42		0.04	0.31			0.85	0.36		0.74	
Control Delay	3.8	2.6		7.7	6.2 0.1			90.1	15.5 0.0		54.6	
Queue Delay	0.0 3.8	0.0 2.7		0.0 7.7	6.4			0.0 90.1	15.5		0.0 54.6	
Total Delay LOS	3.6 A	2. <i>1</i>		7.7 A	0.4 A			90.1 F	10.5 B		54.0 D	
	А	2.7		А	6.4			55.6	D		54.6	
Approach Delay Approach LOS		2.7 A			0.4 A			33.0 E			54.6 D	
Queue Length 50th (ft)	0	12		2	82			125	20		100	
Queue Length 95th (ft)	m1	49		m10	198			192	71		170	
Internal Link Dist (ft)	1111	356		11110	297			192	/ 1		273	
Turn Bay Length (ft)	100	330		40	291			199	50		213	
Base Capacity (vph)	346	3618		278	3730			300	530		358	
Starvation Cap Reductn	0	401		0	1319			0	0		0	
Spillback Cap Reductn	0	114		0	1319			0	2		1	
Storage Cap Reductin	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.01	0.47		0.04	0.47			0.49	0.24		0.47	
NEUUCEU WC RAIIU	0.01	0.47		0.04	0.47			0.49	0.24		0.47	

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 10 (7%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 65

MS Synchro 9 Report Page 31

38: Brazos St & W. 15th St

2022 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.85 Intersection Signal Delay: 11.5 Intersection Capacity Utilization 66.6%

Intersection LOS: B

ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 38: Brazos St & W. 15th St

MS Synchro 9 Report

39: San Jacinto Blvd & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

Lane Configurations		۶	\rightarrow	•	•	•	•	1	Ť	~	-	ţ	4
Traeffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Traffic Volume (vph)	ane Configurations		ተተ _ጉ		7	ተተተ						4413	
Confl. Peds. (#hr) Confl. Bikes (#hr) Confl.	Fraffic Volume (vph)	0		115	66		0	0	0	0	516		31
Confl. Bikes (#/hr)	-uture Volume (vph)	0	1667	115	66	858	0	0	0	0	516	636	31
Peak Hour Factor 0.93 0.	Confl. Peds. (#/hr)			12	12						32		
Adj. Flow (vph) 0 1792 124 71 923 0 0 0 0 555 684 5 5 6 8 4 1	Confl. Bikes (#/hr)												
Shared Lane Traffic (%) Lane Group Flow (vph)	Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.9
Turn Type NA pm+pt NA Perm NA Per Protected Phases 2 1 6 4 Detector Phase 2 1 6 4 4 Detector Phase 2 1 6 4 4 4 Switch Phase 8 2 1 6 4 4 4 Wilnimum Initial (s) 10.0 3.0 10.0 7.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Adj. Flow (vph)	0	1792	124	71	923	0	0	0	0	555	684	33
Turn Type													
Turn Type	Lane Group Flow (vph)	0	1916	0	71	923	0	0	0	0	0	1239	33
Protected Phases 2 1 1 6 4 Permitted Phases 6 4 Permitted Phases 6 4 Permitted Phases 2 1 1 6 4 Switch Phase Switch Phase Switch Phase Winimum Split (s) 10.0 3.0 10.0 7.0 7.0 Winimum Split (s) 80.0 15.0 95.0 40.0 40.0 4 Total Split (%) 59.3% 11.1% 70.4% 29.6% 29.6% 29.6% 29.6% 29.6% 29.6% 29.6% 29.6% 29.0			NA		pm+pt	NA					Perm	NA	Perr
Detector Phase 2			2			6						4	
Detector Phase 2	Permitted Phases				6						4		
Minimum Initial (s) 10.0 3.0 10.0 7.0 7.0 Minimum Split (s) 28.0 8.0 28.0 32.0 32.0 3 Total Split (s) 80.0 15.0 95.0 40.0	Detector Phase		2			6					4	4	
Minimum Split (s) 28.0 8.0 28.0 32.0 40.0	Switch Phase												
Minimum Split (s) 28.0 8.0 28.0 32.0 40.0	Minimum Initial (s)		10.0		3.0	10.0					7.0	7.0	7.
Total Split (s) 80.0 15.0 95.0 40.0 40.0 40.0 4 Total Split (%) 59.3% 11.1% 70.4% 29.6% 29													32.
Total Split (%) 59.3% 11.1% 70.4% 29.6% 29													40.
Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 Al. Red Time (s) 1.0													29.69
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0					4.0	4.0					4.0	4.0	4.
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None None None None Reducted g/C Ratio 0.59 0.67 0.67 0.67 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26													1.
Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead Lag Lead Lag Clad Lag Lead Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None None None None None Reducted g/C Ratio 0.59 0.67 0.67 0.26 0 0.2													0.
Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None Non					5.0								5.
Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None Non						0.0						0.0	0.
Recall Mode C-Max None C-Max None													
Act Effct Green (s) 79.6 90.0 90.0 35.0 3 Actuated g/C Ratio 0.59 0.67 0.67 0.26 0 V _C Ratio 0.65 0.43 0.27 1.24dl 0 Control Delay 8.6 32.5 6.2 71.0 4 Queue Delay 0.1 0.0 0.2 0.0 Total Delay 8.7 32.5 6.4 71.0 4 LOS A C A E Approach Delay 8.7 8.2 65.4 A Approach LOS A A A E Queue Length 50th (ft) 147 17 83 397 2 Queue Length 95th (ft) 264 m61 97 #502 1 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8ase Capacity (vph) 2967 196 3390 1261 4 Starvation Cap Reductn 20 0 33 0 0 Spillback Cap Reductn 0<						C-Max					None	None	Non
Actuated g/C Ratio 0.59 0.67 0.67 0.26 0 v/c Ratio 0.65 0.43 0.27 1.24dl 0 Control Delay 8.6 32.5 6.2 71.0 4 Queue Delay 0.1 0.0 0.2 0.0 Total Delay 8.7 32.5 6.4 71.0 4 LOS A C A E Approach Delay 8.7 8.2 65.4 Approach LOS A A A E C A E Queue Length 50th (ft) 147 17 83 397 2 2 Queue Length 95th (ft) 264 m61 97 \$502 3 2 Turn Bay Length (ft) 297 282 125 272 2 1 Turn Bay Length (ft) 2967 196 3390 1261 4 Starvation Cap Reductn 203 0 1365 0 0 Spillback C													35.
v/c Ratio 0.65 0.43 0.27 1.24dl 0 Control Delay 8.6 32.5 6.2 71.0 4 Queue Delay 0.1 0.0 0.2 0.0 Total Delay 8.7 32.5 6.4 71.0 4 LOS A C A E Approach Delay 8.7 8.2 65.4 Approach LOS A E Approach LOS A A A E E Queue Length 95th (ft) 147 17 83 397 2 Queue Length 95th (ft) 264 m61 97 #502 3 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8390 1261 4 Starvation Cap Reductn 203 0 1365 0 Spillback Cap Reductn 0 0 33 0 Storage Cap Reductn 0 0 0 0	. , ,												0.2
Control Delay 8.6 32.5 6.2 71.0 4 Queue Delay 0.1 0.0 0.2 0.0 Total Delay 8.7 32.5 6.4 71.0 4 LOS A C A E Approach Delay 8.7 8.2 65.4 Approach LOS A A A E Queue Length 50th (ft) 147 17 83 397 2 Queue Length 95th (ft) 264 m61 97 #502 3 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8ase Capacity (vph) 2967 196 3390 1261 4 Starvation Cap Reductn 203 0 1365 0 0 Spillback Cap Reductn 0 0 33 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.69 0.36 0.46 0.78 0													0.7
Queue Delay 0.1 0.0 0.2 0.0 Total Delay 8.7 32.5 6.4 71.0 4 LOS A C A E 65.4 Approach Delay 8.7 8.2 65.4 Approach LOS A A E Queue Length 50th (ft) 147 17 83 397 2 2 20 20 20 20 20 20 125 272 10 10 10 10 10 10 10 10 10 10 10 1261 4 4 126 4 4 10 4 10													44.
Total Delay													0.
A C A B E													44.
Approach Delay 8.7 8.2 65.4 Approach LOS A A A E Queue Length 50th (ft) 147 17 83 397 2 Queue Length 95th (ft) 264 m61 97 #502 3 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8ase Capacity (vph) 2967 196 3390 1261 4 Starvation Cap Reductn 203 0 1365 0 0 Spillback Cap Reductn 0 0 33 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.69 0.36 0.46 0.98 0													
Approach LOS A A B B Queue Length 50th (ft) 147 17 83 397 2 Queue Length 95th (ft) 264 m61 97 #502 2 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 Base Capacity (vph) 2967 196 3390 1261 4 Starvation Cap Reductn 203 0 1365 0 Spillback Cap Reductn 0 0 0 33 0 5 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					Ū								
Oueue Length 50th (ft) 147 17 83 397 2 Queue Length 95th (ft) 264 m61 97 #502 3 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8390 1261 4 Base Capacity (vph) 2967 196 3390 1261 4 Starvation Cap Reductn 203 0 1365 0 Spillback Cap Reductn 0 0 33 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.69 0.36 0.46 0.98 0													
Queue Length 95th (ft) 264 m61 97 #502 3 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 70 Base Capacity (vph) 2967 196 3390 1261 4 Starvation Cap Reductn 203 0 1365 0 Spillback Cap Reductn 0 0 33 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.69 0.36 0.46 0.98 0	- 1 1				17								20
Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8 1261 4 Base Capacity (vph) 2967 196 3390 1261 4 Starvation Cap Reductn 203 0 1365 0 Spillback Cap Reductn 0 0 33 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.69 0.36 0.46 0.98 0													32
Turn Bay Length (ft) 70 Base Capacity (vph) 2967 196 3390 1261 4 Starvation Cap Reductn 203 0 1365 0 0 5 5 9 5 1261 4					11101				125				02
Base Capacity (vph) 2967 196 3390 1261 4 Starvation Cap Reductn 203 0 1365 0 Spillback Cap Reductn 0 0 33 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.69 0.36 0.46 0.98 0					70	LOL			120				5
Starvation Cap Reductn 203 0 1365 0 Spillback Cap Reductn 0 0 33 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.69 0.36 0.46 0.98 0			2967			3390						1261	46
Spillback Cap Reductn 0 0 33 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.69 0.36 0.46 0.98 0													10
Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.69 0.36 0.46 0.98 0													
Reduced v/c Ratio 0.69 0.36 0.46 0.98 0													
Intersection Summary					-	-							0.7
	Intersection Summary												

MS Synchro 9 Report Page 33

39: San Jacinto Blvd & W. 15th St

2022 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.98

Intersection LOS: C ICU Level of Service D

Intersection Signal Delay: 28.5 Intellersection Capacity Utilization 73.8% ICU

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

Splits and Phases: 39: San Jacinto Blvd & W. 15th St

MS Synchro 9 Report

40: Trinity St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: PM

	۶	-	•	•	←	•	4	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተተ			ተተ _ጉ			414	7			
Traffic Volume (vph)	88	1868	0	0	750	146	179	309	283	0	0	0
Future Volume (vph)	88	1868	0	0	750	146	179	309	283	0	0	0
Confl. Peds. (#/hr)	2					2	7		8			
Confl. Bikes (#/hr)									8			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	92	1946	0	0	781	152	186	322	295	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	92	1946	0	0	933	0	0	508	295	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		35.0	35.0	35.0			
Total Split (s)	10.0	100.0			90.0		35.0	35.0	35.0			
Total Split (%)	7.4%	74.1%			66.7%		25.9%	25.9%	25.9%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			5.0	5.0			
Lead/Lag	Lead	0.0			Lag			0.0	0.0			
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	95.0	95.0			85.0		IVIGA	30.0	30.0			
Actuated g/C Ratio	0.70	0.70			0.63			0.22	0.22			
v/c Ratio	0.24	0.54			0.30			0.66	0.77			
Control Delay	6.2	7.2			15.2			52.6	53.7			
Queue Delay	0.0	0.2			0.0			0.0	0.1			
Total Delay	6.2	7.4			15.2			52.6	53.7			
LOS	Α.2	Α.			13.2 B			J2.0	D			
Approach Delay	А	7.3			15.2			53.0	D			
Approach LOS		7.5 A			13.2 B			D				
Queue Length 50th (ft)	20	159			178			215	200			
Queue Length 95th (ft)	m29	m168			193			278	#331			
Internal Link Dist (ft)	11129	282			641			149	#331		621	
Turn Bay Length (ft)	100	202			041			149			021	
	383	3578			3138			769	385			
Base Capacity (vph) Starvation Cap Reductn	383	714			3138			769	385			
									1			
Spillback Cap Reductn Storage Cap Reductn	0	156 0			0			0	0			
		0.68			0.30							
Reduced v/c Ratio	0.24	80.0			0.30			0.66	0.77			

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 75

MS Synchro 9 Report Page 35

40: Trinity St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: PM

MS Synchro 9 Report Page 36

TIA for Texas Capitol Complex Master Plan 2018 Update

ntersection	
ntersection Delay, s/veh	13.6
ntersection LOS	В

iviovement	FRU	EBL	FRI	EBR	WRU	WBL	WBI	WBR	NRO	NBL	NRI	MRK
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	6	105	14	0	64	202	10	0	15	91	154
Future Vol, veh/h	0	6	105	14	0	64	202	10	0	15	91	154
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	8	135	18	0	82	259	13	0	19	117	197
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		11.2				15.7				13.8		
HCM LOS		В				С				В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	6%	5%	23%	14%	
Vol Thru, %	35%	84%	73%	56%	
Vol Right, %	59%	11%	4%	31%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	260	125	276	133	
LT Vol	15	6	64	18	
Through Vol	91	105	202	74	
RT Vol	154	14	10	41	
Lane Flow Rate	333	160	354	171	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.499	0.265	0.557	0.278	
Departure Headway (Hd)	5.391	5.942	5.663	5.859	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	663	599	633	607	
Service Time	3.464	4.03	3.733	3.948	
HCM Lane V/C Ratio	0.502	0.267	0.559	0.282	
HCM Control Delay	13.8	11.2	15.7	11.2	
HCM Lane LOS	В	В	С	В	
HCM 95th-tile Q	2.8	1.1	3.4	1.1	

MS Synchro 9 Report Page 1

11: Colorado St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection Delay, s/veh					
Intersection LOS					
III.O. GOODION 200					
Movement	SBU	SBL	SBT	SBR	,
Lane Configurations	300	JDL	4	JUIN	
Traffic Vol, veh/h	0	18	74	41	
Future Vol, veh/h	0	18	74	41	
Peak Hour Factor	0.78	0.78	0.78	0.78	
Heavy Vehicles, %	2	2	2	2	
Mymt Flow	0	23	95	53	
Number of Lanes	0	0	1	0	
Approach		SB			
Opposing Approach		NB			
Opposing Lanes		1			
Conflicting Approach Left		WB			
Conflicting Lanes Left		1			
Conflicting Approach Right		EB			
Conflicting Lanes Right		1			
HCM Control Delay		11.2 B			
HCM LOS					

Intersection	
Intersection Delay, s/veh	10.5
Intersection LOS	В

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ર્ન				ĥ				†	
Traffic Vol, veh/h	0	0	279	0	0	0	334	0	0	0	0	0
Future Vol, veh/h	0	0	279	0	0	0	334	0	0	0	0	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	324	0	0	0	388	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach			EB				WB				NB	
Opposing Approach			WB				EB				SB	
Opposing Lanes			1				1				1	
Conflicting Approach Left			SB				NB				EB	
Conflicting Lanes Left			1				1				1	
Conflicting Approach Right			NB				SB				WB	
Conflicting Lanes Right			1				1				1	
HCM Control Delay			10.1				11				0	
HCM LOS			В				В				-	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	0%	
Vol Right, %	0%	0%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	279	334	13	
LT Vol	0	0	0	0	
Through Vol	0	279	334	0	
RT Vol	0	0	0	13	
Lane Flow Rate	0	324	388	15	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0.392	0.464	0.02	
Departure Headway (Hd)	5.479	4.352	4.303	4.841	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	831	843	739	
Service Time	3.514	2.364	2.303	2.874	
HCM Lane V/C Ratio	0	0.39	0.46	0.02	
HCM Control Delay	8.5	10.1	11	8	
HCM Lane LOS	N	В	В	Α	
HCM 95th-tile Q	0	1.9	2.5	0.1	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Marramant	CDII	CDI	CDT	CDD
Movement	SBU	SBL	SBT	SBR
Lane Configurations				7
Traffic Vol, veh/h	0	0	0	13
Future Vol, veh/h	0	0	0	13
Peak Hour Factor	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	0	15
Number of Lanes	0	0	0	1
Approach				SB
Opposing Approach				NB
Opposing Lanes				1
Conflicting Approach Left				WB
Conflicting Lanes Left				1
Conflicting Approach Right				EB
Conflicting Lanes Right				1
HCM Control Delay				8
HCM LOS				A

14: Brazos St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection			
Intersection Delay, s/veh			
Intersection LOS			
Movement	SBU	SBL	SBT
Lane Configurations			4
Traffic Vol. voh/h	0	97	57

Movement	SDU	SDL	SDI	SDK	
Lane Configurations			4		
Traffic Vol, veh/h	0	97	57	116	
Future Vol, veh/h	0	97	57	116	
Peak Hour Factor	0.86	0.86	0.86	0.86	
Heavy Vehicles, %	2	2	2	2	
Mvmt Flow	0	113	66	135	
Number of Lanes	0	0	1	0	
A		CD			
Approach		SB			

Approach	SB
Opposing Approach	NB
Opposing Lanes	1
Conflicting Approach Left	WB
Conflicting Lanes Left	1
Conflicting Approach Right	EB
Conflicting Lanes Right	1
HCM Control Delay	17.5
HCM LOS	С

itersection	
ntersection Delay, s/veh	21.9
ntersection LOS	С

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	40	274	25	0	11	64	25	0	187	163	0
Future Vol, veh/h	0	40	274	25	0	11	64	25	0	187	163	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	47	319	29	0	13	74	29	0	217	190	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		24.3				12.6				25.7		
HCM LOS		С				В				D		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	53%	12%	11%	36%
Vol Thru, %	47%	81%	64%	21%
Vol Right, %	0%	7%	25%	43%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	350	339	100	270
LT Vol	187	40	11	97
Through Vol	163	274	64	57
RT Vol	0	25	25	116
Lane Flow Rate	407	394	116	314
Geometry Grp	1	1	1	1
Degree of Util (X)	0.735	0.713	0.237	0.561
Departure Headway (Hd)	6.499	6.516	7.337	6.436
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	553	552	492	556
Service Time	4.58	4.594	5.337	4.525
HCM Lane V/C Ratio	0.736	0.714	0.236	0.565
HCM Control Delay	25.7	24.3	12.6	17.5
HCM Lane LOS	D	С	В	С
HCM 95th-tile Q	6.2	5.8	0.9	3.4

Intersection	
Intersection Delay, s/veh	15.8
Intersection LOS	С

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ĵ.				ર્ન					
Traffic Vol, veh/h	0	0	97	303	0	36	53	0	0	0	0	0
Future Vol, veh/h	0	0	97	303	0	36	53	0	0	0	0	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	102	319	0	38	56	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	0	0
Approach			EB			WB						
Opposing Approach			WB			EB						
Opposing Lanes			1			1						
Conflicting Approach Left			SB									
Conflicting Lanes Left			3			0						
Conflicting Approach Right						SB						
Conflicting Lanes Right			0			3						
HCM Control Delay			19.3			11.2						
HCM LOS			С			В						

Lane	EBLn1	WBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	0%	40%	0%	0%	0%
Vol Thru, %	24%	60%	100%	100%	0%
Vol Right, %	76%	0%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	400	89	269	269	23
LT Vol	0	36	0	0	0
Through Vol	97	53	269	269	0
RT Vol	303	0	0	0	23
Lane Flow Rate	421	94	283	283	24
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.669	0.181	0.478	0.478	0.024
Departure Headway (Hd)	5.723	6.943	6.083	6.083	3.617
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	632	516	594	594	986
Service Time	3.465	4.699	3.82	3.82	1.353
HCM Lane V/C Ratio	0.666	0.182	0.476	0.476	0.024
HCM Control Delay	19.3	11.2	14.3	14.3	6.4
HCM Lane LOS	С	В	В	В	Α
HCM 95th-tile Q	5.1	0.7	2.6	2.6	0.1

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4₽	7
Traffic Vol, veh/h	0	0	537	23
Future Vol, veh/h	0	0	537	23
Peak Hour Factor	0.95	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	0	565	24
Number of Lanes	0	0	2	1
Approach			SB	
Opposing Approach				
Opposing Lanes			0	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			14	
HCM LOS			В	

16: San Jacinto Blvd & W. 18th St

TIA for Texas Capitol Complex Master Plan 2018 Update

ntersection	
ntersection Delay, s/veh	10
ntersection LOS	Α

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	79	36	15	0	0	174	0	0	15	132	0
Future Vol, veh/h	0	79	36	15	0	0	174	0	0	15	132	0
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	96	44	18	0	0	212	0	0	18	161	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB					WB			NB		
Opposing Approach		WB					EB			SB		
Opposing Lanes		1					1			1		
Conflicting Approach Left		SB					NB			EB		
Conflicting Lanes Left		1					1			1		
Conflicting Approach Right		NB					SB			WB		
Conflicting Lanes Right		1					1			1		
HCM Control Delay		9.9					10.4			10.1		
HCM LOS		Α					В			В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	10%	61%	0%	0%	
Vol Thru, %	90%	28%	100%	46%	
Vol Right, %	0%	12%	0%	54%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	147	130	174	162	
LT Vol	15	79	0	0	
Through Vol	132	36	174	75	
RT Vol	0	15	0	87	
Lane Flow Rate	179	159	212	198	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.261	0.233	0.305	0.268	
Departure Headway (Hd)	5.245	5.293	5.167	4.891	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	687	679	698	737	
Service Time	3.265	3.321	3.186	2.91	
HCM Lane V/C Ratio	0.261	0.234	0.304	0.269	
HCM Control Delay	10.1	9.9	10.4	9.7	
HCM Lane LOS	В	Α	В	Α	
HCM 95th-tile Q	1	0.9	1.3	1.1	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	0	75	87
Future Vol, veh/h	0	0	75	87
Peak Hour Factor	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	0	91	106
Number of Lanes	0	0	1	0
	ŭ			
Approach			SB	
Opposing Approach			NB	
Opposing Lanes			1	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			9.7	
HCM LOS			Α	

24: E. 17th St & Brazos St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background Timing Plan: PM

ntersection	
ntersection Delay, s/veh	8.7
ntersection LOS	Α

Movement	EBU	EBL	EBT	WBU	WBT	WBR	SBU	SBL	SBR
	EBU	EDL	EDI	WDU		WDR	SDU		SDR
Lane Configurations			- 4		₩			Y	
Traffic Vol, veh/h	0	0	193	0	40	51	0	96	0
Future Vol, veh/h	0	0	193	0	40	51	0	96	0
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	238	0	49	63	0	119	0
Number of Lanes	0	0	1	0	1	0	0	1	0
Approach			EB		WB			SB	
Opposing Approach			WB		EB				
Opposing Lanes			1		1			0	
Conflicting Approach Left			SB					WB	
Conflicting Lanes Left			1		0			1	
Conflicting Approach Right					SB			EB	
Conflicting Lanes Right			0		1			1	
HCM Control Delay			9.1		7.8			8.9	
HCM LOS			Α		A			Α	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	0%	0%	100%
Vol Thru, %	100%	44%	0%
Vol Right, %	0%	56%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	193	91	96
LT Vol	0	0	96
Through Vol	193	40	0
RT Vol	0	51	0
Lane Flow Rate	238	112	119
Geometry Grp	1	1	1
Degree of Util (X)	0.288	0.13	0.161
Departure Headway (Hd)	4.354	4.155	4.903
Convergence, Y/N	Yes	Yes	Yes
Cap	827	864	732
Service Time	2.369	2.173	2.926
HCM Lane V/C Ratio	0.288	0.13	0.163
HCM Control Delay	9.1	7.8	8.9
HCM Lane LOS	Α	Α	Α
HCM 95th-tile Q	1.2	0.4	0.6

MS Synchro 9 Report Page 11

Intersection						
Int Delay, s/veh	0.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† 14	,	*	^	¥	
Traffic Vol, veh/h	659		33	1340	2	118
Future Vol, veh/h	659	34	33	1340	2	118
Conflicting Peds, #/hr	C	8 (8	0	0	12
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None	-	None
Storage Length			40	-	0	-
Veh in Median Storage, #			-	0	0	-
Grade, %	() -	-	0	0	-
Peak Hour Factor	94		94	94	94	94
Heavy Vehicles, %	2		2	2	2	2
Mvmt Flow	701	36	35	1426	2	126
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	, (745	0	1510	389
Stage 1			-	-	727	-
Stage 2			-	-	783	-
Critical Hdwy			4.14	-	6.84	6.94
Critical Hdwy Stg 1			-	-	5.84	-
Critical Hdwy Stg 2			-	-	5.84	-
Follow-up Hdwy			2.22	-	3.52	3.32
Pot Cap-1 Maneuver			859	-	111	610
Stage 1				-	439	
Stage 2		-		-	411	-
Platoon blocked, %				-		
Mov Cap-1 Maneuver		-	849	-	106	598
Mov Cap-2 Maneuver			-	-	106	
Stage 1		-	-	-	436	
Stage 2			-	-	394	-
Approach	EB	3	WB		NB	
HCM Control Delay, s	C)	0.2		13.4	
HCM LOS					В	
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL WBT			
Capacity (veh/h)	555		849 -			
HCM Lane V/C Ratio	0.23		0.041 -			
HCM Control Delay (s)	13.4		9.4 -			
HCM Lane LOS	В .		Α -			
HCM 95th %tile Q(veh)	0.9		0.1 -			
HOW FOUT FOUT Q(VCH)	0.7		5.1			

Intersection													
Int Delay, s/veh	36.1												
Movement	EBL	EBT	EBR	W	/BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		^	7			ની						414	
Traffic Vol, veh/h	0	20	12	2	202	96	0	0	0	0	36	1003	22
Future Vol, veh/h	0	20	12	2	202	96	0	0	0	0	36	1003	22
Conflicting Peds, #/hr	0	0	0		55	0	0	0	0	0	0	0	41
Sign Control	Stop	Stop	Stop	S	top	Stop	Stop	Stop	Stop	Stop	Free	Free	Free
RT Channelized		-	None		-	-	None	-	-	None	-	-	None
Storage Length	-	-	0		-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-		-	0	-	-	-	-	-	0	
Grade, %	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	97	97	97		97	97	97	97	97	97	97	97	97
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mvmt Flow	0	21	12	2	208	99	0	0	0	0	37	1034	23
Major/Minor	Minor2			Min	or1						Major		
Major/Minor		11/1	(04			4470					Major2		
Conflicting Flow All	-	1161	624	6	557	1172	-				0	0	(
Stage 1		1161	-		0	0	-				-	-	
Stage 2		0	-		557	1172	-				-	-	
Critical Hdwy		6.54	6.94	7	.54	6.54	-				4.14	-	
Critical Hdwy Stg 1		5.54	-		-	-	-				-	-	
Critical Hdwy Stg 2	-	-			.54	5.54	-					-	
Follow-up Hdwy	-	4.02	3.32		.52	4.02					2.22	-	
Pot Cap-1 Maneuver	0	194	428	3	350	191	0				-	-	
Stage 1	0	268	-		-	-	0				-	-	
Stage 2	0	-	-	2	120	264	0				-	-	
Platoon blocked, %												-	
Mov Cap-1 Maneuver		186	411		311	184	-				-	-	
Mov Cap-2 Maneuver	-	186	-	3	311	184	-				-	-	
Stage 1		258	-		-	-	-				-	-	
Stage 2		-	-	3	375	254	-				-	-	
Approach	EB			\	WB						SB		
HCM Control Delay, s	22				166						- 05		
HCM LOS	C				F								
TIOM 200	Ŭ.												
Minor Lane/Major Mvmt	EBLn1	EBLn2V	VBLn1	SBL S	ВТ	SBR							
Capacity (veh/h)	186	411	254	-	-	-							
HCM Lane V/C Ratio	0.111	0.03	1.21	-	-	-							
HCM Control Delay (s)	26.8	14	166	-	-	-							
HCM Lane LOS	D	В	F	-	-	-							
HCM 95th %tile Q(veh)	0.4	0.1	14.6	-	-	-							

Int Delay, s/veh	42.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		4			î,		۲	ተ ተጉ				
Traffic Vol, veh/h	11	53	0	0	171	75	65	1015	77	0	0	
Future Vol, veh/h	11	53	0	0	171	75	65	1015	77	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	21	25	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	Non
Storage Length	-	-	-	-	-	-	0	-	-	-	-	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	-	
Grade, %		0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	12	56	0	0	180	79	68	1068	81	0	0	
Major/Minor	Minor2			Minor1			Major1					
Conflicting Flow All	700	1311	-	-	1271	596	25	0	0			
Stage 1	25	25	-	-	1246	-	-	-	-			
Stage 2	675	1286	-	-	25	-	-	-	-			
Critical Hdwy	6.44	6.54	-	-	6.54	7.14	5.34	-	-			
Critical Hdwy Stg 1	-	-	-	-	5.54	-	-	-	-			
Critical Hdwy Stg 2	6.74	5.54	-	-	-	-	-	-	-			
Follow-up Hdwy	3.82	4.02	-	-	4.02	3.92	3.12	-	-			
Pot Cap-1 Maneuver	382	158	0	0	~ 167	383	1124	-	-			
Stage 1		-	0	0	244	-	-	-	-			
Stage 2	373	233	0	0	-	-	-	-	-			
Platoon blocked, %								-	-			
Mov Cap-1 Maneuver		145			~ 153	383	1124					
Mov Cap-2 Maneuver		145			~ 153		-					
Stage 1					229							
Stage 2	60	219				-						
Approach	EB			WB			NB					
HCM Control Delay, s				250.4			0.5					
HCM LOS	-			F								
Minor Lane/Major Mvmt	NBL	NBT	NBR EBL	n1WBLn1								
Capacity (veh/h)	1124	-		- 187								
HCM Lane V/C Ratio	0.061	-	-	- 1.385								
HCM Control Delay (s)	8.4	-		- 250.4								
HCM Lane LOS	Α			- F								
HCM 95th %tile Q(veh)	0.2		-	- 15.3								
Notes												

Intersection									
Int Delay, s/veh	4.8								
Movement	EBL	EBT				WBT	WBR	SBL	SBR
Lane Configurations		ની				1>		W	
Traffic Vol, veh/h	24	284				348	20	97	116
Future Vol. veh/h	24	284				348	20	97	116
Conflicting Peds, #/hr	0	0				0	0	0	0
Sign Control	Free	Free				Free	Free	Stop	Stop
RT Channelized	-	None				-	None	-	None
Storage Length		-				-	-	0	-
Veh in Median Storage,	# -	0				0	-	0	
Grade, %		0				0	-	0	
Peak Hour Factor	92	92				92	92	92	92
Heavy Vehicles, %	2	2				2	2	2	2
Mymt Flow	26	309				378	22	105	126
								.00	,20
Major/Minor	Major1				N.A	ajor2		Minor2	
Conflicting Flow All	400	0			IVI	ajui Z	0	750	389
Stage 1	400	-				-	0	389	309
Stage 2						-		361	
Critical Hdwy	4.12	-				-	-	6.42	6.22
Critical Hdwy Stg 1	4.12					-		5.42	0.22
Critical Hdwy Stg 2	-					-		5.42	
Follow-up Hdwy	2.218							3.518	3.318
Pot Cap-1 Maneuver	1159	-						3.316	659
Stage 1	1109					-		685	009
Stage 2						-		705	
Platoon blocked, %								705	-
Mov Cap-1 Maneuver	1159					-		369	659
Mov Cap-1 Maneuver	1109							369	009
Stage 1						-		685	
						-		686	
Stage 2		-						000	
A	FD					MP		CD	
Approach	EB					WB		SB	
HCM Control Delay, s	0.6					0		19	
HCM LOS								С	
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR S					
Capacity (veh/h)	1159	-	-	-	485				
HCM Lane V/C Ratio	0.023	-	-	-	0.477				
HCM Control Delay (s)	8.2	0	-		19				
HCM Lane LOS	Α	Α	-	-	С				
HCM 95th %tile Q(veh)	0.1	-	-	-	2.5				

MS Synchro 9 Report Page 4

EBR

145

145

0

Stop

None

92

158

84

6.22

3.318

975

975

NBL NBT EBLn1 SBT SBR

0.588

- 716

0 16.9

A C

- 3.9

NBL NBT

30 199

Free Free

- None

- 0

33 216

0

30

0 0

92 92

2 2

Major1

111 0

4.12

2.218

1479

1479

€199

9.4

EBL

242

242

Stop

0

0

92

263

Minor2

366

84

282

6.42

5.42

5.42

634

939

766

618

618

939

747 EB

16.9

1479

0.022

7.5

Α

3.518

Intersection
Int Delay, s/veh

Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, #

Traffic Vol, veh/h

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1 Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Capacity (veh/h)

HCM Lane LOS

Approach
HCM Control Delay, s

HCM LOS

Follow-up Hdwy

Grade, %

Mymt Flow

Major/Minor

Critical Hdwy

SBT SBR

50

₽

52

52 50

0 0

0

92 92

2 2

57 54

0

Major2

Free Free

- None

2022 Background

Timing Plan: PM

17: Trinity St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection Int Delay, s/veh 7	.1												
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	LDL	4	LDIN		WDL	7>	WDIX	NDL Y	^	NDIX	JDL	301	JU
Traffic Vol, veh/h	180	0	0		0	0	0	173	595	0	0	0	
Future Vol. veh/h	180	0	0		0	0	0	173	595	0	0	0	
Conflicting Peds, #/hr	0	0	18		0	0	0	21	0,0	0	0	0	
Sign Control	Stop	Stop	Stop		Free	Free	Free	Free	Free	Free	Stop	Stop	Sto
RT Channelized	J.0p	- -	None		-	-	None	1100	-	None	310p	Jiop -	Nor
Storage Length			-				-	115		-			1401
Veh in Median Storage, #		0				0		-	0				
Grade, %		0				0			0	-		0	
Peak Hour Factor	85	85	85		85	85	85	85	85	85	85	85	8
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	C
Mymt Flow	212	0	0		0	0	0	204	700	0	0	0	
WWITH THOW	212	U	U		U	U	U	204	700	U	U	U	
Major/Minor	Minor2			M	ajor2			Major1					
Conflicting Flow All	709	1129	-		-	-	0	22	0	-			
Stage 1	22	22	-		-		-	-	-	-			
Stage 2	687	1107	-				-	-	-	-			
Critical Hdwy	6.08	6.53	-		-		-	4.13	-	-			
Critical Hdwy Stg 1	5.43	5.53	-				-	-	-	-			
Critical Hdwy Stg 2	6.03	5.53	-		-		-	-	-	-			
Follow-up Hdwy	3.669	4.019	-				-	2.219	-	-			
Pot Cap-1 Maneuver	416	203	0		0	-		1593		0			
Stage 1	960	877	0		0			-		0			
Stage 2	432	285	0		0	-		-		0			
Platoon blocked, %			-		-								
Mov Cap-1 Maneuver	348	0	-		-	-		1593					
Mov Cap-2 Maneuver	348	0	-					-					
Stage 1	941	0											
Stage 2	369	0											
Stage 2	307												
Approach	EB				WB			NB					
HCM Control Delay, s	30.2				0			1.7					
HCM LOS	D												
	NBI	NET	ED! 4	WDT.									
Minor Lane/Major Mvmt	NBL		EBLn1		WBR								
Capacity (veh/h)	1593	-	348	-	-								
HCM Lane V/C Ratio	0.128		0.609	-	-								
HCM Control Delay (s)	7.6	-	30.2	-	-								
HCM Lane LOS	Α	-	D	-	-								
HCM 95th %tile Q(veh)	0.4	-	3.8	-	-								

MS Synchro 9 Report
Page 5

MS Synchro 9 Report
Page 6

Intersection												
Int Delay, s/veh	69.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	7		ની						414	7
Traffic Vol, veh/h	0	147	159	36	43	0	0	0	0	106	1013	20
Future Vol, veh/h	0	147	159	36	43	0	0	0	0	106	1013	20
Conflicting Peds, #/hr	0	0	19	0	0	0	0	0	0	96	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	None	-	-	None	-	-	None	-	-	
Storage Length	-	-	40		-	-	-	-	-	-	-	50
Veh in Median Storage, #		0	-	-	0	-	-	-	-	-	0	-
Grade, %	-	0	-	-	U	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	173	187	42	51	0	0	0	0	125	1192	24
Major/Minor	Minor2			Minor1						Major2		
Conflicting Flow All	-	1537	615	1047	1537	-				96	0	0
Stage 1		1441	-	96	96	-				-	-	-
Stage 2		96	-	951	1441	-				-	-	-
Critical Hdwy	-	6.54	6.94	7.54	6.54	-				4.14	-	-
Critical Hdwy Stg 1	-	5.54	-	-	-	-				-	-	-
Critical Hdwy Stg 2	-	-	-	6.54	5.54	-				-	-	-
Follow-up Hdwy	-	4.02	3.32	3.52	4.02	-				2.22	-	-
Pot Cap-1 Maneuver	0	~ 115	434	182	115	0				1496	-	-
Stage 1	0	196	-	-	-	0				-	-	-
Stage 2	0	-	-	279	196	0				-	-	-
Platoon blocked, %											-	-
Mov Cap-1 Maneuver		~ 77	434	-	77	-				1496	-	-
Mov Cap-2 Maneuver	-	~ 77	-	-	77	-				-	-	-
Stage 1	-	~ 145	-		-	-				-	-	-
Stage 2	-	-	-	-	145	-				-	-	-
Approach	EB			WB						SB		
HCM Control Delay, s	\$ 340.1									1.2		
HCM LOS	F			-								
Minor Lane/Major Mvmt	EBLn1	FBI n2\	NBI n1	SBL SBT	SBR							
Capacity (veh/h)	77	434	-	1496 -	JDIT.							
HCM Lane V/C Ratio		0.431		0.083 -								
HCM Control Delay (s)	\$ 686.9	19.4		7.6 0.5								
HCM Lane LOS												
	-											
Notes	10	2.1		0.0								
M Lane LOS M 95th %tile Q(veh)	\$ 000.9 F 16	C 2.1	-	A A 0.3 -								

Intersection						
Intersection Int Delay, s/veh	4					
iiii Deiay, S/veii	•					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ			ተተኩ		
Traffic Vol, veh/h	228	0	20	540	0	0
Future Vol, veh/h	228	0	20	540	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-	0		-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	275	0	24	651	0	0
Major/Minor	Minor2		Major1			
Conflicting Flow All	308		0	0		
Stage 1	0		-	-		
Stage 2	308					
Critical Hdwy	5.74		5.34	-		
Critical Hdwy Stg 1	-		-			
Critical Hdwy Stg 2	6.04			-		
Follow-up Hdwy	3.82		3.12			
Pot Cap-1 Maneuver	676	0	0.12			
Stage 1	-	0		-		
Stage 2	659	0		-		
Platoon blocked, %	007	Ü				
Mov Cap-1 Maneuver	676			-		
Mov Cap-2 Maneuver	676	-				
Stage 1	-					
Stage 2	659					
olago L	007					
A	ED.		ND			
Approach	13.9		NB			
HCM Control Delay, s						
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1				
Capacity (veh/h)	-	- 676				
HCM Lane V/C Ratio	-	- 0.406				
HCM Control Delay (s)	-	- 13.9				
HCM Lane LOS	-	- B				
HCM 95th %tile Q(veh)	-	- 2				

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Intersection
Int Delay, s/veh Movement

MS

2022 Background Timing Plan: PM

Synchro 9 Report Page 9

EBL EBT EBR

29: Colorado St & E. 16th St	
TIA for Texas Capitol Complex Master Plan 2018 Update	

*	5.4													
Movement	EBL	EBT	EBR	WI	BL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	
Lane Configurations		4				4				4			4	
Traffic Vol, veh/h	6	70	14		18	36	8		15	67	41	10	367	
Future Vol, veh/h	6	70	14		18	36	8		15	67	41	10	367	
Conflicting Peds, #/hr	0	0	0		0	0	15		87	0	0	0	0	
Sign Control	Stop	Stop	Stop	St	ор	Stop	Stop		Free	Free	Free	Free	Free	
RT Channelized	-	-	None		-	-	None		-	-	None	-	-	
Storage Length	-	-	-		-	-	-		-	-	-	-	-	
Veh in Median Storage, #	-	0	-		-	0	-		-	0	-	-	0	
Grade, %	-	0	-		-	0	-		-	0	-	-	0	
Peak Hour Factor	78	78	78		78	78	78		78	78	78	78	78	
Heavy Vehicles, %	2	2	2		2	2	2		2	2	2	2	2	
Mvmt Flow	8	90	18	:	23	46	10		19	86	53	13	471	
Major/Minor	Minor2			Mino				M	ajor1			Major2		
Conflicting Flow All	803	786	584		27	787	127		610	0	0	138	0	
Stage 1	609	609	-		51	151	-		-	-	-	-	-	
Stage 2	194	177	-		76	636	-		-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22		12	6.52	6.22		4.12	-	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	-		12	5.52	-		-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-		12	5.52	-		-	-	-	-	-	
Follow-up Hdwy		4.018				4.018		2	2.218	-	-	2.218	-	
Pot Cap-1 Maneuver	302	324	512		39	324	923		969	-	-	1446	-	
Stage 1	482	485	-		51	772	-		-	-	-	-	-	
Stage 2	808	753	-	50	03	472	-		-	-	-	-	-	
Platoon blocked, %										-	-		-	
Mov Cap-1 Maneuver	231	287	470		41	287	910		969	-	-	1425	-	
Mov Cap-2 Maneuver	231	287	-	2	41	287	-		-	-	-	-	-	
Stage 1	433	439			33	756	-		-	-	-	-	-	
Stage 2	724	737	-	3	80	427	-		-	-	-	-	-	
Approach	En			1.4	VΒ				ND			CD		
Approach HCM Control Delay, s	EB 24.3				vв l.5				NB 1.1			SB 0.2		
HCM LOS	24.3 C			21	C				1.1			0.2		
110111 200	Ü													
Minor Lane/Major Mvmt	NBL	NBT	NBR I	EBLn1WBL		SBL	SBT	SBR						
Capacity (veh/h)	969	-	-		97	1425	-	-						
HCM Lane V/C Ratio	0.02	-	-	0.385 0.2		0.009	-	-						
HCM Control Delay (s)	8.8	0		24.3 21	1.5	7.5	0	-						
HCM Lane LOS	Α	Α	-	С	С	Α	Α	-						
HCM 95th %tile Q(veh)	0.1			1.7 1	1.1	0								

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ĥ			ર્ન						414	7
Traffic Vol, veh/h	0	20	12	87	96	0	0	0	0	27	1268	23
Future Vol, veh/h	0	20	12	87	96	0	0	0	0	27	1268	23
Conflicting Peds, #/hr	0	0	0	24	0	0	0	0	0	0	0	42
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	0
Veh in Median Storage, #	-	0	-	-	0	-	-	-	-	-	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	87	87	87	87	87	87	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	23	14	100	110	0	0	0	0	31	1457	26
Major/Minor	Minor2			Minor1						Major2		
Conflicting Flow All	-	1562	795	826	1562					0	0	0
Stage 1		1562	- 175	020	0	-				-	-	
Stage 2		0		826	1562							
Critical Hdwy		6.54	6.94	7.54	6.54					4.14		
Critical Hdwy Stg 1		5.54	0.74	7.34	0.54					4.14		
Critical Hdwy Stg 2		J.J7 -		6.54	5.54							
Follow-up Hdwy		4.02	3.32	3.52						2.22		
Pot Cap-1 Maneuver	0	111	330	264	111	0				2.22		
Stage 1	0	171	-	204		0						
Stage 2	0	- 171		332	171	0						
Platoon blocked, %	U			332	171	U						
Mov Cap-1 Maneuver		107	317	211	~ 107	_				_	-	
Mov Cap-2 Maneuver		107	-	211	~ 107	-				-		
Stage 1		164		2	-						-	
Stage 2		-		273	164					_		
Stage 2				275	101							
Approach	EB			WB						SB		
HCM Control Delay, s	39			\$ 317.5								
HCM LOS	E			F								
Minor Lane/Major Mvmt	EBLn1\	VRI n1	SBL	SBT SBR								
Capacity (veh/h)	142	140										
HCM Lane V/C Ratio	0.259		-									
HCM Control Delay (s)		317.5										
HCM Lane LOS	E	F										
HCM 95th %tile Q(veh)	1	14.3	-									
Notes												
~: Volume exceeds capacity	/ \$: De	elay exc	eeds 30	00s +: Com	nputatio	n Not D	efined *: Al	l major v	volume i	n platoon		

Synchro 9 Report Page 10 MS

EBL EBT EBR

0

0

2 2

0

- 6.52

- 5.52

- 5.52

- 4.018

0 895

0 895

895

895

NBT EBLn1WBLn1 SBT

895 895

- 0.171 0.172

- 9.9 9.9

- 0.6 0.6

A A

- 895

EB

9.9

0 153

81 81 81

Minor2

- None

Stop Stop Stop

0

0

0

0

0 124

0 124

WBL WBT WBR

125

Stop Stop Stop

- - None

0

81 81

0

0

0 0 0

81 81 81

0

0

Free Free Free

0

2

0

0

0

- None

0 125

58 0 25

81

2 2 2

Minor1

0 154

- 6.52

- 5.52

- 5.52

- 4.018

0 895

- 895

- 895

9.9

0 -

0 895 0

Intersection
Int Delay, s/veh
Movement

Lane Configurations Traffic Vol, veh/h

Conflicting Peds, #/hr

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length Veh in Median Storage, # Grade, %

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1 Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Capacity (veh/h)

HCM Lane LOS

Approach
HCM Control Delay, s

HCM LOS

Follow-up Hdwy

Mymt Flow

Major/Minor

Critical Hdwy

0 0 0

81

2 2

Free Free Free

- - None

0

0

81 81

2022 Background

Timing Plan: PM

Intersection						
	.9					
Movement	EBT	EBR	WE	L WBT	NBL	NBR
Lane Configurations	1-			4	¥	
Traffic Vol, veh/h	81	0	1	5 45	37	0
Future Vol, veh/h	81	0	1	5 45	37	0
Conflicting Peds, #/hr	0	0		1 0	0	0
Sign Control	Free	Free	Fre	e Free	Stop	Stop
RT Channelized	-	None		- None	-	None
Storage Length	-	-			0	-
Veh in Median Storage, #	0	-		- 0	0	-
Grade, %	0	-		- 0	0	
Peak Hour Factor	58	58	5	8 58	58	58
Heavy Vehicles, %	2	2		2 2	2	2
Mvmt Flow	140	0	2	6 78	64	0
Major/Minor	Major1		Major	2	Minor1	
Conflicting Flow All	0	0	14		270	141
Stage 1					141	-
Stage 2		-			129	
Critical Hdwy	-	-	4.1	2 -	7.12	6.22
Critical Hdwy Stg 1		-			6.12	-
Critical Hdwy Stg 2	-	-			6.12	-
Follow-up Hdwy	-	-	2.21	8 -	3.518	3.318
Pot Cap-1 Maneuver	-	-	144	2 -	683	907
Stage 1	-	-			862	-
Stage 2	-				875	-
Platoon blocked, %				-		
Mov Cap-1 Maneuver			144	2 -	672	906
Mov Cap-2 Maneuver	-	-			672	
Stage 1					862	-
Stage 2	-	-			858	
-						
Approach	EB		W	В	NB	
HCM Control Delay, s	0		1.	9	10.9	
HCM LOS					В	
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL WB	T		
Capacity (veh/h)	672 -	-	1442	-		
HCM Lane V/C Ratio	0.095 -		0.018			
HCM Control Delay (s)	10.9 -			0		
HCM Lane LOS	В -		A	A		
HCM 95th %tile Q(veh)	0.3 -		0.1	-		
4(1011)	2.0					

MS	Synchro 9 Repo
	Page 1

EBR

62

62

0

0

89

2

70

732

7.14

3.92

312

308

Stop

None

NBL NBT

0 0

0 0

0

89 89

2 2

0 0

Free Free

- None

0

0.9

EBL

0

0

0

89

0

0

EB 20.1

308 0.226

20.1

С

0.9

EBLn1 SBT SBR

. .

Minor2

Stop

Intersection Int Delay, s/veh

Movement

Lane Configurations Traffic Vol, veh/h

Conflicting Peds, #/hr

Veh in Median Storage, # Grade, %

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1 Stage 2 Critical Hdwy

Critical Hdwy Stg 1 Critical Hdwy Stg 2

Follow-up Hdwy Pot Cap-1 Maneuver

Stage 1

Stage 2 Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver Stage 1 Stage 2

Approach HCM Control Delay, s

Minor Lane/Major Mvmt

Capacity (veh/h) HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

HCM LOS

Mymt Flow

Major/Minor

SBT SBR **↑↑↑** 1277

0 15

- None

Free Free

0

89 89

> 2 2

1435 35

Major2

1277 31

31

50

0

Intersection							
Int Delay, s/veh	0						
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Lane Configurations	WDL	WDK		1 ND 1	NDK	JDL	अवा
Traffic Vol, veh/h	T	0		68	0	0	399
Future Vol, veh/h	0	0		68	0	0	399
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized	-	None		-	None	-	None
Storage Length	0	-			-		-
Veh in Median Storage, #	0	-		0		-	0
Grade. %	0	-		0	-	-	0
Peak Hour Factor	92	92		92	92	92	92
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	0	0		74	0	0	434
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	508	74		0	0	74	0
Stage 1	74	, ,		-	-	, ,	-
Stage 2	434						
Critical Hdwy	6.42	6.22				4.12	
Critical Hdwy Stg 1	5.42	0.22				1.12	
Critical Hdwy Stg 2	5.42				-		-
Follow-up Hdwy	3.518	3.318				2.218	-
Pot Cap-1 Maneuver	525	988		-		1526	
Stage 1	949	-		-		-	
Stage 2	653	-		-		-	
Platoon blocked, %				-			
Mov Cap-1 Maneuver	525	988			-	1526	-
Mov Cap-2 Maneuver	525				-		-
Stage 1	949				-		-
Stage 2	653						
ŭ.							
Approach	WB			NB		SB	
HCM Control Delay, s	0			0		0	
HCM LOS	A						
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	-		1526	-			
HCM Lane V/C Ratio			-				
HCM Control Delay (s)		- 0	0				
HCM Lane LOS	-	- A	A				
HCM 95th %tile Q(veh)			0				

MS	Synchro 9 Report Page 13	MS	

EBR

0

0

0

Stop

None

92

2

0

434

6.22

3.318

622

622

NBL NBT EBLn1 SBT SBR

- 0 - -- A - -

NBL NBT

0

0 68

0 0

92 92

2 2

0 74

Major1

434 0

4.12

2.218

1126

1126

Free Free

- None

0

0

€1 68

EBL

¥

0

0

0

0

92

Minor2

508

434

6.42

5.42

5.42

525

653

949

525

525

653

949

0

3.518

74

Stop

Intersection
Int Delay, s/veh
Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, #

Traffic Vol, veh/h

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt

Capacity (veh/h)
HCM Lane V/C Ratio
HCM Control Delay (s)

HCM Lane LOS HCM 95th %tile Q(veh)

Approach HCM Control Delay, s

HCM LOS

Follow-up Hdwy

Grade, %

Mymt Flow

Major/Minor

Critical Hdwy

SBT SBR

Þ

399

399 0

0 0

0

92 92

2 2

434 0

Major2

Free Free

- None

0

•

Intersection								
Int Delay, s/veh	0							
Movement		EBT	EBR		WBL	WBT	NBI	NBR
Lane Configurations		f)				4	Ϋ́	
Traffic Vol, veh/h		96	0		0	92	(
Future Vol. veh/h		96	0		0	92	(
Conflicting Peds, #/hr		0	0		0	0	(
Sign Control		Free	Free		Free	Free	Stop	
RT Channelized		-	None		-	None		- None
Storage Length			-			-	(
Veh in Median Storage, #		0	-		-	0	(
Grade. %		0				0	() -
Peak Hour Factor		92	92		92	92	92	92
Heavy Vehicles, %		2	2		2	2	2	
Mymt Flow		104	0		0	100	() 0
Major/Minor	M	lajor1		N	/lajor2		Minor1	l
Conflicting Flow All		0	0		104	0	204	
Stage 1		-	-		-	-	104	-
Stage 2		-			-	-	100) -
Critical Hdwy		-	-		4.12	-	6.42	6.22
Critical Hdwy Stg 1		-			-	-	5.42	2 -
Critical Hdwy Stg 2		-	-		-	-	5.42	2 -
Follow-up Hdwy		-	-		2.218	-	3.518	3.318
Pot Cap-1 Maneuver		-	-		1488	-	784	951
Stage 1		-	-		-	-	920) -
Stage 2		-	-		-		924	1 -
Platoon blocked, %		-	-			-		
Mov Cap-1 Maneuver		-	-		1488	-	784	
Mov Cap-2 Maneuver		-	-		-	-	784	1 -
Stage 1		-	-		-	-	920) -
Stage 2		-	-		-	-	924	1 -
Approach		EB			WB		NE	3
HCM Control Delay, s		0			0		()
HCM LOS							F	١
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT			
Capacity (veh/h)	-	-	-	1488	-			
HCM Lane V/C Ratio	-	-	-	-	-			
HCM Control Delay (s)	0	-	-	0	-			
HCM Lane LOS	Α	-	-	Α	-			
HCM 95th %tile Q(veh)	-	-	-	0	-			

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	\rightarrow	•	←	•	4	†	1	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† î>			^	7				ሻ	^	7
Traffic Volume (vph)	67	793	406	0	553	329	0	0	0	289	724	132
Future Volume (vph)	67	793	406	0	553	329	0	0	0	289	724	132
Confl. Peds. (#/hr)	28		19	19		28				29		19
Confl. Bikes (#/hr)			1			1						13
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	71	844	432	0	588	350	0	0	0	307	770	140
Shared Lane Traffic (%)												
Lane Group Flow (vph)	71	1276	0	0	588	350	0	0	0	307	770	140
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases						6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase												
Minimum Initial (s)	2.0	15.0			15.0	10.0				10.0	5.0	5.0
Minimum Split (s)	7.0	27.0			34.0	15.0				15.0	32.0	32.0
Total Split (s)	18.0	75.0			57.0	45.0				45.0	45.0	45.0
Total Split (%)	15.0%	62.5%			47.5%	37.5%				37.5%	37.5%	37.5%
Yellow Time (s)	4.0	4.0			4.0	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag				Lead							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max	None				None	Max	Max
Act Effct Green (s)	11.6	70.0			55.6	95.6				40.0	40.0	40.0
Actuated g/C Ratio	0.10	0.58			0.46	0.80				0.33	0.33	0.33
v/c Ratio	0.42	0.66			0.36	0.27				0.52	0.65	0.25
Control Delay	57.9	18.2			24.1	1.4				36.1	37.2	12.6
Queue Delay	0.0	0.0			0.0	0.1				0.0	0.0	0.0
Total Delay	57.9	18.2			24.1	1.5				36.1	37.2	12.6
LOS	E	В			С	Α				D	D	В
Approach Delay		20.3			15.6						34.1	
Approach LOS		С			В						С	
Queue Length 50th (ft)	52	321			161	2				191	266	27
Queue Length 95th (ft)	100	395			234	47				282	335	75
Internal Link Dist (ft)		228			45			159			210	
Turn Bay Length (ft)	160									130		120
Base Capacity (vph)	191	1948			1639	1275				590	1179	564
Starvation Cap Reductn	0	0			0	137				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.37	0.66			0.36	0.31				0.52	0.65	0.25

Intersection Summary

Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 75

MS Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

Splits and Phases: 1: Martin Luther King Jr. Blvd & Guadalupe St

MS Synchro 9 Report

Page 2

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

	-	•	•	_	1		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	^			^	77	7	
Traffic Volume (vph)	1082	0	0	722	368	223	
Future Volume (vph)	1082	0	0	722	368	223	
Confl. Peds. (#/hr)						11	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	
Adj. Flow (vph)	1258	0	0	840	428	259	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	1258	0	0	840	428	259	
Turn Type	NA			NA	Prot	Perm	
Protected Phases	2			6	8		
Permitted Phases	-			J		3	
Detector Phase	2			6	8	3	
Switch Phase	_			- 0	- 3	- 3	
Minimum Initial (s)	10.0			10.0	5.0	5.0	
Minimum Split (s)	30.0			15.0	10.0	29.0	
Total Split (s)	87.0			87.0	33.0	33.0	
Total Split (%)	72.5%			72.5%	27.5%	27.5%	
Yellow Time (s)	4.0			4.0	4.0	4.0	
All-Red Time (s)	1.0			1.0	1.0	1.0	
Lost Time Adjust (s)	0.0			0.0	0.0	0.0	
Total Lost Time (s)	5.0			5.0	5.0	5.0	
	5.0			5.0	5.0	5.0	
Lead/Lag							
Lead-Lag Optimize?	C M			C M	Marri	N.A	
Recall Mode	C-Max			C-Max	Max	Max	
Act Effct Green (s)	82.0			82.0	28.0	28.0	
Actuated g/C Ratio	0.68			0.68	0.23	0.23	
v/c Ratio	0.52			0.35	0.53	0.60	
Control Delay	8.5			5.8	60.7	50.4	
Queue Delay	0.4			0.0	0.0	0.0	
Total Delay	8.8			5.8	60.7	50.4	
LOS	Α			Α	E	D	
Approach Delay	8.8			5.8	56.8		
Approach LOS	Α			Α	Е		
Queue Length 50th (ft)	156			60	179	149	
Queue Length 95th (ft)	168			67	213	163	
Internal Link Dist (ft)	272			277	337		
Turn Bay Length (ft)							
Base Capacity (vph)	2418			2418	801	431	
Starvation Cap Reductn	552			0	0	0	
Spillback Cap Reductn	0			0	0	0	
Storage Cap Reductn	0			0	0	0	
Reduced v/c Ratio	0.67			0.35	0.53	0.60	
	0.07			0.00	0.00	0.00	
Intersection Summary Cycle Length: 120							
Actuated Cycle Length: 12	٥						
Offset: 0 (0%), Referenced		ERT and	6·M/RT €	Start of C	roon		
	i to priase 2:t	יםוומום	U.VVDI, S	oldii Ui G	reen		
Natural Cycle: 60	P t t						
Control Type: Actuated-Co	ordinated						

Synchro 9 Report Page 3 MS

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

Maximum v/c Ratio: 0.60		
Intersection Signal Delay: 19.7	Intersection LOS: B	
Intersection Capacity Utilization 58.2%	ICU Level of Service B	
Analysis Period (min) 15		

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

J → Ø2 (R)	d	Ø3
87 s	33 s	
Ø6 (R)	1	Ø8
87 s	33 s	

Synchro 9 Report Page 4 MS

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	-	•	•	•	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ 1>		ሻ	^		
Traffic Volume (vph)	1118	0	8	1035	0	0
Future Volume (vph)	1118	0	8	1035	0	0
Confl. Peds. (#/hr)		6	6		1	
Confl. Bikes (#/hr)		1				
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	1256	0	9	1163	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1256	0	9	1163	0	0
Turn Type	NA		pm+pt	NA		
Protected Phases	2		1	6		
Permitted Phases			6			
Detector Phase	2		1	6		
Switch Phase				3		
Minimum Initial (s)	15.0		1.0	5.0		
Minimum Split (s)	34.0		5.5	29.0		
Total Split (s)	107.0		13.0	120.0		
Total Split (%)	89.2%			100.0%		
Yellow Time (s)	4.0		3.5	4.0		
All-Red Time (s)	1.0		1.0	1.0		
Lost Time Adjust (s)	0.0		0.0	0.0		
Total Lost Time (s)	5.0		4.5	5.0		
Lead/Lag	Lead		Lag	0.0		
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		
Act Effct Green (s)	116.4		119.1	120.0		
Actuated g/C Ratio	0.97		0.99	1.00		
v/c Ratio	0.37		0.02	0.33		
Control Delay	0.57		0.02	0.33		
Queue Delay	0.0		0.0	0.2		
Total Delay	0.0		0.0	0.0		
LOS	0.5 A		Ο.0	0.2 A		
Approach Delay	0.5		А	0.2		
Approach LOS	0.5 A			0.2 A		
Queue Length 50th (ft)	0		0	0		
Queue Length 95th (ft)	46		m0	0		
Internal Link Dist (ft)	366		IIIU	377	331	
Turn Bay Length (ft)	300		115	3//	331	
	3433		488	3539		
Base Capacity (vph)	0		400	3339		
Starvation Cap Reductn						
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn Reduced v/c Ratio	0		0	0		
	0.37		0.02	0.33		
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12	.0					
Offset: 0 (0%), Referenced	to phase 2:	EBT and	6:WBTL	, Start of C	Green	
Natural Cyala, 40						

MS Synchro 9 Report
Page 5

Natural Cycle: 40

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.37 Intersection Signal Delay: 0.4 Intersection LOS: A Intersection Capacity Utilization 35.1% ICU Level of Service A Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 5: N. Congress Ave & Martin Luther King Jr. Blvd

₩ Ø6 (R)

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	\rightarrow	•	—	•	4	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	^	7		4	7		ર્ન	7
Traffic Volume (vph)	140	757	228	290	1027	138	19	0	35	42	i	11
Future Volume (vph)	140	757	228	290	1027	138	19	0	35	42	1	11
Confl. Peds. (#/hr)	18		8	8		18	23		7	7		23
Confl. Bikes (#/hr)			3			3						1
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	167	901	271	345	1223	164	23	0	42	50	1	13
Shared Lane Traffic (%)												
Lane Group Flow (vph)	167	1172	0	345	1223	164	0	23	42	0	51	13
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	1.0	10.0		1.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	5.5	22.0		5.5	28.0	28.0	22.0	22.0	22.0	28.0	28.0	28.0
Total Split (s)	20.0	70.0		20.0	70.0	70.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	16.7%	58.3%		16.7%	58.3%	58.3%	25.0%	25.0%	25.0%	25.0%	25.0%	25.0%
Yellow Time (s)	3.5	4.0		3.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	4.5	5.0		4.5	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	75.4	65.5		85.1	71.1	71.1		25.0	25.0		25.0	25.0
Actuated g/C Ratio	0.63	0.55		0.71	0.59	0.59		0.21	0.21		0.21	0.21
v/c Ratio	0.53	0.63		0.91	0.58	0.18		0.08	0.11		0.18	0.04
Control Delay	15.4	14.6		53.1	12.0	4.2		39.4	6.2		41.1	0.2
Queue Delay	0.0	0.4		0.0	0.4	0.0		0.0	0.0		0.0	0.0
Total Delay	15.4	15.0		53.1	12.5	4.2		39.4	6.2		41.1	0.2
LOS	В	В		D	В	Α		D	Α		D	Α
Approach Delay		15.0			19.8			17.9			32.8	
Approach LOS		В			В			В			С	
Queue Length 50th (ft)	30	208		143	206	12		15	0		33	0
Queue Length 95th (ft)	74	180		#258	221	21		35	16		65	0
Internal Link Dist (ft)		377			273			135			212	
Turn Bay Length (ft)	160			100		100			100			
Base Capacity (vph)	403	1866		385	2096	908		271	367		284	360
Starvation Cap Reductn	0	265		0	388	0		0	0		0	0
Spillback Cap Reductn	0	0		0	0	0		0	0		0	0
Storage Cap Reductn	0	0		0	0	0		0	0		0	0
Reduced v/c Ratio	0.41	0.73		0.90	0.72	0.18		0.08	0.11		0.18	0.04

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 90

MS Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd

2022 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.91
Intersection Signal Delay: 18.0 Intersection Capacity Utilization 75.7% ICU
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles. Intersection LOS: B ICU Level of Service D

Splits and Phases: 6: Brazos St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

Page 8

	•	\rightarrow	•	•	•	•	1	Ť	~	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑ 1>		*	^					*	^	7
Traffic Volume (vph)	0	740	189	630	1473	0	0	0	0	36	51	55
Future Volume (vph)	0	740	189	630	1473	0	0	0	0	36	51	55
Confl. Peds. (#/hr)			53	53						7		48
Confl. Bikes (#/hr)			2									29
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	796	203	677	1584	0	0	0	0	39	55	59
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	999	0	677	1584	0	0	0	0	39	55	59
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		19	6						4	
Permitted Phases				6						4		4
Detector Phase		2		19	6					4	4	4
Switch Phase												
Minimum Initial (s)		5.0			10.0					10.0	10.0	10.0
Minimum Split (s)		30.0			30.0					28.0	28.0	28.0
Total Split (s)		62.0			92.0					28.0	28.0	28.0
Total Split (%)		51.7%			76.7%					23.3%	23.3%	23.3%
Yellow Time (s)		4.0			4.0					4.0	4.0	4.0
All-Red Time (s)		1.0			1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0					0.0	0.0	0.0
Total Lost Time (s)		5.0			5.0					5.0	5.0	5.0
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Max
Act Effct Green (s)		57.0		87.5	87.0					23.0	23.0	23.0
Actuated g/C Ratio		0.48		0.73	0.72					0.19	0.19	0.19
v/c Ratio		0.62		1.38	0.62					0.12	0.08	0.17
Control Delay		15.1		196.5	5.6					41.3	40.3	2.1
Queue Delay		0.4		1.2	0.8					0.0	0.0	0.0
Total Delay		15.5		197.7	6.4					41.3	40.3	2.1
LOS		В		F	Α					D	D	A
Approach Delay		15.5			63.7						25.8	• •
Approach LOS		В			E						С	
Queue Length 50th (ft)		113		~333	125					25	18	0
Queue Length 95th (ft)		123		m#372	m121					57	37	6
Internal Link Dist (ft)		273		11111 O / L	321			343		0,	244	Ü
Turn Bay Length (ft)		2.0		120	OZ.			0.10		100		100
Base Capacity (vph)		1620		492	2565					335	678	353
Starvation Cap Reductn		221		63	607					0	0	0
Spillback Cap Reductn		0		0	22					0	0	13
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.71		1.58	0.81					0.12	0.08	0.17
		0., 1			0.01					U Z	0.00	37
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 110

Synchro 9 Report Page 9 MS

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

Lane Group	Ø1	Ø9
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	9
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	5.0
Minimum Split (s)	5.5	9.5
Total Split (s)	15.0	15.0
Total Split (%)	13%	13%
Yellow Time (s)	3.5	3.5
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

Synchro 9 Report Page 10 MS

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.38 Intersection Signal Delay: 47.9 Intersection Capacity Utilization 94.4% Intersection LOS: D ICU Level of Service F Analysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd ÿ9 **■**Ø2 (R) ₩ Ø6 (R)

MS Synchro 9 Report Page 11

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

	۶	-	•	•	←	•	4	†	<i>></i>	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	^			† î>		J.	ર્ન	7			
Traffic Volume (vph)	152	542	0	0	1985	58	67	84	125	0	0	0
Future Volume (vph)	152	542	0	0	1985	58	67	84	125	0	0	0
Confl. Peds. (#/hr)			35			58	34		28			
Confl. Bikes (#/hr)						4			4			
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	171	609	0	0	2230	65	75	94	140	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	171	609	0	0	2295	0	67	102	140	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	26.0			5.5		26.0	26.0	26.0			
Total Split (s)	15.0	94.0			79.0		26.0	26.0	26.0			
Total Split (%)	12.5%	78.3%			65.8%		21.7%	21.7%	21.7%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	89.5	89.0			75.0		21.0	21.0	21.0			
Actuated g/C Ratio	0.75	0.74			0.62		0.18	0.18	0.18			
v/c Ratio	0.82	0.23			1.04		0.24	0.33	0.37			
Control Delay	74.8	1.0			35.9		41.4	42.5	8.9			
Queue Delay	0.0	0.1			23.8		2.6	0.0	0.0			
Total Delay	74.8	1.1			59.7		44.0	42.5	8.9			
LOS	F	A			F		D	D	A			
Approach Delay	_	17.3			59.7			27.6				
Approach LOS		В			Ε			C				
Queue Length 50th (ft)	98	13			~314		45	71	5			
Queue Length 95th (ft)	#195	16			m98		m67	m98	m28			
Internal Link Dist (ft)	1173	321			675		11107	350	11120		106	
Turn Bay Length (ft)	120	321			0/0			330			100	
Base Capacity (vph)	217	2624			2201		277	306	374			
Starvation Cap Reductn	0	962			1		0	0	0			
Spillback Cap Reductn	0	0			239		133	0	0			
Storage Cap Reductin	0	0			239		0	0	0			
Reduced v/c Ratio	0.79	0.37			1.17		0.47	0.33	0.37			
NEUUCEU WC RAIIU	0.79	0.37			1.17		0.47	0.33	0.57			

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 130

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.04 Intersection Signal Delay: 47.0 Intersection Capacity Utilization 94.4% Intersection LOS: D ICU Level of Service F Analysis Period (min) 15 Analysis Petiod (IIII) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Wolume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd √¶ø4 Ø2 (R) ▼ Ø6 (R)

MS Synchro 9 Report Page 13

18: Guadalupe St & E. 17th St

2022 Background + Site Timing Plan: AM TIA for Texas Capitol Complex Master Plan 2018 Update

	-		•		`	7	ı		_	*	*
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	1	7		ર્ન						सीक	
0	14	47	52	10	0	0	0	0	127	1177	18
0	14	47	52	10	0	0	0	0	127	1177	18
		18							45		
0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
	0										
0	15	51	57	11	0	0	0	0	138	1279	20
0	15	51	0	68	0	0	0	0	0	1437	0
	NA	Perm	Perm	NA					Perm	NA	
	4 12			4 12						2 10	
		4 12	4 12						2 10		
	4 12	4 12	4 12	4 12					2 10	2 10	
	21.8	21.8		21.8						82.9	
	0.18	0.18		0.18						0.69	
										0.60	
				27.4							
				С							
		0									
		.0					271				
	754	714		628						2392	
				-							
	0.02	0.07		0.11						0.60	
nhaca 2.	SRTI St	art of Gre	en								
	0 0.92 0	21.8 0.15 NA 4 12 4 12 4 12 21.8 0.18 0.05 20.7 0.0 20.7 C 7.7 A 5 16 177 754 0 0 0 0.02	21.8 21.8 0.18 0.18 0.18 0.05 0.16 20.7 3.9 0.0 20.7 7.7 A 5 0 16 13 177 754 714 0 0 0 0 0 0 0.02 0.07	0 14 47 52 0 14 47 52 18 0.92 0.92 0.92 0.92 0 0 15 51 57 0 15 51 0 NA Perm Perm 412 412 412 412 412 412 412 412 12 412 21.8 0.18 0.18 0.05 0.16 20.7 3.9 0.0 0.0 20.7 3.9 C A 7.7 A 5 0 16 13 177 754 714 0 0 0 0 0 0 0 0 0 0 0 0	14 47 52 10 0 14 47 52 10 0 14 47 52 10 0 18 00.92 0.92 0.92 0 0 15 51 57 11 0 15 51 0 68 NA Perm Perm NA 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12	14	0 14 47 52 10 0 0 0 0 14 47 52 10 0 0 0 18 0.92 0.92 0.92 0.92 0.92 0.92 0 0 15 51 57 11 0 0 0 15 51 0 68 0 0 NA Perm Perm NA 412 412 412 412 412 412 412 412 412 412 412 412 12 12 4 12 13 12 4 14 12 14 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	0 14 47 52 10 0 0 0 0 0 14 47 52 10 0 0 0 0 18 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0 15 51 57 11 0 0 0 0 0 15 51 0 68 0 0 0 0 NA Perm Perm NA 412 412 412 412 412 412 412 412 412 412 412 12 412 4 10 0.0 0.0 20.7 3.9 27.4 0.0 0.0 0.0 20.7 3.9 27.4 C A C 7.7 27.4 A C 5 0 37 16 13 51 177 244 271 754 714 628 0	0 14 47 52 10 0 0 0 0 0 0 0 0 0 0 14 47 52 10 0 0 0 0 0 0 0 0 0 0 18 8 0 0 0 0 0 0	0 14 47 52 10 0 0 0 0 127 0 14 47 52 10 0 0 0 0 127 18	14

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	23.0	23.0	22.5	22.5
Total Split (s)	26.0	43.0	28.0	23.0
Total Split (%)	22%	36%	23%	19%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
reduced we read				
Intersection Summary				

Synchro 9 Report Page 15 MS

18: Guadalupe St & E. 17th St

2022 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.60 Intersection Signal Delay: 8.9 Intersection Capacity Utilization 77.5% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service D

Splits and Phases: 18: Guadalupe St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

		-	•	•	_	_	7	T		*	¥	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ર્ન			ĵ»			4412	7			
Traffic Volume (vph)	4	121	0	0	27	26	88	800	131	0	0	
Future Volume (vph)	4	121	0	0	27	26	88	800	131	0	0	
Confl. Peds. (#/hr)	31								33			
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.8
Parking (#/hr)		0										
Adj. Flow (vph)	5	146	0	0	33	31	106	964	158	0	0	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	151	0	0	64	0	0	1070	158	0	0	
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		25.5			25.5			70.5	70.5			
Actuated g/C Ratio		0.21			0.21			0.59	0.59			
v/c Ratio		0.43			0.16			0.36	0.18			
Control Delay		27.4			12.7			11.0	6.3			
Queue Delay		0.0			0.0			0.0	0.0			
Total Delay		27.4			12.7			11.0	6.3			
LOS		C			В			В	Α.			
Approach Delay		27.4			12.7			10.4	,,			
Approach LOS		C			В			В				
Queue Length 50th (ft)		63			14			167	47			
Queue Length 95th (ft)		86			29			105	37			
Internal Link Dist (ft)		244			319			272	31		254	
Turn Bay Length (ft)		277			317			212	100		234	
Base Capacity (vph)		595			644			3142	909			
Starvation Cap Reductn		0			0			415	0			
Spillback Cap Reductn		0			0			413	0			
Storage Cap Reductin		0			0			0	0			
Reduced v/c Ratio		0.25			0.10			0.39	0.17			
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced		NRTI St	art of Gre	en								

Offset: 0 (0%), Referenced to phase 2:NBTL, Start of Green Natural Cycle: 100

Synchro 9 Report Page 17 MS

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background + Site Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type	_			
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	26.0	28.0	22.5	22.5
Total Split (s)	38.0	29.0	27.0	26.0
Total Split (%)	32%	24%	23%	22%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	2.0	2.0	110	1.0
Total Lost Time (s)				
Lead/Lag				
Lead/Lag Optimize?				
	0.14			
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Interspetion Cummens				
tersection Summary				

Synchro 9 Report Page 18 MS

19: Lavaca St & E. 17th St

2022 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.43

Intersection Signal Delay: 12.3

Intersection Capacity Utilization 39.7%

Analysis Period (min) 15

Intersection LOS: B

Intersection Capacity Utilization 39.7%

Splits and Phases: 19: Lavaca St & E. 17th St

≠ _{Ø4}	Ø2 (R)	≠ _{Ø12}	1 ø₁0	
29 c	38 c	26 e	27 s	

MS Synchro 9 Report Page 19

28: Lavaca St & E. 16th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site
Timing Plan: AM

	•	-	•	•	•	•	4	†	~	\	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			ĵ.			414	7			
Traffic Volume (vph)	4	138	0	0	23	33	88	970	91	0	0	0
Future Volume (vph)	4	138	0	0	23	33	88	970	91	0	0	0
Confl. Peds. (#/hr)						11	58					
Confl. Bikes (#/hr)						2						
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Parking (#/hr)					0							
Adj. Flow (vph)	5	164	0	0	27	39	105	1155	108	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	169	0	0	66	0	0	1260	108	0	0	0
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		22.6			22.6			73.4	73.4			
Actuated g/C Ratio		0.19			0.19			0.61	0.61			
v/c Ratio		0.49			0.21			0.41	0.11			
Control Delay		27.9			15.3			3.9	0.9			
Queue Delay		0.0			0.0			0.2	0.0			
Total Delay		27.9			15.3			4.1	0.9			
LOS		C			В			A	A			
Approach Delay		27.9			15.3			3.8				
Approach LOS		С			В			Α				
Queue Length 50th (ft)		67			17			41	2			
Queue Length 95th (ft)		93			m34			m47	m7			
Internal Link Dist (ft)		233			60			281			272	
Turn Bay Length (ft)									100			
Base Capacity (vph)		693			585			3058	995			
Starvation Cap Reductn		0			0			877	0			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.24			0.11			0.58	0.11			
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced	to phase 2:1	NBTL, St	art of Gre	en								

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background + Site Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	28.0	32.0	21.0	20.0
Total Split (s)	42.0	32.0	21.0	25.0
Total Split (%)	35%	27%	18%	21%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)	o max	110110	110110	110110
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

Synchro 9 Report Page 21 MS

28: Lavaca St & E. 16th St

2022 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 105 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.49

Intersection Signal Delay: 6.8 Inters
Intersection Capacity Utilization 45.8% ICU L
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: A ICU Level of Service A

Splits and Phases: 28: Lavaca St & E. 16th St

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	•	•	1	Ī		-	¥	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		ተተ _ጉ		ሻ	ተተተ						414	
Traffic Volume (vph)	0	1762	324	201	974	0	0	0	0	103	684	7
uture Volume (vph)	0	1762	324	201	974	0	0	0	0	103	684	7
Confl. Peds. (#/hr)			32	32						30		3
Confl. Bikes (#/hr)						1						2
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.9
Adj. Flow (vph)	0	1798	331	205	994	0	0	0	0	105	698	8
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	2129	0	205	994	0	0	0	0	0	803	8
Furn Type		NA		pm+pt	NA					Perm	NA	Per
Protected Phases		2		13	6						4	
Permitted Phases				6						4		
Detector Phase		2		13	6					4	4	
Switch Phase												
Vlinimum Initial (s)		10.0			5.0					5.0	5.0	5
Vlinimum Split (s)		25.0			25.0					32.0	32.0	32
Total Split (s)		56.0			84.0					36.0	36.0	36
Total Split (%)		46.7%			70.0%					30.0%	30.0%	30.0
Yellow Time (s)		4.0			4.0					4.0	4.0	4
All-Red Time (s)		1.0			1.0					1.0	1.0	1
ost Time Adjust (s)		0.0			0.0						0.0	0
Total Lost Time (s)		5.0			5.0						5.0	5
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	M
Act Effct Green (s)		51.2		79.0	79.0						31.0	31
Actuated g/C Ratio		0.43		0.66	0.66						0.26	0.:
v/c Ratio		1.01		0.63	0.30						0.62	0.1
Control Delay		54.7		38.9	3.6						36.0	5
Queue Delay		4.2		13.4	0.1						0.4	0
Total Delay		58.9		52.4	3.7						36.4	5
_OS		Е		D	Α						D	
Approach Delay		58.9			12.0						33.6	
Approach LOS		Е			В						С	
Queue Length 50th (ft)		~600		105	35						194	
Queue Length 95th (ft)		#724		180	40						231	m2
nternal Link Dist (ft)		262			240			197			285	
Furn Bay Length (ft)				50								10
Base Capacity (vph)		2118		327	3347						1298	45
Starvation Cap Reductn		0		100	929						0	
Spillback Cap Reductn		30		0	0						144	
Storage Cap Reductn		0		0	0						0	
Reduced v/c Ratio		1.02		0.90	0.41						0.70	0.
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced to	o phase 2	EBT and	6:WBTL	Start of	Green							

Synchro 9 Report Page 23 MS

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

ane Group	Ø1	Ø3
ane Configurations		
Fraffic Volume (vph)		
uture Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
ane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases	, i	3
Detector Phases		
Switch Phase		
Minimum Initial (s)	8.0	5.0
Minimum Split (s)	13.0	10.0
Total Split (s)	14.0	14.0
Fotal Split (%)	12%	12%
/ellow Time (s)	4.0	4.0
All-Red Time (s)	1.0	1.0
ost Time Adjust (s)		
Total Lost Time (s)		
_ead/Lag	Lead	
_ead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)		
Actuated g/C Ratio		
/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
.OS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
nternal Link Dist (ft)		
Furn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
ntersection Summary		

Synchro 9 Report Page 24 MS

34: Guadalupe St & W. 15th St

2022 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.01 Intersection Signal Delay: 40.3 Intersection Capacity Utilization 87.8% Intersection LOS: D ICU Level of Service E Analysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite.
 Oueue shown is maximum after two cycles.

 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

M Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 34: Guadalupe St & W. 15th St ÿ3 \$ Ø4 →Ø2 (R) ₩ Ø6 (R) ₩

MS Synchro 9 Report Page 25

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

	•	-	•	•	•	•	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተተ			ተተ _ጉ			416	7			
Traffic Volume (vph)	305	1485	0	0	1055	130	131	681	176	0	0	0
Future Volume (vph)	305	1485	0	0	1055	130	131	681	176	0	0	0
Confl. Peds. (#/hr)	37					37	17		47			
Confl. Bikes (#/hr)									11			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	324	1580	0	0	1122	138	139	724	187	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	324	1580	0	0	1260	0	0	863	187	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0	33.0			
Total Split (s)	19.0	79.0			60.0		41.0	41.0	41.0			
Total Split (%)	15.8%	65.8%			50.0%		34.2%	34.2%	34.2%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			6.0	6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	74.0	74.0			55.0			35.0	35.0			
Actuated g/C Ratio	0.62	0.62			0.46			0.29	0.29			
v/c Ratio	0.99	0.50			0.55			0.59	0.40			
Control Delay	71.0	2.7			11.3			38.3	24.9			
Queue Delay	10.9	0.4			0.1			0.0	0.0			
Total Delay	81.9	3.1			11.4			38.3	24.9			
LOS	F	Α			В			D	С			
Approach Delay		16.5			11.4			35.9				
Approach LOS		В			В			D				
Queue Length 50th (ft)	187	47			76			209	74			
Queue Length 95th (ft)	m#191	m47			84			255	143			
Internal Link Dist (ft)		240			335			116			281	
Turn Bay Length (ft)	50											
Base Capacity (vph)	328	3135			2289			1465	469			
Starvation Cap Reductn	13	914			183			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	1.03	0.71			0.60			0.59	0.40			
Intersection Summary												

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

35: Lavaca St & W. 15th St

2022 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.99 Intersection Signal Delay: 19.8 Intersection Capacity Utilization 87.8% Intersection LOS: B ICU Level of Service E Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 35: Lavaca St & W. 15th St

MS Synchro 9 Report Page 27

36: Colorado St & W. 15th St

2022 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Lane Configurations		۶	→	\rightarrow	•	←	•	4	†	~	>	↓	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume ("pth") 6	Lane Configurations	*	† †		ሻ	^			4			4	7
Confi. Peds. (#/nr) 6 82 82 6 6 4 34 34 34 4 9eak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	Traffic Volume (vph)	266	1379	52	71	1108	259	1	21	21	26	19	31
Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	Future Volume (vph)	266	1379	52	71	1108	259	1	21	21	26	19	31
Adj. Flow (vph)	Confl. Peds. (#/hr)	6		82	82		6	4		34	34		4
Shared Lane Traffic (%) Lane Group Flow (yrph) 283 1522 0 76 1455 0 0 45 0 0 48 33 33 327 37 37 38 38 38 38 38 3	Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Lane Group Flow (vph) 283 1522 0 76 1455 0 0 48 33 Turn Type pm-pt NA pm+pt NA pm+pt NA Perm NA custom Prorected Phases 5 2 1 6 4 8 8 6 Detector Phase 5 2 1 6 4 4 8 6 Switch Phase 8 5 2 1 6 4 4 8 6 Minimum Initial (s) 5.0 15.0 5.0 15.0 5.0 5.0 5.0 5.0 15.0 Minimum Split (s) 10.0 22.0 10.0 30.0 32.0 32.0 32.0 32.0 32.0 30.0 30.0 30.0 30.0 30.0 32.0 32.0 32.0 32.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	Adj. Flow (vph)	283	1467	55	76	1179	276	1	22	22	28	20	33
Turn Type	Shared Lane Traffic (%)												
Protected Phases 5	Lane Group Flow (vph)	283	1522	0	76	1455	0	0	45	0	0	48	33
Permitted Phases 2	Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	custom
Detector Phase 5 2	Protected Phases	5	2		1	6			4			8	
Switch Phase Minimum Initial (s) 5.0 15.0 5.0 15.0 5.0 15.0 5.0 15.0 5.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 32.	Permitted Phases	2			6			4			8		6
Minimum Initial (s) 5.0 15.0 5.0 15.0 5.0 5.0 5.0 5.0 5.0 15.0 Minimum Split (s) 10.0 22.0 10.0 30.0 32.0 32.0 32.0 32.0 30.0 Total Split (s) 15.0 72.0 15.0 72.0 33.0 33.0 33.0 33.0 33.0 72.0 Total Split (%) 12.5% 60.0% 12.5% 60.0% 27.5% 27.5% 27.5% 27.5% 60.0% 4.0	Detector Phase	5	2		1	6		4	4		8	8	6
Minimum Split (s) 10.0 22.0 10.0 30.0 32.0 32.0 32.0 32.0 30.0 Total Split (s) 15.0 72.0 15.0 72.0 33.0 33.0 33.0 33.0 72.0 Total Split (%) 12.5% 60.0% 27.5% 27.5% 27.5% 60.0% Yellow Time (s) 4.0	Switch Phase												
Total Split (s) 15.0 72.0 15.0 72.0 33.0 33.0 33.0 33.0 72.0 Total Split (%) 12.5% 60.0% 12.5% 60.0% 27.5% 27.5% 27.5% 27.5% 60.0% 27.5% 27.5% 27.5% 60.0% 27.5% 27.5% 27.5% 27.5% 60.0% 27.5% 27.5% 27.5% 27.5% 60.0% 27.5% 27.5% 27.5% 27.5% 27.5% 27.5% 60.0% 27.5% 2	Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	15.0
Total Split (%) 12.5% 60.0% 12.5% 60.0% 27.5% 27.5% 27.5% 27.5% 60.0% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Minimum Split (s)	10.0	22.0		10.0	30.0		32.0	32.0		32.0	32.0	30.0
Yellow Time (s) 4.0 1.0 4.0	Total Split (s)	15.0	72.0		15.0	72.0		33.0	33.0		33.0	33.0	72.0
Yellow Time (s) 4.0 1.0 4.0	Total Split (%)	12.5%	60.0%		12.5%	60.0%		27.5%	27.5%		27.5%	27.5%	60.0%
Lost Time Adjust (s) 0.0 5.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3	Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
Total Lost Time (s) 5.0 2.2 2.2 2.2 2.2 2.2 6.7 7.0 7.0 6.0	All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lead/Lag Lag Yes Ye	Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Lead-Lag Optimize? Yes	Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead-Lag Optimize? Yes Yes Yes Yes Recall Mode None C-Max None C-Max Max Max Max Max Max C-Max C-Max C-Max Max Max Max Max C-Max C-Max C-Max C-Max Max Max Max Max C-Max C-Max C-Max C-Max C-Max C-Max Max Max Max C-Max C-M	Lead/Lag	Lead	Lag		Lead	Lag							Lag
Recall Mode None C-Max None C-Max Max Max Max Max Max Max Max C-Max Max Max Max Max Max C-Max Max Chax Max Ab C C D 67.0 67.0 28.0 28.0 67.0 67.0 67.0 28.0 28.0 67.0 67.0 67.0 20.52 0.11 0.01 0.13 0.05 67.0 20.0 20.1 0.1 0.0	Lead-Lag Optimize?	Yes	Yes		Yes								
Actuated g/C Ratio 0.67 0.60 0.62 0.56 0.23 0.23 0.56 v/c Ratio 1.03 0.51 0.32 0.52 0.11 0.13 0.04 Control Delay 94.6 4.6 10.4 9.0 22.8 37.7 0.7 Oueue Delay 0.0 0.1 0.0 0.0 0.0 0.0 Total Delay 94.6 4.7 10.4 9.1 22.8 37.7 0.7 LOS F A B A C D A Approach LOS B A C C C Queue Length 50th (ft) -147 83 10 182 14 30 0 Queue Length 95th (ft) #303 96 24 236 46 63 4 Internal Link Dist (ft) #303 96 24 236 46 63 4 Internal Link Dist (ft) #303 96 24 236	Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	C-Max
v/c Ratio 1.03 0.51 0.32 0.52 0.11 0.13 0.04 Control Delay 94.6 4.6 10.4 9.0 22.8 37.7 0.7 Oueue Delay 0.0 0.1 0.0 0.1 0.0 0.0 0.0 Total Delay 94.6 4.7 10.4 9.1 22.8 37.7 0.7 LOS F A B A C D A Approach Delay 18.8 9.2 22.8 22.6 2 A A C <td>Act Effct Green (s)</td> <td>80.0</td> <td>72.0</td> <td></td> <td>74.2</td> <td>67.0</td> <td></td> <td></td> <td>28.0</td> <td></td> <td></td> <td>28.0</td> <td>67.0</td>	Act Effct Green (s)	80.0	72.0		74.2	67.0			28.0			28.0	67.0
Control Delay 94.6 4.6 10.4 9.0 22.8 37.7 0.7 Queue Delay 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 Total Delay 94.6 4.7 10.4 9.1 22.8 37.7 0.7 LOS F A B A C D A Approach Delay 18.8 9.2 22.8 22.6 2.6 Approach LOS B A C A 18 18 18 18 18 2 14 30 0 0 0 0 0 0 0 0 0 0	Actuated g/C Ratio	0.67	0.60		0.62	0.56			0.23			0.23	0.56
Queue Delay 0.0 0.1 0.0 0.1 0.0 0.0 0.0 Total Delay 94.6 4.7 10.4 9.1 22.8 37.7 0.7 LOS F A B A C D A Approach Delay 18.8 9.2 22.8 22.6 22.6 Approach LOS B A C C C C C C C C C Queue Length 50th (ft) 430 9.0 46 63 4 4 30 0 0 0 4 4 30 0<	v/c Ratio	1.03	0.51		0.32	0.52			0.11			0.13	0.04
Total Delay 94.6 4.7 10.4 9.1 22.8 37.7 0.7 LOS F A B A C D A Approach Delay 18.8 9.2 22.8 22.6 2 Approach LOS B A C C Queue Length 50th (ft) -147 83 10 182 14 30 0 Queue Length 95th (ft) #303 96 24 236 46 63 4 Internal Link Dist (ft) 335 362 155 114 100 Base Capacity (wph) 90 90 100 100 359 896 Starvation Cap Reductn 0 358 0 217 0 0 0 0 Spillback Cap Reductn 0	Control Delay	94.6	4.6		10.4	9.0			22.8			37.7	0.7
LOS F A B A C D A Approach Delay 18.8 9.2 22.8 22.6 22.6 Approach LOS B A C C Queue Length 50th (ft) -147 83 10 182 14 30 0 Queue Length 95th (ft) #303 96 24 236 46 63 4 Internal Link Dist (ft) 335 362 155 114 100 Base Capacity (vph) 90 90 100 100 896 Starvation Cap Reductn 0 358 0 217 0 0 0 Spillback Cap Reductn 0	Queue Delay	0.0	0.1		0.0	0.1			0.0			0.0	0.0
Approach Delay 18.8 9.2 22.8 22.6 Approach LOS B A C C Queue Length 50th (ft) -147 83 10 182 14 30 0 Queue Length 95th (ft) #303 96 24 236 46 63 4 Internal Link Dist (ft) 335 362 155 114 100 Base Lapacity (pt) 90 90 100 100 359 896 Starvation Cap Reductn 0 358 0 217 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0	Total Delay	94.6	4.7		10.4	9.1			22.8			37.7	0.7
Approach LOS B A C C Queue Length 50th (ft) -147 83 10 182 14 30 0 Queue Length 95th (ft) #303 96 24 236 46 63 4 Internal Link Dist (ft) 335 362 155 114 100 Base Length (ft) 90 90 100 100 359 896 Star Capacity (vph) 276 3004 280 2774 410 359 896 Spillback Cap Reductn 0 358 0 217 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0	LOS	F	Α		В	Α			С			D	Α
Oueue Length 50th (ft) -147 83 10 182 14 30 0 Oueue Length 95th (ft) #303 96 24 236 46 63 4 Internal Link Dist (ft) 335 362 155 114 Turn Bay Length (ft) 90 50 100 Base Capacity (vph) 276 3004 280 2774 410 359 896 Starvation Cap Reductn 0 358 0 217 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0	Approach Delay		18.8			9.2			22.8			22.6	
Queue Length 95th (ft) #303 96 24 236 46 63 4 Internal Link Dist (ft) 335 362 155 114 Turn Bay Length (ft) 90 100 100 Base Capacity (vph) 276 3004 280 2774 410 359 896 Starvation Cap Reductn 0 358 0 217 0 0 0 0 Spillback Cap Reductn 0 <t< td=""><td>Approach LOS</td><td></td><td>В</td><td></td><td></td><td>Α</td><td></td><td></td><td>С</td><td></td><td></td><td>С</td><td></td></t<>	Approach LOS		В			Α			С			С	
Queue Length 95th (ft) #303 96 24 236 46 63 4 Internal Link Dist (ft) 335 362 155 114 Turn Bay Length (ft) 90 90 100 Base Capacity (vph) 276 3004 280 2774 410 359 896 Starvation Cap Reductn 0 358 0 217 0 0 0 0 Spillback Cap Reductn 0 <td< td=""><td>Queue Length 50th (ft)</td><td>~147</td><td>83</td><td></td><td>10</td><td>182</td><td></td><td></td><td>14</td><td></td><td></td><td>30</td><td>0</td></td<>	Queue Length 50th (ft)	~147	83		10	182			14			30	0
Turn Bay Length (n) 90 90 100 Base Capacity (vph) 276 3004 280 2774 410 359 896 Starvation Cap Reducth 0 358 0 217 0 <td>Queue Length 95th (ft)</td> <td>#303</td> <td>96</td> <td></td> <td>24</td> <td>236</td> <td></td> <td></td> <td>46</td> <td></td> <td></td> <td>63</td> <td>4</td>	Queue Length 95th (ft)	#303	96		24	236			46			63	4
Turn Bay Length (ft) 90 90 100 Base Capacity (vph) 276 3004 280 2774 410 359 896 Starvation Cap Reducth 0 358 0 217 0 </td <td>Internal Link Dist (ft)</td> <td></td> <td>335</td> <td></td> <td></td> <td>362</td> <td></td> <td></td> <td>155</td> <td></td> <td></td> <td>114</td> <td></td>	Internal Link Dist (ft)		335			362			155			114	
Base Capacity (vph) 276 3004 280 2774 410 359 896 Starvation Cap Reductn 0 358 0 217 0	Turn Bay Length (ft)	90			90								100
Starvation Cap Reductn 0 358 0 217 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0			3004			2774			410			359	
Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0													
Storage Cap Reductn 0 0 0 0 0 0 0 0													
Reduced V/c Ratio 1.03 0.58 0.27 0.57 0.11 0.13 0.04	Reduced v/c Ratio	1.03	0.58		0.27	0.57			0.11			0.13	0.04

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 75 Control Type: Actuated-Coordinated

36: Colorado St & W. 15th St

2022 Background + Site Timing Plan: AM

Synchro 9 Report

Page 29

TIA for Texas Capitol Complex Master Plan 2018 Update

Maximum v/c Ratio: 1.03 Maximum vic Ratio: 1.03
Intersection Signal Delay: 14.7
Intersection Capacity Utilization 83.1%
ICU
Analysis Period (min) 15
- Volume exceeds capacity, queue is theoretically infinite.
Oueue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
Oueue shown is maximum after two cycles. Intersection LOS: B ICU Level of Service E

Splits and Phases: 36: Colorado St & W. 15th St

37: N. Congress Ave & W. 15th St

2022 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

	-	\rightarrow	•	←	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ተ ተጉ		ሻ	ተተተ		7
Traffic Volume (vph)	1400	28	18	1527	0	1
Future Volume (vph)	1400	28	18	1527	0	1
Confl. Peds. (#/hr)		30	30		13	20
Confl. Bikes (#/hr)						13
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	1429	29	18	1558	0	1
Shared Lane Traffic (%)			.0			
Lane Group Flow (vph)	1458	0	18	1558	0	1
Turn Type	NA	,	pm+pt	NA	3	Perm
Protected Phases	2		1	6		1 01111
Permitted Phases	2		6	J		4
Detector Phase	2		1	6		4
Switch Phase				U		4
Minimum Initial (s)	5.0		5.0	5.0		5.0
. ,				25.0		
Minimum Split (s)	25.0		10.0			33.0
Total Split (s)	72.0		15.0	87.0		33.0
Total Split (%)	60.0%		12.5%	72.5%		27.5%
Yellow Time (s)	4.0		4.0	4.0		4.0
All-Red Time (s)	1.0		1.0	1.0		1.0
Lost Time Adjust (s)	0.0		0.0	0.0		0.0
Total Lost Time (s)	5.0		5.0	5.0		5.0
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		Max
Act Effct Green (s)	77.5		82.0	82.0		28.0
Actuated g/C Ratio	0.65		0.68	0.68		0.23
v/c Ratio	0.45		0.08	0.45		0.00
Control Delay	4.0		5.3	7.0		0.0
Queue Delay	0.0		0.0	0.1		0.0
Total Delay	4.0		5.3	7.1		0.0
LOS	4.0 A		J.5	Α.Ι		Α
Approach Delay	4.0		A	7.1		А
Approach LOS	4.0 A			7.1 A		
			2			0
Queue Length 50th (ft)	46		3	175		0
Queue Length 95th (ft)	53		m5	70	105	0
Internal Link Dist (ft)	362		100	356	125	
Turn Bay Length (ft)	0077		100	0.47		405
Base Capacity (vph)	3270		291	3474		485
Starvation Cap Reductn	169		0	542		0
Spillback Cap Reductn	0		0	0		0
Storage Cap Reductn	0		0	0		0
Reduced v/c Ratio	0.47		0.06	0.53		0.00
Intersection Summary						
0 1 1 11 100						

Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 70

37: N. Congress Ave & W. 15th St

2022 Background + Site
Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.45 Intersection Signal Delay: 5.6 Intersection Capacity Utilization 59.4% Intersection LOS: A ICU Level of Service B Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 37: N. Congress Ave & W. 15th St

MS Synchro 9 Report Page 31

38: Brazos St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

	۶	-	\rightarrow	•	←	•	4	†	~	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተኈ		ሻ	ተተ _ጉ			ર્ન	7		4	
Traffic Volume (vph)	79	1131	48	27	1548	113	4	2	7	2	0	4
Future Volume (vph)	79	1131	48	27	1548	113	4	2	7	2	0	4
Confl. Peds. (#/hr)	1		10	10		1	10		4	4		10
Confl. Bikes (#/hr)						1						17
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	81	1166	49	28	1596	116	4	2	7	2	0	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	81	1215	0	28	1712	0	0	6	7	0	6	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4		4	8		
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0	32.0	32.0	32.0	
Total Split (s)	15.0	78.0		10.0	73.0		32.0	32.0	32.0	32.0	32.0	
Total Split (%)	12.5%	65.0%		8.3%	60.8%		26.7%	26.7%	26.7%	26.7%	26.7%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Act Effct Green (s)	103.0	105.0		99.5	100.5			10.0	10.0		10.0	
Actuated g/C Ratio	0.86	0.88		0.83	0.84			0.08	0.08		0.08	
v/c Ratio	0.31	0.28		0.07	0.41			0.05	0.03		0.03	
Control Delay	9.3	4.0		2.0	1.8			51.7	0.3		0.2	
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Delay	9.3	4.1		2.0	1.8			51.7	0.3		0.2	
LOS	A	Α		A	A			D	A		A	
Approach Delay		4.4			1.8			24.0			0.2	
Approach LOS		Α			A			С			A	
Queue Length 50th (ft)	11	100		1	17			4	0		0	
Queue Length 95th (ft)	48	116		3	137			18	0		0	
Internal Link Dist (ft)	10	356		Ū	297			199	Ū		273	
Turn Bay Length (ft)	100	000		40				.,,	50		2,0	
Base Capacity (vph)	307	4414		392	4210			346	434		412	
Starvation Cap Reductn	0	1051		0	555			0	0		0	
Spillback Cap Reductn	0	0		0	0			0	0		0	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.26	0.36		0.07	0.47			0.02	0.02		0.01	
INCURCEU WE INDIE	0.20	0.50		0.07	0.47			0.02	0.02		0.01	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 70

38: Brazos St & W. 15th St

2022 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.41 Intersection Signal Delay: 3.0 Intersection Capacity Utilization 61.7% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service B

Splits and Phases: 38: Brazos St & W. 15th St

MS Synchro 9 Report Page 33

39: San Jacinto Blvd & W. 15th St

2022 Background + Site TIA for Texas Capitol Complex Master Plan 2018 Update

	•	_	_	_	+	•	•	†	<i>></i>	1	1	7
_ane Group	EBL	EBT	€BR	₩BL	WBT	WBR	NBL	NBT	NBR	SBL	▼ SBT	SBI
ane Configurations	LDL	*	LDIX	NDL N	^	WDIX	INDL	INDI	NDIX	JDL	414	7
Fraffic Volume (vph)	0	864	350	160	1666	0	0	0	0	92	179	4
Future Volume (vph)	0	864	350	160	1666	0	0	0	0	92	179	4
Confl. Peds. (#/hr)	U	004	22	22	1000	U	U	U	U	10	1/9	4
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.9
Adj. Flow (vph)	0.77	873	354	162	1683	0.77	0.77	0.77	0.77	93	181	4.
Shared Lane Traffic (%)	U	0/3	334	102	1003	U	U	U	U	73	101	4
ane Group Flow (vph)	0	1227	0	162	1683	0	0	0	0	0	274	4
Turn Type	U	NA	U		NA	U	U	U	U	Perm	NA	Perr
Protected Phases		2		pm+pt 1	NA 6					Pellii	NA 4	Pell
Permitted Phases		2		6	0					4	4	
Detector Phase		2		1	6					4	4	
Switch Phase		2		- 1	0					4	4	
		10.0		2.0	10.0					7.0	7.0	7
Minimum Initial (s)		10.0		3.0	10.0					7.0	7.0	7.
Minimum Split (s)		28.0		8.0	28.0					32.0	32.0	32.
Fotal Split (s)		68.0		20.0	88.0					32.0	32.0	32.
Fotal Split (%)		56.7%		16.7%	73.3%					26.7%	26.7%	26.79
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.
ost Time Adjust (s)		0.0		0.0	0.0						0.0	0.
Fotal Lost Time (s)		5.0		5.0	5.0						5.0	5.
_ead/Lag		Lag		Lead								
_ead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					None	None	Non
Act Effct Green (s)		85.1		97.9	97.9						12.1	12.
Actuated g/C Ratio		0.71		0.82	0.82						0.10	0.1
//c Ratio		0.36		0.43	0.41						0.55	0.2
Control Delay		2.4		7.4	3.8						55.2	7.
Queue Delay		0.1		0.0	0.3						0.0	0.
Fotal Delay		2.5		7.4	4.1						55.2	7.
_OS		Α		Α	Α						E	
Approach Delay		2.5			4.4						48.6	
Approach LOS		Α			Α						D	
Queue Length 50th (ft)		0		23	101						75	
Queue Length 95th (ft)		0		m28	112						103	2
nternal Link Dist (ft)		297			282			125			272	
Furn Bay Length (ft)				70								5
Base Capacity (vph)		3441		462	4147						1119	39
Starvation Cap Reductn		957		0	1607						0	
Spillback Cap Reductn		0		0	0						0	
Storage Cap Reductn		0		0	0						0	
Reduced v/c Ratio		0.49		0.35	0.66						0.24	0.1

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green

Natural Cycle: 70 Control Type: Actuated-Coordinated

MS Synchro 9 Report

Page 34

39: San Jacinto Blvd & W. 15th St

2022 Background + Site
Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Maximum v/c Ratio: 0.55 Intersection Signal Delay: 7.9 Inters
Intersection Capacity Utilization 91.7% ICU I
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: A ICU Level of Service F

MS Synchro 9 Report Page 35

40: Trinity St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

	٠	→	•	•	←	•	1	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	^			ተተ _ጉ			414	7			
Traffic Volume (vph)	220	786	0	0	1775	644	59	167	12	0	0	0
Future Volume (vph)	220	786	0	0	1775	644	59	167	12	0	0	0
Confl. Peds. (#/hr)	1					1	3		6			
Confl. Bikes (#/hr)									2			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	227	810	0	0	1830	664	61	172	12	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	227	810	0	0	2494	0	0	233	12	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	28.0			5.5		28.0	28.0	28.0			
Total Split (s)	20.0	92.0			72.0		28.0	28.0	28.0			
Total Split (%)	16.7%	76.7%			60.0%		23.3%	23.3%	23.3%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5			5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	87.5	87.0			69.0			23.0	23.0			
Actuated g/C Ratio	0.73	0.72			0.58			0.19	0.19			
v/c Ratio	0.85	0.22			0.87			0.35	0.03			
Control Delay	63.6	3.6			10.3			43.7	0.2			
Queue Delay	0.0	0.1			0.2			0.0	0.0			
Total Delay	63.6	3.7			10.5			43.7	0.2			
LOS	E	A			В			D	A			
Approach Delay	=	16.8			10.5			41.6				
Approach LOS		В			В			D				
Queue Length 50th (ft)	122	36			155			83	0			
Queue Length 95th (ft)	#225	42			m161			123	0			
Internal Link Dist (ft)	# LLO	282			657			149			621	
Turn Bay Length (ft)	100	LUL			007						OL.	
Base Capacity (vph)	289	3686			2852			668	344			
Starvation Cap Reductn	0	1622			51			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.79	0.39			0.89			0.35	0.03			
	0.77	0.07			0.07			0.00	0.00			

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 90

40: Trinity St & W. 15th St

2022 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.87
Intersection Signal Delay: 14.3 Intersection LOS: B
Intersection Capacity Utilization 91.7% ICU Level of Service F
Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 40: Trinity St & W. 15th St

11: Colorado St & W. 18th St

2022 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection			
Intersection Delay, s/veh	11.8		
Intersection LOS	В		

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	4	201	35	0	21	31	5	0	15	30	61
Future Vol, veh/h	0	4	201	35	0	21	31	5	0	15	30	61
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	5	228	40	0	24	35	6	0	17	34	69
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		11.6				9.4				9.2		
HCM LOS		В				Α				Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	14%	2%	37%	1%	
Vol Thru, %	28%	84%	54%	94%	
Vol Right, %	58%	15%	9%	5%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	106	240	57	322	
LT Vol	15	4	21	4	
Through Vol	30	201	31	302	
RT Vol	61	35	5	16	
Lane Flow Rate	120	273	65	366	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.17	0.395	0.102	0.512	
Departure Headway (Hd)	5.085	5.219	5.673	5.038	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	706	690	632	721	
Service Time	3.116	3.25	3.712	3.038	
HCM Lane V/C Ratio	0.17	0.396	0.103	0.508	
HCM Control Delay	9.2	11.6	9.4	13.2	
HCM Lane LOS	Α	В	Α	В	
HCM 95th-tile Q	0.6	1.9	0.3	2.9	

MS Synchro 9 Report Page 1

11: Colorado St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background + Site Timing Plan: AM

Intersection
Intersection Delay, s/veh
Intersection LOS

Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	4	302	16
Future Vol, veh/h	0	4	302	16
Peak Hour Factor	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	5	343	18
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		13.2		
HCM LOS		В		

Intersection		
Intersection Delay, s/veh	8.8	
Intersection LOS	Α	

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ર્ન				f)				†	
Traffic Vol, veh/h	0	0	269	0	0	0	55	0	0	0	0	0
Future Vol, veh/h	0	0	269	0	0	0	55	0	0	0	0	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	309	0	0	0	63	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach			EB				WB				NB	
Opposing Approach			WB				EB				SB	
Opposing Lanes			1				1				1	
Conflicting Approach Left			SB				NB				EB	
Conflicting Lanes Left			1				1				1	
Conflicting Approach Right			NB				SB				WB	
Conflicting Lanes Right			1				1				1	
HCM Control Delay			9.1				7.6				0	
HCM LOS			Α				Α				-	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	0%	
Vol Right, %	0%	0%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	269	55	8	
LT Vol	0	0	0	0	
Through Vol	0	269	55	0	
RT Vol	0	0	0	8	
Lane Flow Rate	0	309	63	9	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0.343	0.073	0.011	
Departure Headway (Hd)	4.743	3.997	4.18	4.126	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	900	850	873	
Service Time	2.744	2.017	2.243	2.126	
HCM Lane V/C Ratio	0	0.343	0.074	0.01	
HCM Control Delay	7.7	9.1	7.6	7.2	
HCM Lane LOS	N	Α	Α	Α	
HCM 95th-tile Q	0	1.5	0.2	0	

Synchro 9 Report Page 3 MS

12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations				7
Traffic Vol, veh/h	0	0	0	8
Future Vol, veh/h	0	0	0	8
Peak Hour Factor	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	0	0	9
Number of Lanes	0	0	0	1
Number of Earles	U	U	U	'
Approach				SB
Opposing Approach				NB
Opposing Lanes				1
Conflicting Approach Left				WB
Conflicting Lanes Left				1
Conflicting Approach Right				EB
Conflicting Lanes Right				1
HCM Control Delay				7.2
HCM LOS				Α.Δ
TICW E03				А

14: Brazos St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

ntersection	
ntersection Delay, s/veh	13
ntersection LOS	В

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	118	97	7	0	17	116	106	0	20	0	0
Future Vol, veh/h	0	118	97	7	0	17	116	106	0	20	0	0
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	149	123	9	0	22	147	134	0	25	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		12.8				12.2				9.7		
HCM LOS		В				В				Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	100%	53%	7%	5%
Vol Thru, %	0%	44%	49%	86%
Vol Right, %	0%	3%	44%	9%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	20	222	239	266
LT Vol	20	118	17	14
Through Vol	0	97	116	228
RT Vol	0	7	106	24
Lane Flow Rate	25	281	303	337
Geometry Grp	1	1	1	1
Degree of Util (X)	0.045	0.432	0.436	0.513
Departure Headway (Hd)	6.357	5.533	5.185	5.482
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	561	649	693	657
Service Time	4.424	3.58	3.231	3.524
HCM Lane V/C Ratio	0.045	0.433	0.437	0.513
HCM Control Delay	9.7	12.8	12.2	14.2
HCM Lane LOS	Α	В	В	В
HCM 95th-tile Q	0.1	2.2	2.2	2.9

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
intersection 200				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	14	228	24
Future Vol, veh/h	0	14	228	24
Peak Hour Factor	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	18	289	30
Number of Lanes	0	0	1	0
rediffice of Edites				
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		14.2		
HCM LOS		В		

Intersection Intersection Delay, s/veh Intersection LOS 17.4

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ĵ.				ર્ન					
Traffic Vol, veh/h	0	0	30	97	0	72	172	0	0	0	0	0
Future Vol, veh/h	0	0	30	97	0	72	172	0	0	0	0	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	32	103	0	77	183	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	0	0
Approach			EB			WB						
Opposing Approach			WB			EB						
Opposing Lanes			1			1						
Conflicting Approach Left			SB									

Opposing Approach	WB	EB	
Opposing Lanes	1	1	
Conflicting Approach Left	SB		
Conflicting Lanes Left	3	0	
Conflicting Approach Right		SB	
Conflicting Lanes Right	0	3	
HCM Control Delay	11.4	16.6	
HCM LOS	В	С	

Lane	EBLn1	WBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	0%	30%	0%	0%	0%
Vol Thru, %	24%	70%	100%	100%	0%
Vol Right, %	76%	0%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	127	244	383	383	68
LT Vol	0	72	0	0	0
Through Vol	30	172	383	383	0
RT Vol	97	0	0	0	68
Lane Flow Rate	135	260	407	407	72
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.245	0.502	0.666	0.666	0.069
Departure Headway (Hd)	6.535	6.969	5.882	5.882	3.42
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	549	517	615	615	1043
Service Time	4.285	4.714	3.616	3.616	1.154
HCM Lane V/C Ratio	0.246	0.503	0.662	0.662	0.069
HCM Control Delay	11.4	16.6	19.6	19.6	6.4
HCM Lane LOS	В	С	С	С	Α
HCM 95th-tile Q	1	2.8	5	5	0.2

Synchro 9 Report Page 7 MS

16: San Jacinto Blvd & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background + Site Timing Plan: AM

Intersection
Intersection Delay, s/veh
Intersection LOS

Movement	SBU	SBL	SBT	SBR
Lane Configurations			414	7
Traffic Vol, veh/h	0	0	766	68
Future Vol, veh/h	0	0	766	68
Peak Hour Factor	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	815	72
Number of Lanes	0	0	2	1
Approach			SB	
Opposing Approach				

Approach	SB
Opposing Approach	
Opposing Lanes	0
Conflicting Approach Left	WB
Conflicting Lanes Left	1
Conflicting Approach Right	EB
Conflicting Lanes Right	1
HCM Control Delay	18.5
HCM LOS	С

Synchro 9 Report Page 8 MS

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection		
Intersection Delay, s/veh	11.7	
Intersection LOS	В	

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	31	185	35	0	0	25	0	0	15	68	0
Future Vol, veh/h	0	31	185	35	0	0	25	0	0	15	68	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	35	210	40	0	0	28	0	0	17	77	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB					WB			NB		
Opposing Approach		WB					EB			SB		
Opposing Lanes		1					1			1		
Conflicting Approach Left		SB					NB			EB		
Conflicting Lanes Left		1					1			1		
Conflicting Approach Right		NB					SB			WB		
Conflicting Lanes Right		1					1			1		
HCM Control Delay		11.5					8.9			9.2		
HCM LOS		В					Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	18%	12%	0%	0%	
Vol Thru, %	82%	74%	100%	91%	
Vol Right, %	0%	14%	0%	9%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	83	251	25	328	
LT Vol	15	31	0	0	
Through Vol	68	185	25	300	
RT Vol	0	35	0	28	
Lane Flow Rate	94	285	28	373	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.14	0.4	0.044	0.498	
Departure Headway (Hd)	5.347	5.043	5.602	4.808	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	674	707	642	742	
Service Time	3.349	3.129	3.608	2.887	
HCM Lane V/C Ratio	0.139	0.403	0.044	0.503	
HCM Control Delay	9.2	11.5	8.9	12.6	
HCM Lane LOS	Α	В	Α	В	
HCM 95th-tile Q	0.5	1.9	0.1	2.8	

Synchro 9 Report Page 9 MS

20: Colorado St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background + Site Timing Plan: AM

Intersection					
Intersection Delay, s/veh				_	
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Lane Configurations			4		
Traffic Vol, veh/h	0	0	300	28	
Future Vol, veh/h	0	0	300	28	
Peak Hour Factor	0.88	0.88	0.88	0.88	
Heavy Vehicles, %	2	2	2	2	
Mvmt Flow	0	0	341	32	
Number of Lanes	0	0	1	0	
Approach			SB		
Opposing Approach			NB		
Opposing Lanes			1		
Conflicting Approach Left			WB		
Conflicting Lanes Left			1		
Conflicting Approach Right			EB		
Conflicting Lanes Right			1		
HCM Control Delay			12.6		
HCM LOS			В		

24: E. 17th St & Brazos St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection		
Intersection Delay, s/veh	8.4	
Intersection LOS	Α	

Movement	EBU	EBL	EBT	WBU	WBT	WBR	SBU	SBL	SBR
Lane Configurations			ર્ન		4			Y	
Traffic Vol, veh/h	0	0	28	0	206	16	0	38	0
Future Vol, veh/h	0	0	28	0	206	16	0	38	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	32	0	234	18	0	43	0
Number of Lanes	0	0	1	0	1	0	0	1	0
Approach			EB		WB			SB	
Opposing Approach			WB		EB				
Opposing Lanes			1		1			0	
Conflicting Approach Left			SB					WB	
Conflicting Lanes Left			1		0			1	
Conflicting Approach Right					SB			EB	
Conflicting Lanes Right			0		1			1	
HCM Control Delay			7.5		8.6			8	
HCM LOS			Α		А			Α	

Lane	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	100%	
Vol Thru, %	100%	93%	0%	
Vol Right, %	0%	7%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	28	222	38	
LT Vol	0	0	38	
Through Vol	28	206	0	
RT Vol	0	16	0	
Lane Flow Rate	32	252	43	
Geometry Grp	1	1	1	
Degree of Util (X)	0.037	0.28	0.057	
Departure Headway (Hd)	4.199	3.989	4.747	
Convergence, Y/N	Yes	Yes	Yes	
Cap	840	896	759	
Service Time	2.286	2.035	2.747	
HCM Lane V/C Ratio	0.038	0.281	0.057	
HCM Control Delay	7.5	8.6	8	
HCM Lane LOS	A	Α	Α	
HCM 95th-tile Q	0.1	1.2	0.2	

9: Guadalupe St & W. 18th St
TIA for Texas Capitol Complex Master Plan 2018 Update

ntersection	0						
nt Delay, s/veh 2.	-						
Movement	EBT		WE		NBL	NBR	
ane Configurations	↑ ↑			ካ ተተ	A		
Fraffic Vol, veh/h	1101		20	7 776	2	30	
Future Vol, veh/h	1101	124	20	7 776	2	30	
Conflicting Peds, #/hr	C	1		1 0	0	5	
Sign Control	Free	Free	Fre	e Free	Stop	Stop	
RT Channelized		None		- None	-	None	
Storage Length		-	4	.0 -	0	-	
/eh in Median Storage, #	C	-		- 0	0	-	
Grade, %	C	-		- 0	0	-	
Peak Hour Factor	87	87	3	7 87	87	87	
Heavy Vehicles, %	2	2		2 2	2	2	
Mvmt Flow	1266	143	23	8 892	2	34	
Major/Minor	Major1		Major	2	Minor1		
Conflicting Flow All	(140		2260	710	
Stage 1					1338		
Stage 2					922		
Critical Hdwy			4.1	4 -	6.84	6.94	
Critical Hdwy Stg 1					5.84	-	
Critical Hdwy Stg 2					5.84		
Follow-up Hdwy			2.2		3.52	3.32	
Pot Cap-1 Maneuver			48		35	376	
Stage 1			10		209	-	
Stage 2					348		
Platoon blocked, %					0.10		
Mov Cap-1 Maneuver		_	47	8 -	18	374	
Mov Cap-2 Maneuver					18	-	
Stage 1					209		
Stage 2					175	-	
Approach	EB		W	R	NB		
HCM Control Delay, s	(4		32.5		
HCM LOS				_	D		
10111 200							
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL WB	Т			
Capacity (veh/h)	167		478	-			
HCM Lane V/C Ratio	0.22		0.498				
HCM Control Delay (s)	32.5		19.8				
HCM Lane LOS	D .		C				

Intersection	2.4											
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL		WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		+	7		ની						414	
Traffic Vol, veh/h	0	13	47	60	10	0	0	0	0	75	1214	1
Future Vol, veh/h	0	13	47	60	10	0	0	0	0	75	1214	1
Conflicting Peds, #/hr	0	0	0	13	0	0	0	0	0	0	0	3
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Fre
RT Channelized		-	None		-	None	-	-	None	-	-	Non
Storage Length	-	-	0		-	-	-	-	-	-	-	
Veh in Median Storage, #		0	-		0	-	-	-	-	-	0	
Grade, %	-	0	-		0	-	-	0	-	-	0	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	14	49	63	11	0	0	0	0	79	1278	1
Major/Minor	Minor2			Minor1						Major2		
Conflicting Flow All	-	1482	698	817	1492	-				0	0	
Stage 1		1482	070	017						-	-	
Stage 2		0		817	-							
Critical Hdwy		6.54	6.94	7.54						4.14		
Critical Hdwy Stg 1		5.54	0.94	7.04						4.14		
Critical Hdwy Stg 2		3.34		6.54								
Follow-up Hdwy		4.02	3.32	3.52						2.22		
Pot Cap-1 Maneuver	0	124	383	268		0				2.22		
Stage 1	0	187	303	200		0						
Stage 2	0	107		337		0				-		
Platoon blocked, %	U		-	331	100	U				-		
Mov Cap-1 Maneuver		120	370	212	118							
Mov Cap-1 Maneuver		120	370	212								
Stage 1		180		212	- 110							
Stage 2		100	-	270		-				-		
Stage 2				270	170					-	-	
Approach	EB			WB						SB		
HCM Control Delay, s	21.1			35.5								
HCM LOS	С			E								
Minor Lane/Major Mvmt	EBLn1	FRI n2\	WRI n1	SBL SBT	SBR							
Capacity (veh/h)	120	370	190		JUIN							
HCM Lane V/C Ratio		0.134										
HCM Control Delay (s)	38.8	16.2	35.5									
HCM Lane LOS	30.0 F	10.2 C	33.5 F									
HCM 95th %tile Q(veh)	0.4	0.5	1.7									
TOWN FORTH MARIE (L(VEIT)	0.4	0.5	1.7		-							

13: W. 18th St & Parking Dr. 2 TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

Intersection													
Int Delay, s/veh 4.	1		-			•			-	•			
Movement	EBL	EBT	EBR	WBL	WBT	WBR			NBR	S	BL S	SBT	SBR
Lane Configurations		ર્ન			ĵ.		7	ተተ <u>ጉ</u>	•				
Traffic Vol, veh/h	4	69	0	0	34	19	88				0	0	0
Future Vol, veh/h	4	69	0	0	34	19	88	560	172		0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	29	17	(0		0	0	0
Sign Control	Stop	Stop		Stop	Stop	Stop	Free	Free	Free	Fr	ee F	ree	Free
RT Channelized	-			-			-		None		-		None
Storage Length			-			-	0					-	
Veh in Median Storage, #		0	-		0	-	-	(-			-	
Grade. %		0	-		0			Č) -			0	
Peak Hour Factor	94	94	94	94	94	94	94	94	94		94	94	94
Heavy Vehicles, %	2	2	2	2	2	2	2	2			2	2	2
Mymt Flow	4	73		0		20		596			0	0	0
		, 0			- 00			070	.55				- 3
Major/Minor	Minor2			Minor1			Major1						
Conflicting Flow All	490	983		IVIIIIOI I	891	418	17	(0				
Stage 1	17	17				410	- 17						
Stage 2	473	966											
Critical Hdwv	6.44		-		6.54	7.14	5.34						
Critical Hdwy Stg 1	0.44				5.54	7.14	5.34						
Critical Hdwy Stg 1 Critical Hdwy Stg 2	6.74				5.54								
Follow-up Hdwy	3.82				4.02		3.12						
Pot Cap-1 Maneuver	503		0		280	499	1133						
Stage 1	-		0	0		-	-						
Stage 2	494	331	0	0	-	-			-				
Platoon blocked, %													
Mov Cap-1 Maneuver		223	-		253	499	1133		-				
Mov Cap-2 Maneuver	397	223	-	-		-	-		-				
Stage 1	-	-	-		335	-							
Stage 2	388	304	-	-	-	-	-						
Approach	EB			WB			NB						
HCM Control Delay, s	28.7			19.3			0.9						
HCM LOS	20.7 D			C			0.7						
200				· ·									
	ND		NDD -	D. 411/D									
Minor Lane/Major Mvmt				BLn1WBLn1									
Capacity (veh/h)	1133												
HCM Lane V/C Ratio	0.083	-		0.341 0.184									
HCM Control Delay (s)	8.5	-	-	28.7 19.3									
HCM Lane LOS	Α	-	-	D C									
HCM 95th %tile Q(veh)	0.3	-	-	1.4 0.7									

HCM 95th %tile Q(veh)

0.6 - 0.6

2022 Background + Site Timing Plan: AM

17: Trinity St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

SBL SBT SBR

0 0 0 0 0 0 Stop Stop Stop - None

- 0 -88 88 88 2 2 2 0 0 0

					-
ersection					
lay, s/veh	3				
nent	EBL	EBR	NBL	NBT	SBT SBR
Configurations	¥ /	LDIN	INDL	4) Jac
Vol. veh/h	35	21	154	70	262 257
Vol, veh/h	35	21	154	70	262 257
ng Peds, #/hr	0	0	0	0	0 0
ontrol	Stop	Stop		Free	Free Free
annelized	Siup -	None		None	- None
Length	0	None -		None	- None
Median Storage, #	0			0	0 -
%	0			0	0 -
Factor	92	92	92	92	92 92
icles, %	2	2	2	2	2 2
LIES, 70	38	23	167	76	285 279
	30	23	107	/0	263 219
	Minor2		Major1		Major2
g Flow All	835	424	564	0	- 0
Stage 1	424		-	-	
tage 2	411	-			
Hdwy	6.42	6.22	4.12	-	
Hdwy Stg 1	5.42	-	-		
Hdwy Stg 2	5.42	-	-	-	
p Hdwy	3.518	3.318	2.218		
-1 Maneuver	338	630	1008	-	
itage 1	660	-	-		
Stage 2	669	-	-	-	
blocked, %					
p-1 Maneuver	280	630	1008	-	
p-2 Maneuver	280	-	-		
age 1	660			-	
Stage 2	553	-			
-g~ <u>-</u>	333				
ach	EB		NB		SB
Control Delay, s	17.3		6.4		0
.OS	С				
ne/Major Mvmt			SBT SBR		
(veh/h)	1008	- 354			
V/C Ratio	0.166	- 0.172			
rol Delay (s)	9.3	0 17.3			
ane LOS	Α	A C			
MARCH COURT OF IN	0.7	0.7			

HCM 95th %tile Q(veh)

MS

2022 Background + Site Timing Plan: AM

26: Trinity St & E. 17th St	
TIA for Texas Capitol Complex Master Plan 2018 Up	date

Intersection					Intersection			
	3.1				Int Delay, s/veh	0.6		
					3.			
Movement	EBL EBT EBR	WBL WBT WBR	NBL NBT NBR	SBL SBT SBR	Movement	EBL	EBR	١
Lane Configurations	^ *			44	Lane Configurations	ሻ		
Traffic Vol, veh/h	0 20 59	71 121 0	0 0 0	47 669 103	Traffic Vol, veh/h	35	0	103
Future Vol, veh/h	0 20 59	71 121 0	0 0 0	47 669 103	Future Vol, veh/h	35	0	103
Conflicting Peds, #/hr	0 0 22	0 0 0	0 0 0	4 0 0	Conflicting Peds, #/hr	3	0	0
Sign Control	Stop Stop Stop	Stop Stop Stop	Free Free Free	Free Free Free	Sign Control	Stop	Stop	Free F
RT Channelized	None	None	None	None	RT Channelized	-	None	- No
Storage Length	40			50	Storage Length	0	-	-
Veh in Median Storage, #	- 0 -	- 0 -		- 0 -	Veh in Median Storage		-	-
Grade. %	- 0 -	- 0 -	- 0 -	- 0 -	Grade, %	0		
Peak Hour Factor	92 92 92	92 92 92	92 92 92	92 92 92	Peak Hour Factor	87	87	87 87
Heavy Vehicles, %	2 2 2	2 2 2	2 2 2	2 2 2	Heavy Vehicles, %	2	2	2 2
Mymt Flow	0 22 64	77 132 0	0 0 0	51 727 112	Mymt Flow	40	0	118 614
IVIVIII TIOW	0 22 04	11 132 0	0 0 0	31 121 112	WWIIILLIOW	40	U	110 0
Major/Minor	Minor2	Minor1		Major?	Major/Minor	Minor?		Major1
Major/Minor	- 833 386			Major2 0 0		Minor2 485		Major1 0
Conflicting Flow All					Conflicting Flow All		-	
Stage 1	- 829 -	4 4 -			Stage 1	0	-	-
Stage 2	- 4 -	499 829 -			Stage 2	485	-	
Critical Hdwy	- 6.54 6.94	7.54 6.54 -		4.14	Critical Hdwy	5.74	-	5.34 -
Critical Hdwy Stg 1	- 5.54 -				Critical Hdwy Stg 1	-	-	
Critical Hdwy Stg 2		6.54 5.54 -			Critical Hdwy Stg 2	6.04	-	
Follow-up Hdwy	- 4.02 3.32	3.52 4.02 -		2.22	Follow-up Hdwy	3.82	-	3.12 -
Pot Cap-1 Maneuver	0 303 612	451 303 0		1616	Pot Cap-1 Maneuver	556	0	
Stage 1	0 383 -	0			Stage 1	-	0	
Stage 2	0	522 383 0			Stage 2	534	0	
Platoon blocked, %					Platoon blocked, %			-
Mov Cap-1 Maneuver	- 283 612	361 283 -		1616	Mov Cap-1 Maneuver	556	-	
Mov Cap-2 Maneuver	- 283 -	361 283 -			Mov Cap-2 Maneuver	556	-	
Stage 1	- 360 -				Stage 1	-	-	-
Stage 2		412 360 -			Stage 2	534	-	
Approach	EB	WB		SB	Approach	EB		NB
HCM Control Delay, s	13.4	38.1		0.5	HCM Control Delay, s	12		
HCM LOS	В	E			HCM LOS	В		
Minor Lane/Major Mvmt	EBLn1 EBLn2WBLn1	SBL SBT SBR			Minor Lane/Major Mvm	. NBL	NBT EBLn1	
Capacity (veh/h)	283 612 308	1616			Capacity (veh/h)	-	- 556	
HCM Lane V/C Ratio	0.077 0.105 0.678 0).032			HCM Lane V/C Ratio	-	- 0.072	
HCM Control Delay (s)	18.8 11.6 38.1	7.3 0.1 -			HCM Control Delay (s)	-	- 12	
HCM Lane LOS	СВЕ	A A -			HCM Lane LOS	-	- B	
HCM 95th %tile Q(veh)	0.2 0.3 4.6	0.1			HCM 95th %tile Q(veh)	-	- 0.2	
/ 0 / 0 0 4 (* 0.1)	5.2 5.5 1.0				Trom your rollie Q(veri)		0.2	

HCM 95th %tile Q(veh)

2022 Background + Site Timing Plan: AM

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WE	L WB	T WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		ĥ			•	1					414	í
Traffic Vol, veh/h	0	13	47	4	6	В 0	0	0	0	144	1108	1
Future Vol, veh/h	0	13	47	4	6	В 0	0	0	0	144	1108	1
Conflicting Peds, #/hr	0	0	0	2	0	0 0	0	0	0	0	0	2
Sign Control	Stop	Stop	Stop	Sto	p Sto	o Stop	Free	Free	Free	Free	Free	Fre
RT Channelized		-	None		-	 None 	-	-	None	-	-	Non
Storage Length	-	-	-		-		-	-	-	-	-	
Veh in Median Storage, #		0	-		-) -	-	-	-		0	
Grade, %	-	0	-		-) -	-	0	-	-	0	
Peak Hour Factor	92	92	92	ç	2 9	2 92	92	92	92	92	92	9:
Heavy Vehicles, %	2	2	2		2	2 2	2	2	2	2	2	
Mvmt Flow	0	14	51	5	0	9 0	0	0	0	157	1204	2
Major/Minor	Minor2			Mino	1					Major2		
Conflicting Flow All	-	1541	646	9/		1 -				0	0	
Stage 1		1541	-) -				-	-	
Stage 2		0	-	94		-					-	
Critical Hdwy		6.54	6.94	7.5						4.14	-	
Critical Hdwy Stg 1		5.54	-							-		
Critical Hdwy Stg 2		-	-	6.5	4 5.5	4 -				-	-	
Follow-up Hdwy		4.02	3.32	3.5	2 4.0	2 -				2.22	-	
Pot Cap-1 Maneuver	0	114	414	21	8 11	4 0				-	-	
Stage 1	0	175	-			- 0						
Stage 2	0	-	-	28	3 17	5 0				-	-	
Platoon blocked, %						-						
Mov Cap-1 Maneuver		111	405	17	2 11	1 -				-	-	
Mov Cap-2 Maneuver		111	-	17							-	
Stage 1		171	_		_						-	
Stage 2			-	22	7 17	1 -					-	
Olago 2												
Approach	EB			W	В					SB		
HCM Control Delay, s	23.7			40								
HCM LOS	23.7 C				F							
TIOM EOS	J				_							
Minor Lane/Major Mvmt	EBLn1\	WRI n1	SBL	SBT SB	R							
Capacity (veh/h)	257	159	JDL -	- 301 30								
HCM Lane V/C Ratio	0.254											
HCM Control Delay (s)	23.7	40.3										
HCM Lane LOS	23.7 C	40.3 E		-								
HOW LATE LOS	C	E	-	-	-							

29: Colorado St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update

Int Delay, s/veh 1	3.2													
Movement	EBL	EBT	EBR		WBL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4				4				4			4	
Traffic Vol, veh/h	8	25	81		112	56	5		45	307	8	2	119	34
Future Vol, veh/h	8	25	81		112	56	5		45	307	8	2	119	34
Conflicting Peds, #/hr	0	0	0		0	0	15		3	0	0	0	0	3
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop		Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None		-	-	None		-	-	None	-	-	None
Storage Length	-	-				-	-		-	-	-	-	-	
Veh in Median Storage, #	-	0	-		-	0	-		-	0	-	-	0	
Grade, %		0			-	0				0	-	-	0	
Peak Hour Factor	79	79	79		79	79	79		79	79	79	79	79	79
Heavy Vehicles, %	2	2	2		2	2	2		2	2	2	2	2	2
Mvmt Flow	10	32	103		142	71	6		57	389	10	3	151	43
Major/Minor	Minor2			- 1	Minor1			N	1ajor1			Major2		
Conflicting Flow All	741	693	175		752	710	409		197	0	0	399	0	C
Stage 1	180	180	-		508	508	-		-	-	-	-	-	
Stage 2	561	513	-		244	202	-		-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	-	-	2.218	-	
Pot Cap-1 Maneuver	332	367	868		327	359	642		1376	-	-	1160	-	
Stage 1	822	750	-		547	539	-		-	-	-	-	-	
Stage 2	512	536	-		760	734	-		-	-	-	-	-	
Platoon blocked, %										-	-		-	
Mov Cap-1 Maneuver	260	346	866		257	338	633		1376	-	-	1143	-	
Mov Cap-2 Maneuver	260	346	-		257	338	-		-	-	-		-	
Stage 1	776	746	-		518	510	-		-	-	-	-	-	
Stage 2	407	508	-		640	730	-		-	-	-	-	-	
Approach	EB				WB				NB			SB		
HCM Control Delay, s	13.3				50.1				1			0.1		
HCM LOS	В				F									
Minor Lane/Major Mvmt	NBL	NBT		EBLn1V		SBL	SBT	SBR						
Capacity (veh/h)	1376	-	-	580	284	1143	-	-						
HCM Lane V/C Ratio	0.041	-		0.249		0.002		-						
HCM Control Delay (s)	7.7	0	-	13.3	50.1	8.2	0	-						
HCM Lane LOS	A	Α	-	В	F	Α	Α	-						
HCM 95th %tile Q(veh)	0.1		-	1	5.9	0		-						

9.9

Intersection Int Delay, s/veh

Movement

Lane Configurations Traffic Vol, veh/h

Conflicting Peds, #/hr

Storage Length Veh in Median Storage, #

Future Vol, veh/h

Sign Control

Grade, %

Mvmt Flow

RT Channelized

Peak Hour Factor

Heavy Vehicles, %

2022 Background + Site Timing Plan: AM

0

0

92 92 92

2 2 2

TIA for Texas Capitol Complex Master Plan 2018 Update

EBL EBT EBR

36

36 0

0 0

0

92 92 92

2 2

0 39

- None

Stop Stop Stop

0

0

WBR	NBL	NBT	NBR	SBL	SBT	SBR
		^			^	
0	0	0	0	0	0	0
0	0	0	0	0	0	0
11	12	0	0	0	0	12
Stop None	Free	Free	Free	Free	Free	Free
None	-	-	None	-	-	None
-	-	-	-	-	-	-
-	-					

0

2 2

92 92 92

2

0 0 0

			Major2		
	0	-	-	-	0
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
0 0	-	0	0	-	0
0 0	-	0	0	-	0
0 0	-	0	0	-	0
	-			-	
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	-	-
		-	-	-	-
NB			SB		
0			0		

↑ 169

0

92

0

92 92

0 184

2 2 2

0 169

Stop Stop

11 0

Minor Lane/Major Mvmt	NBT EBLn1WBLn1	SBT	
Capacity (veh/h)	- 895 895	-	
HCM Lane V/C Ratio	- 0.044 0.205	-	
HCM Control Delay (s)	- 9.2 10.1	-	
HCM Lane LOS	- A B	-	
HCM 95th %tile Q(veh)	- 0.1 0.8	-	

31: Brazos St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update

Int Delay, s/veh 2	1.2						
	·-						
Movement	EBT	EBR		WBL	WBT	NBL	NBR
Lane Configurations	4				ર્ન	¥	
Traffic Vol, veh/h	35	0		3	133	44	0
Future Vol, veh/h	35	0		3	133	44	0
Conflicting Peds, #/hr	0	0		25	0	0	0
Sign Control	Free	Free		Free	Free	Stop	Stop
RT Channelized	-	None		-	TVOTIC	-	None
Storage Length	-	-		-	-	0	-
Veh in Median Storage, #	0	-		-	0	0	-
Grade, %	0	-		-	0	0	-
Peak Hour Factor	83	83		83	83	83	83
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	42	0		4	160	53	0
Major/Minor	Major1		N	/lajor2		Minor1	
Conflicting Flow All	0	0		67	0	234	67
Stage 1	-	-		-	-	67	-
Stage 2	-			-	-	167	-
Critical Hdwy	-	-		4.12	-	6.42	6.22
Critical Hdwy Stg 1	-			-	-	5.42	-
Critical Hdwy Stg 2	-	-		-	-	5.42	-
Follow-up Hdwy	-			2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-		1535	-	754	997
Stage 1	-			-	-	956	
Stage 2	-	-		-	-	863	
Platoon blocked, %					-		
Mov Cap-1 Maneuver	-			1535	-	734	973
Mov Cap-2 Maneuver	-			-	-	734	-
Stage 1	-	-		-	-	933	-
Stage 2	-	-		-	-	860	-
-							
Approach	EB			WB		NB	
HCM Control Delay, s	0			0.2		10.3	
HCM LOS	U			0.2		10.5 B	
How Eos							
N.C	NDI 4 EDT	EDD	WDI	WDT			
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL	WBT			
Capacity (veh/h)	734 -	-		-			
HCM Lane V/C Ratio	0.072 -		0.002	-			
HCM Control Delay (s)	10.3 -	-	7.4	0			
	D						
HCM Lane LOS HCM 95th %tile Q(veh)	B - 0.2 -	-	A 0	A			

33: Colorado St & Parking Dr. 3	
TIA for Texas Capitol Complex Master Plan 2018 Up	date

2022 Background + Site Timing Plan: AM

Intersection				
	1.1			
Novement	EBL	EBR	NBL NBT	SBT SBR
Lane Configurations		7		ተተተ ሾ
Fraffic Vol, veh/h	0	45	0 0	339 154
uture Vol, veh/h	0	45	0 0	339 154
Conflicting Peds, #/hr	0	0	0 0	0 122
Sign Control	Stop	Stop	Free Free	Free Free
RT Channelized	-	None	- None	- None
Storage Length	-	0		- 50
Veh in Median Storage, #		-		0 -
Grade, %	0	-	- 0	0 -
Peak Hour Factor	83	83	83 83	83 83
Heavy Vehicles, %	2	2	2 2	2 2
Mvmt Flow	0	54	0 0	408 186
Major/Minor	Minor2			Major2
Conflicting Flow All	-	326		- 0
Stage 1	-	-		
Stage 2	-	-		
Critical Hdwy	-	7.14		
Critical Hdwy Stg 1	-	-		
Critical Hdwy Stg 2	-	-		
Follow-up Hdwy	-	3.92		
Pot Cap-1 Maneuver	0	572		
Stage 1	0	-		
Stage 2	0	-		
Platoon blocked, %		F0/		
Mov Cap-1 Maneuver	-	506		• •
Mov Cap-2 Maneuver	-	-		
Stage 1	-	-		• •
Stage 2	-			
Annroach	FD			CD.
Approach HCM Control Delay, s	13			SB 0
HCM LOS	13 B			U
HCW LOS	D			
Minor Lane/Major Mvmt	EBLn1 S	SBT SBR		
Capacity (veh/h)	506			
HCM Lane V/C Ratio	0.107			
HCM Control Delay (s)	13			
HCM Lane LOS	В			
HCM 95th %tile Q(veh)	0.4			

MS

2022 Background + Site Timing Plan: AM

lΑ	for	Texas	Capitol	Comple	x Master	Plan	2018 U	pdate

Intersection							
Int Delay, s/veh 1	1.2						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			ર્ની	1>		
Traffic Vol, veh/h	12	12	84	387	456	96	
Future Vol, veh/h	12	12	84	387	456	96	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None		None	
Storage Length	0	-	-	-		-	
Veh in Median Storage, #	0	-		0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	13	13	91	421	496	104	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1151	548	600	0	-	0	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1151	548	600	0	-	0	
Stage 1	548	-	-	-		-	
Stage 2	603	-	-	-		-	
Critical Hdwy	6.42	6.22	4.12	-		-	
Critical Hdwy Stg 1	5.42	-	-	-		-	
Critical Hdwy Stg 2	5.42	-	-	-		-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	219	536	977	-		-	
Stage 1	579	-	-	-		-	
Stage 2	546	-	-	-		-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	192	536	977	-		-	
Mov Cap-2 Maneuver	192	-	-	-	-	-	
Stage 1	579	-	-	-		-	
Stage 2	479	-	-	-		-	
-							
Approach	EB		NB		SB		
	4.0						

Approach	EB	NB	SB	
HCM Control Delay, s	19	1.6	0	
HCM LOS	С			

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)	977	-	283	-	-
HCM Lane V/C Ratio	0.093	-	0.092	-	-
HCM Control Delay (s)	9.1	0	19	-	-
HCM Lane LOS	Α	Α	С	-	-
HCM 95th %tile Q(veh)	0.3	-	0.3	-	

Synchro 9 Report Page 15

69: Parking Dr. 5 & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: AM

Intersection								
Int Delay, s/veh	2.6							
	2.0		EDD.		14/51	WOT		NDD
Movement		EBT	EBR		WBL	WBT	NBL	NBR
Lane Configurations		Þ				ની	W	
Traffic Vol, veh/h		109	120		90	44	19	10
Future Vol, veh/h		109	120		90	44	19	10
Conflicting Peds, #/hr		0	0		0	0	0	0
Sign Control		Free	Free		Free	Free	Stop	Stop
RT Channelized		-	None		-	None	-	None
Storage Length		-	-		-	-	0	-
Veh in Median Storage, #	¥	0	-		-	0	0	-
Grade, %		0	-		-	0	0	-
Peak Hour Factor		92	92		92	92	92	92
Heavy Vehicles, %		2	2		2	2	2	2
Mvmt Flow		118	130		98	48	21	11
Major/Minor	N	/lajor1		N	Najor2		Minor1	
Conflicting Flow All	-	0	0		249	0	427	184
Stage 1		-	-		217	-	184	-
Stage 2					_		243	
Critical Hdwy					4.12	-	6.42	6.22
Critical Hdwy Stg 1					7.12	-	5.42	0.22
Critical Hdwy Stg 2							5.42	
Follow-up Hdwy					2.218	-	3.518	3.318
Pot Cap-1 Maneuver					1317		584	858
Stage 1					1317		848	000
			-			-	797	-
Stage 2 Platoon blocked, %			-				191	-
					1217		540	050
Mov Cap-1 Maneuver		-	-		1317			858
Mov Cap-2 Maneuver		-	-		-	-	540	
Stage 1		-	-		-	-	848	-
Stage 2		-	-				736	
Approach		EB			WB		NB	
HCM Control Delay, s		0			5.3		11.1	
HCM LOS							В	
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT			
Capacity (veh/h)	619	-	-	1317	-			
HCM Lane V/C Ratio	0.051	-	-	0.074	-			
HCM Control Delay (s)	11.1	-	-	8	0			
HCM Lane LOS	В	-	-	Α	Α			
HCM 95th %tile Q(veh)	0.2	-		0.2	-			
2								

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	•	•	←	•	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑			^	7				ሻ	^	7
Traffic Volume (vph)	152	374	147	0	1288	707	0	0	0	190	637	232
Future Volume (vph)	152	374	147	0	1288	707	0	0	0	190	637	232
Confl. Peds. (#/hr)	30		69	69		30				41		69
Confl. Bikes (#/hr)			1			6						3
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	162	398	156	0	1370	752	0	0	0	202	678	247
Shared Lane Traffic (%)												
Lane Group Flow (vph)	162	554	0	0	1370	752	0	0	0	202	678	247
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases						6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase												
Minimum Initial (s)	2.0	15.0			15.0	10.0				10.0	5.0	5.0
Minimum Split (s)	7.0	27.0			34.0	15.0				15.0	32.0	32.0
Total Split (s)	25.0	92.0			67.0	43.0				43.0	43.0	43.0
Total Split (%)	18.5%	68.1%			49.6%	31.9%				31.9%	31.9%	31.9%
Yellow Time (s)	4.0	4.0			4.0	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag				Lead							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max	None				None	Max	Max
Act Effct Green (s)	20.0	87.0			62.0	100.0				38.0	38.0	38.0
Actuated g/C Ratio	0.15	0.64			0.46	0.74				0.28	0.28	0.28
v/c Ratio	0.62	0.26			0.84	0.64				0.41	0.68	0.49
Control Delay	65.1	10.2			28.6	2.4				42.3	47.2	19.3
Queue Delay	0.0	0.0			47.6	0.3				0.0	0.0	0.0
Total Delay	65.1	10.2			76.2	2.7				42.3	47.2	19.3
LOS	E	В			E	Α				D	D	В
Approach Delay		22.6			50.2						40.2	
Approach LOS		С			D						D	
Queue Length 50th (ft)	135	97			517	21				144	278	68
Queue Length 95th (ft)	213	126			m575	m42				220	348	154
Internal Link Dist (ft)		228			45			159			210	
Turn Bay Length (ft)	160									130		120
Base Capacity (vph)	262	2108			1625	1174				498	996	501
Starvation Cap Reductn	0	0			381	85				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.62	0.26			1.10	0.69				0.41	0.68	0.49

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 80

Ms Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

Ms Synchro 9 Report

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

	-	•	1	•	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			^	ሻሻ	7
Traffic Volume (vph)	543	0	0	1331	992	243
Future Volume (vph)	543	0	0	1331	992	243
Confl. Peds. (#/hr)	0.0	J	Ü			81
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	597	0.71	0.71	1463	1090	267
Shared Lane Traffic (%)	371	- 3	- 0	1 103	1070	201
Lane Group Flow (vph)	597	0	0	1463	1090	267
Turn Type	NA	- 3	- 0	NA	Prot	Perm
Protected Phases	2			6	8	1 Cilli
Permitted Phases				U	0	3
Detector Phase	2			6	8	3
Switch Phase				U	0	3
Minimum Initial (s)	10.0			10.0	5.0	5.0
	30.0			15.0	10.0	
Minimum Split (s)						10.0
Total Split (s)	86.0			86.0	49.0	49.0
Total Split (%)	63.7%			63.7%	36.3%	36.3%
Yellow Time (s)	4.0			4.0	4.0	4.0
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	5.0			5.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max			C-Max	Max	Max
Act Effct Green (s)	81.0			81.0	44.0	44.0
Actuated g/C Ratio	0.60			0.60	0.33	0.33
v/c Ratio	0.28			0.69	0.97	0.44
Control Delay	13.8			14.1	76.2	24.2
Queue Delay	0.3			0.6	5.9	0.0
Total Delay	14.1			14.7	82.1	24.2
LOS	В			В	F	C
Approach Delay	14.1			14.7	70.7	
Approach LOS	В			В	70.7 E	
Queue Length 50th (ft)	124			260	509	86
Queue Length 95th (ft)	152			318	#641	170
Internal Link Dist (ft)	272			277	337	170
	212			211	33/	
Turn Bay Length (ft)	2123			2123	1118	611
Base Capacity (vph)						
Starvation Cap Reductn	873			135	0	0
Spillback Cap Reductn	0			294	32	0
Storage Cap Reductn	0			0	0	0
Reduced v/c Ratio	0.48			0.80	1.00	0.44
Intersection Summary						
Cycle Length: 135						
Actuated Cycle Length: 13	35					
Offset: 0 (0%), Reference		FBT and	6·WBT	Start of G	reen	
Natural Cycle: 60	a to pridate 2.i	LD1 dild	0.1101,	otall of C	iccii	
	oordinated					
Control Type: Actuated-Co	Jordinated					

Ms Synchro 9 Report Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

Maximum v/c Ratio: 0.97 Intersection Signal Delay: 36.8 Intellntersection Signal Delay: 36.8 Intellntersection Capacity Utilization 92.4% ICU
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles. Intersection LOS: D ICU Level of Service F

Ms Synchro 9 Report

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	→	•	•	—	4	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ 1>		ች	^		
Traffic Volume (vph)	805	0	13	1276	0	0
Future Volume (vph)	805	0	13	1276	0	0
Confl. Peds. (#/hr)		33	33		35	
Confl. Bikes (#/hr)		4				
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	856	0	14	1357	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	856	0	14	1357	0	0
Turn Type	NA		pm+pt	NA		
Protected Phases	2		1	6		
Permitted Phases			6			
Detector Phase	2		1	6		
Switch Phase						
Minimum Initial (s)	15.0		3.0	15.0		
Minimum Split (s)	34.0		8.0	20.0		
Total Split (s)	121.0		14.0	135.0		
Total Split (%)	89.6%			100.0%		
Yellow Time (s)	4.0		4.0	4.0		
All-Red Time (s)	1.0		1.0	1.0		
Lost Time Adjust (s)	0.0		0.0	0.0		
Total Lost Time (s)	5.0		5.0	5.0		
Lead/Lag	Lead		Lag	0.0		
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		
Act Effct Green (s)	127.4		133.0	135.0		
Actuated g/C Ratio	0.94		0.99	1.00		
v/c Ratio	0.26		0.02	0.38		
Control Delay	0.20		0.02	0.30		
Queue Delay	0.0		0.0	0.0		
Total Delay	0.6		0.0	0.0		
LOS	Α		Α.	Α.		
Approach Delay	0.6			0.3		
Approach LOS	Α			Α.		
Queue Length 50th (ft)	0		0	3		
Queue Length 95th (ft)	38		m0	0		
Internal Link Dist (ft)	366		1110	377	331	
Turn Bay Length (ft)	300		115	311	331	
Base Capacity (vph)	3339		657	3539		
Starvation Cap Reductn	0		037	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.26		0.02	0.38		
	0.20		0.02	0.30		
Intersection Summary						
Cycle Length: 135						
Actuated Cycle Length: 13	5					
Offset: 0 (0%), Referenced	d to phase 2:1	EBT and	6:WBTL	, Start of C	Green	

Ms Synchro 9 Report Page 5

Natural Cycle: 45

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

Splits and Phases: 5: N. Congress Ave & Martin Luther King Jr. Blvd

Ms Synchro 9 Report

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	\rightarrow	•	←	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	^	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	89	798	31	45	898	134	124	23	303	98	25	248
Future Volume (vph)	89	798	31	45	898	134	124	23	303	98	25	248
Confl. Peds. (#/hr)	44		7	7		44	22		23	23		22
Confl. Bikes (#/hr)			4			3						
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	92	823	32	46	926	138	128	24	312	101	26	256
Shared Lane Traffic (%)												
Lane Group Flow (vph)	92	855	0	46	926	138	0	152	312	0	127	256
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	3.0	10.0		3.0	10.0	10.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	8.0	22.0		8.0	28.0	28.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (s)	15.0	89.0		15.0	89.0	89.0	31.0	31.0	31.0	31.0	31.0	31.0
Total Split (%)	11.1%	65.9%		11.1%	65.9%	65.9%	23.0%	23.0%	23.0%	23.0%	23.0%	23.0%
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	95.9	89.7		93.0	86.6	86.6		26.0	26.0		26.0	26.0
Actuated g/C Ratio	0.71	0.66		0.69	0.64	0.64		0.19	0.19		0.19	0.19
v/c Ratio	0.23	0.37		0.10	0.41	0.15		0.74	0.60		0.67	0.54
Control Delay	5.2	7.6		2.2	5.5	1.9		73.1	12.9		69.2	12.9
Queue Delay	0.0	0.3		0.0	0.3	0.0		0.0	0.3		0.0	0.0
Total Delay	5.2	7.9		2.2	5.8	1.9		73.1	13.2		69.2	12.9
LOS	Α	Α		Α	Α	Α		Е	В		Е	В
Approach Delay		7.6			5.1			32.9			31.6	
Approach LOS		Α			Α			С			С	
Queue Length 50th (ft)	15	112		2	117	9		127	21		104	20
Queue Length 95th (ft)	25	127		6	156	27		#233	115		#193	103
Internal Link Dist (ft)		377			273			135			212	
Turn Bay Length (ft)	160			100		100			100			
Base Capacity (vph)	433	2334		486	2269	901		206	518		189	475
Starvation Cap Reductn	0	750		0	634	0		0	0		0	0
Spillback Cap Reductn	0	306		0	0	0		0	24		0	0
Storage Cap Reductn	0	0		0	0	0		0	0		0	0
Reduced v/c Ratio	0.21	0.54		0.09	0.57	0.15		0.74	0.63		0.67	0.54

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 70

Ms Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.74

Intersection Signal Delay: 13.9 Inte Intersection Capacity Utilization 79.0% ICU Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Intersection LOS: B ICU Level of Service D

Splits and Phases: 6: Brazos St & Martin Luther King Jr. Blvd ↑ Ø8

Ms Synchro 9 Report

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	—	•	4	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑ 1>		7	^					٦	^	7
Traffic Volume (vph)	0	1137	29	363	1132	0	0	0	0	38	200	141
Future Volume (vph)	0	1137	29	363	1132	0	0	0	0	38	200	141
Confl. Peds. (#/hr)			37	37						72		17
Confl. Bikes (#/hr)			7									14
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	1223	31	390	1217	0	0	0	0	41	215	152
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1254	0	390	1217	0	0	0	0	41	215	152
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		1	6						4	
Permitted Phases				6						4		4
Detector Phase		2		1	6					4	4	4
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					5.0	5.0	5.0
Minimum Split (s)		32.0		8.0	30.0					30.0	30.0	30.0
Total Split (s)		78.0		25.0	103.0					32.0	32.0	32.0
Total Split (%)		57.8%		18.5%	76.3%					23.7%	23.7%	23.7%
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					Max	Max	Max
Act Effct Green (s)		73.0		98.0	98.0					27.0	27.0	27.0
Actuated g/C Ratio		0.54		0.73	0.73					0.20	0.20	0.20
v/c Ratio		0.66		1.00	0.47					0.13	0.30	0.39
Control Delay		17.3		84.8	4.2					45.8	47.4	15.8
Queue Delay		0.6		7.1	0.3					0.0	0.0	0.0
Total Delay		17.9		91.9	4.5					45.8	47.4	15.8
LOS		В		F	Α					D	D	В
Approach Delay		17.9			25.7						35.5	
Approach LOS		В			С						D	
Queue Length 50th (ft)		340		259	121					30	85	24
Queue Length 95th (ft)		413		m#448	m126					65	124	88
Internal Link Dist (ft)		273			321			343			244	
Turn Bay Length (ft)				120						100		100
Base Capacity (vph)		1904		391	2569					312	707	394
Starvation Cap Reductn		277		10	639					0	0	0
Spillback Cap Reductn		0		0	0					0	0	0
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.77		1.02	0.63					0.13	0.30	0.39
Intersection Summary												

Cycle Length: 135

Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 90

Ms Synchro 9 Report Page 9

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	•	•	-	•	4	†	~	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^			∱ β		ሻ	4	7			
Traffic Volume (vph)	85	1169	0	0	1230	52	215	321	591	0	0	0
Future Volume (vph)	85	1169	0	0	1230	52	215	321	591	0	0	0
Confl. Peds. (#/hr)			34			89	17		151			
Confl. Bikes (#/hr)						4			13			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	88	1205	0	0	1268	54	222	331	609	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	88	1205	0	0	1322	0	200	353	609	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	104.0			89.0		31.0	31.0	31.0			
Total Split (%)	11.1%	77.0%			65.9%		23.0%	23.0%	23.0%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	99.0	99.0			86.6		26.0	26.0	26.0			
Actuated g/C Ratio	0.73	0.73			0.64		0.19	0.19	0.19			
v/c Ratio	0.32	0.46			0.59		0.64	1.04	2.03			
Control Delay	6.4	1.4			7.3		69.1	119.4	500.4			
Queue Delay	0.0	0.1			0.8		3.4	22.4	0.0			
Total Delay	6.4	1.5			8.1		72.5	141.8	500.4			
LOS	Α	Α			Α		Е	F	F			
Approach Delay		1.8			8.1			317.8				
Approach LOS		Α			Α			F				
Queue Length 50th (ft)	3	22			113		178	~354	~766			
Queue Length 95th (ft)	m12	25			128		270	#567	#1002			
Internal Link Dist (ft)		321			699			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	300	2595			2232		313	339	300			
Starvation Cap Reductn	0	215			533		0	0	0			
Spillback Cap Reductn	0	0			41		52	56	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.29	0.51			0.78		0.77	1.25	2.03			

Intersection Summary

Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

Ms Synchro 9 Report Page 11

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 2.03 Intersection Signal Delay: 101.2 Intersection Capacity Utilization 85.9% Intersection LOS: F ICU Level of Service E Analysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

	ၨ	-	•	•	•	•	1	T		-	¥	4
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		†	7		4						414	
Fraffic Volume (vph)	0	20	12	164	96	0	0	0	0	47	1178	
uture Volume (vph)	0	20	12	164	96	0	0	0	0	47	1178	
Confl. Peds. (#/hr)			68							44		
Confl. Bikes (#/hr)									2			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.0
Parking (#/hr)		0										
Adj. Flow (vph)	0	21	13	171	100	0	0	0	0	49	1227	- :
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	21	13	0	271	0	0	0	0	0	1299	
Furn Type		NA	Perm	Perm	NA					Perm	NA	
Protected Phases		4 12			4 12						2 10	
Permitted Phases			4 12	4 12						2 10		
Detector Phase		4 12	4 12	4 12	4 12					2 10	2 10	
Switch Phase				=								
Minimum Initial (s)												
Minimum Split (s)												
Fotal Split (s)												
Fotal Split (%)												
rotal Split (70) rellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Fotal Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		31.5	31.5		31.5						79.5	
Actuated g/C Ratio		0.23	0.23		0.23						0.59	
//c Ratio		0.05	0.03		0.79						0.63	
Control Delay		21.9	0.2		34.9						12.7	
Queue Delay		0.0	0.0		0.0						0.0	
Fotal Delay		21.9	0.2		35.0						12.7	
.OS		C	Α		C						В	
Approach Delay		13.6			35.0						12.7	
Approach LOS		В			С						В	
Queue Length 50th (ft)		10	0		84						206	
Queue Length 95th (ft)		24	0		131						270	
nternal Link Dist (ft)		177			244			271			262	
Furn Bay Length (ft)												
Base Capacity (vph)		533	509		472						2071	
Starvation Cap Reductn		0	0		1						0	
Spillback Cap Reductn		0	0		0						0	
Storage Cap Reductn		0	0		0						0	
Reduced v/c Ratio		0.04	0.03		0.58						0.63	
ntersection Summary												
Cycle Length: 135												

Synchro 9 Report Page 13 Ms

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type	2	4	10	12
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	21.0	21.0	22.5	22.5
Total Split (s)	56.0	29.0	24.0	26.0
Total Split (%)	41%	21%	18%	19%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
	C-IVIAX	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Base Capacity (vph) Starvation Cap Reductn				
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn				
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn				
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn				

Synchro 9 Report Page 14 Ms

18: Guadalupe St & E. 17th St

2022 Background + Site Timing Plan: PM

₩ Ø12

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 90 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.79 Intersection Signal Delay: 16.5 Intersection Capacity Utilization 76.3% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service D

Splits and Phases: 18: Guadalupe St & E. 17th St ₩ Ø4 Ø10

Synchro 9 Report Page 15 Ms

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

	۶	-	•	•	•	*	4	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ની			î,			446	7			
Traffic Volume (vph)	11	64	0	0	133	123	65	1161	69	0	0	C
Future Volume (vph)	11	64	0	0	133	123	65	1161	69	0	0	C
Confl. Peds. (#/hr)	34								47			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)		0										
Adj. Flow (vph)	12	70	0	0	145	134	71	1262	75	0	0	C
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	82	0	0	279	0	0	1333	75	0	0	C
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		31.4			31.4			79.6	79.6			
Actuated g/C Ratio		0.23			0.23			0.59	0.59			
v/c Ratio		0.23			0.66			0.45	0.09			
Control Delay		21.8			31.4			10.2	4.3			
Queue Delay		0.0			0.0			0.0	0.0			
Total Delay		21.8			31.4			10.2	4.3			
LOS		C C			C			В	Α.			
Approach Delay		21.8			31.4			9.9	,,			
Approach LOS		C C			C			Α.				
Queue Length 50th (ft)		32			128			147	11			
Queue Length 95th (ft)		m62			189			152	m18			
Internal Link Dist (ft)		244			319			272	11110		254	
Turn Bay Length (ft)		277			317			212	100		234	
Base Capacity (vph)		508			585			3009	800			
Starvation Cap Reductn		0			0			273	0			
Spillback Cap Reductn		0			7			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.16			0.48			0.49	0.09			
		0.10			0.40			0.47	0.07			
Intersection Summary Cycle Length: 135												
Actuated Cycle Length: 135												

Natural Cycle: 100

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type	2		10	10
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	26.0	28.0	22.5	22.5
Total Split (s)	54.0	28.0	25.0	28.0
Total Split (%)	40%	21%	19%	21%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)	C-IVIAX	INOTIC	None	INOTIC
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

Synchro 9 Report Page 17 Ms

19: Lavaca St & E. 17th St

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.66
Intersection Signal Delay: 13.8
Intersection Capacity Utilization 48.3%
ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: B
ICU Level of Service A

Splits and Phases: 19: Lavaca St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	←	•	1	Ť		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		ન			1>			414	7			
Traffic Volume (vph)	11	65	0	0	92	148	64	1123	60	0	0	
Future Volume (vph)	11	65	0	0	92	148	64	1123	60	0	0	
Confl. Peds. (#/hr)						167	87					
Confl. Bikes (#/hr)						2						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Parking (#/hr)					0							
Adj. Flow (vph)	12	68	0	0	97	156	67	1182	63	0	0	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	80	0	0	253	0	0	1249	63	0	0	
Turn Type	Perm	NA	-		NA	=	Perm	NA	Perm	-	-	
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10	2 10	2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase							2 10	2 10	2.10			
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		31.2			31.2			79.8	79.8			
		0.23			0.23			0.59	0.59			
Actuated g/C Ratio v/c Ratio		0.23			0.23			0.59	0.59			
								11.1	3.4			
Control Delay		22.9			37.6 0.0			0.4	0.0			
Queue Delay												
Total Delay		22.9			37.6			11.5	3.4			
LOS		С			D			В	Α			
Approach Delay		22.9			37.6			11.1				
Approach LOS		С			D			В				
Queue Length 50th (ft)		36			112			106	1			
Queue Length 95th (ft)		m67			167			m245	m7			
Internal Link Dist (ft)		233			60			281			272	
Turn Bay Length (ft)									100			
Base Capacity (vph)		568			448			2969	965			
Starvation Cap Reductn		0			0			1051	0			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.14			0.56			0.65	0.07			
Intersection Summary												
Cycle Length: 135												

Ms Synchro 9 Report Page 19

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background + Site Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
	15.0	15.0	ГΛ	Γ.0
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	28.0	32.0	21.0	20.0
Total Split (s)	55.0	32.0	24.0	24.0
Total Split (%)	41%	24%	18%	18%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?	0.14	Minima	Minima	NI
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				

28: Lavaca St & E. 16th St

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 105 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.77

Intersection Signal Delay: 15.7 Intersection Capacity Utilization 54.7% ICU L
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: B ICU Level of Service A

Splits and Phases: 28: Lavaca St & E. 16th St

Ms Synchro 9 Report Page 21

34: Guadalupe St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

	۶	-	\rightarrow	•	•	•	1	†	/	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ተተ _ጉ		Ţ	ተተተ						414	ř
Traffic Volume (vph)	0	934	97	232	1793	0	0	0	0	152	917	444
Future Volume (vph)	0	934	97	232	1793	0	0	0	0	152	917	444
Confl. Peds. (#/hr)			18	18						20		28
Confl. Bikes (#/hr)												28
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	0	1086	113	270	2085	0	0	0	0	177	1066	516
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1199	0	270	2085	0	0	0	0	0	1243	516
Turn Type		NA		pm+pt	NA					Perm	NA	Pern
Protected Phases		2		13	6						4	
Permitted Phases				6						4		
Detector Phase		2		13	6					4	4	4
Switch Phase												
Minimum Initial (s)		10.0			5.0					5.0	5.0	5.0
Minimum Split (s)		25.0			25.0					32.0	32.0	32.0
Total Split (s)		58.0			88.0					47.0	47.0	47.0
Total Split (%)		43.0%			65.2%					34.8%	34.8%	34.89
Yellow Time (s)		4.0			4.0					4.0	4.0	4.0
All-Red Time (s)		1.0			1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0						0.0	0.0
Total Lost Time (s)		5.0			5.0						5.0	5.0
Lead/Lag		Lag			0.0						0.0	0.0
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Max
Act Effct Green (s)		53.0		83.0	83.0					max	42.0	42.0
Actuated g/C Ratio		0.39		0.61	0.61						0.31	0.3
v/c Ratio		0.61		0.72	0.67						0.79	0.98
Control Delay		33.9		30.8	7.0						44.9	69.4
Queue Delay		0.0		17.1	0.3						0.0	0.0
Total Delay		33.9		47.9	7.3						44.9	69.4
LOS		C		T/./	7.5 A						D	67 E
Approach Delay		33.9		D	12.0						52.1	L
Approach LOS		C			12.0 B						J2.1	
Queue Length 50th (ft)		300		106	136						322	308
Queue Length 95th (ft)		330		m150	139						369	#562
Internal Link Dist (ft)		262		111130	240			197			285	π 302
Turn Bay Length (ft)		202		50	240			177			203	100
Base Capacity (vph)		1968		374	3126						1564	524
Starvation Cap Reductn		0		92	415						0	(
Spillback Cap Reductn		0		0	0						0	(
Storage Cap Reductn		0		0	0						0	(
Reduced v/c Ratio		0.61		0.96	0.77						0.79	0.98
Intersection Summary											****	
Cycle Length: 135												
Actuated Cycle Length: 135												
Offset: 0 (0%), Referenced to		EBT and	6:WBTL	Start of	Green							
Natural Cycle: 80												

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		3
Detector Phase		
Switch Phase		
Minimum Initial (s)	5.0	8.0
Minimum Split (s)	10.0	13.0
Total Split (s)	15.0	15.0
Total Split (%)	11%	11%
Yellow Time (s)	4.0	4.0
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
more section outlined y		

Ms Synchro 9 Report Page 23

34: Guadalupe St & W. 15th St

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.98

Intersection LOS: C ICU Level of Service D

Intersection Signal Delay: 30.2 Intellersection Capacity Utilization 80.1% ICU

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 34: Guadalupe St & W. 15th St ÿ3 ÿ1 **→**Ø2 (R)

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	•	•	←	•	4	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተተ			ተ ተጉ			414	7			
Traffic Volume (vph)	125	929	0	0	1706	67	393	891	163	0	0	0
Future Volume (vph)	125	929	0	0	1706	67	393	891	163	0	0	0
Confl. Peds. (#/hr)	48					48	31		18			
Confl. Bikes (#/hr)			2						28			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	139	1032	0	0	1896	74	437	990	181	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	139	1032	0	0	1970	0	0	1427	181	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0	33.0			
Total Split (s)	20.0	86.0			66.0		49.0	49.0	49.0			
Total Split (%)	14.8%	63.7%			48.9%		36.3%	36.3%	36.3%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			6.0	6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	81.0	81.0			64.8			43.0	43.0			
Actuated g/C Ratio	0.60	0.60			0.48			0.32	0.32			
v/c Ratio	0.69	0.34			0.81			0.91	0.33			
Control Delay	71.6	3.2			14.5			53.5	15.4			
Queue Delay	0.3	0.1			0.0			2.6	0.0			
Total Delay	71.9	3.3			14.5			56.1	15.4			
LOS	E	Α			В			Е	В			
Approach Delay		11.4			14.5			51.5				
Approach LOS		В			В			D				
Queue Length 50th (ft)	88	44			135			439	43			
Queue Length 95th (ft)	m156	49			132			#505	106			
Internal Link Dist (ft)		240			335			116			281	
Turn Bay Length (ft)	50											
Base Capacity (vph)	248	3051			2419			1572	551			
Starvation Cap Reductn	8	873			0			0	0			
Spillback Cap Reductn	0	0			0			75	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.58	0.47			0.81			0.95	0.33			

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 80

Ms Synchro 9 Report Page 25

35: Lavaca St & W. 15th St

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.91

Intersection LOS: C

Intersection Signal Delay: 26.3 Intellersection Capacity Utilization 80.1% ICU

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles. ICU Level of Service D

m Volume for 95th percentile queue is metered by upstream signal.

Ms Synchro 9 Report

36: Colorado St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

•	٠	→	•	•	←	4	•	†	~	/	+	√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	† †		7	^			4			ર્ન	7
Traffic Volume (vph)	42	1082	21	22	1401	35	8	27	110	261	6	341
Future Volume (vph)	42	1082	21	22	1401	35	8	27	110	261	6	341
Confl. Peds. (#/hr)	33		35	35		33	98		6	6		98
Confl. Bikes (#/hr)			1			2			2			1
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	48	1244	24	25	1610	40	9	31	126	300	7	392
Shared Lane Traffic (%)												
Lane Group Flow (vph)	48	1268	0	25	1650	0	0	166	0	0	307	392
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	custom
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		6
Detector Phase	5	2		1	6		4	4		8	8	6
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	15.0
Minimum Split (s)	10.0	20.0		10.0	22.0		36.0	36.0		10.0	10.0	22.0
Total Split (s)	10.0	79.0		10.0	79.0		46.0	46.0		46.0	46.0	79.0
Total Split (%)	7.4%	58.5%		7.4%	58.5%		34.1%	34.1%		34.1%	34.1%	58.5%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	C-Max
Act Effct Green (s)	81.0	78.0		80.0	76.0			41.0			41.0	76.0
Actuated g/C Ratio	0.60	0.58		0.59	0.56			0.30			0.30	0.56
v/c Ratio	0.30	0.43		0.11	0.58			0.29			1.01	0.47
Control Delay	11.0	6.6		5.2	9.7			14.4			100.8	3.7
Queue Delay	0.0	0.2		0.0	0.1			0.0			0.0	0.0
Total Delay	11.0	6.8		5.2	9.9			14.4			100.8	3.8
LOS	В	Α		Α	Α			В			F	Α
Approach Delay		6.9			9.8			14.4			46.4	
Approach LOS		Α			Α			В			D	
Queue Length 50th (ft)	0	105		3	359			35			~274	6
Queue Length 95th (ft)	12	120		6	160			87			#446	46
Internal Link Dist (ft)		335			362			155			114	
Turn Bay Length (ft)	90			90								100
Base Capacity (vph)	159	2927		235	2843			563			304	841
Starvation Cap Reductn	0	667		0	294			0			0	0
Spillback Cap Reductn	0	0		0	99			0			0	23
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.30	0.56		0.11	0.65			0.29			1.01	0.48

Intersection Summary

Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 75

Ms Synchro 9 Report Page 27

36: Colorado St & W. 15th St

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.01

Intersection Signal Delay: 15.7 Intersection Capacity Utilization 93.3% Intersection LOS: B ICU Level of Service F

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Ms Synchro 9 Report

37: N. Congress Ave & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	-	•	•	←	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ተተው		ች	^ ^		7
Traffic Volume (vph)	1511	0	0	1220	0	1
Future Volume (vph)	1511	0	0	1220	0	1
Confl. Peds. (#/hr)		49	49		40	14
Confl. Bikes (#/hr)						4
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	1757	0.00	0.00	1419	0	1
Shared Lane Traffic (%)	,	J		,	,	
Lane Group Flow (vph)	1757	0	0	1419	0	1
Turn Type	NA	J	pm+pt	NA	J	Perm
Protected Phases	2		рит+рі 1	6		I CITII
Permitted Phases	2		6	J		4
Detector Phases	2		1	6		4
Switch Phase	2		<u> </u>	0		4
Minimum Initial (s)	5.0		5.0	5.0		5.0
Minimum Split (s)	25.0		10.0	25.0		33.0
Total Split (s)	92.0		10.0	102.0		33.0
Total Split (%)	68.1%		7.4%	75.6%		24.4%
Yellow Time (s)	4.0		4.0	4.0		4.0
All-Red Time (s)	1.0		1.0	1.0		1.0
Lost Time Adjust (s)	0.0		0.0	0.0		0.0
Total Lost Time (s)	5.0		5.0	5.0		5.0
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		Max
Act Effct Green (s)	97.0			97.0		28.0
Actuated g/C Ratio	0.72			0.72		0.21
v/c Ratio	0.48			0.39		0.00
Control Delay	6.0			7.8		0.0
Queue Delay	0.1			0.1		0.0
Total Delay	6.1			8.0		0.0
LOS	Α			Α		Α
Approach Delay	6.1			8.0		
Approach LOS	A			A		
Queue Length 50th (ft)	136			178		0
Queue Length 95th (ft)	m147			79		0
Internal Link Dist (ft)	362			356	125	- 5
Turn Bay Length (ft)	302			555	120	
Base Capacity (vph)	3653			3653		385
Starvation Cap Reductn	369			991		0
	309			293		0
Spillback Cap Reductn						
Storage Cap Reductn	0			0		0
Reduced v/c Ratio	0.54			0.53		0.00
Intersection Summary						
Cycle Length: 135	_					
Actuated Cycle Length: 13						
Offset: 0 (0%), Referenced	d to phase 2:1	EBT and	6:WBTL	, Start of G	ireen	
Natural Cycle: 75						
-						

Ms Synchro 9 Report Page 29

37: N. Congress Ave & W. 15th St

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.48
Intersection Signal Delay: 6.9
Intersection Capacity Utilization 60.9%
ICU L
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: A ICU Level of Service B

Splits and Phases: 37: N. Congress Ave & W. 15th St

Ms Synchro 9 Report

38: Brazos St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	\rightarrow	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^		ሻ	ተተኈ			ર્ન	7		4	
Traffic Volume (vph)	5	1500	38	10	1077	11	133	3	117	65	3	87
Future Volume (vph)	5	1500	38	10	1077	11	133	3	117	65	3	87
Confl. Peds. (#/hr)	8		10	10		8	5		19	19		5
Confl. Bikes (#/hr)						1						1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	5	1613	41	11	1158	12	143	3	126	70	3	94
Shared Lane Traffic (%)												
Lane Group Flow (vph)	5	1654	0	11	1170	0	0	146	126	0	167	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4		4	8		
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0	32.0	32.0	32.0	
Total Split (s)	12.0	77.0		12.0	77.0		46.0	46.0	46.0	46.0	46.0	
Total Split (%)	8.9%	57.0%		8.9%	57.0%		34.1%	34.1%	34.1%	34.1%	34.1%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Act Effct Green (s)	96.6	96.6		99.1	99.1			23.6	23.6		23.6	
Actuated g/C Ratio	0.72	0.72		0.73	0.73			0.17	0.17		0.17	
v/c Ratio	0.02	0.46		0.05	0.31			0.85 90.1	0.36		0.74	
Control Delay	6.0	4.4		6.3	5.0 0.1			90.1	15.5 0.0		54.6	
Queue Delay Total Delay	6.0	0.0 4.4		0.0 6.3	5.1			90.1	15.5		0.0 54.6	
LOS	6.0 A	4.4 A		0.3 A	5. I			90.1	15.5 B		54.0 D	
	А	4.4		А	5.1			55.6	D		54.6	
Approach Delay Approach LOS		4.4 A			5. I A			55.6 E			54.6 D	
Queue Length 50th (ft)	0	42		2	83			125	20		100	
Queue Length 95th (ft)	m2	101		m8	215			192	71		170	
Internal Link Dist (ft)	IIIZ	356		1110	213			199	7.1		273	
Turn Bay Length (ft)	100	330		40	291			199	50		213	
Base Capacity (vph)	336	3618		246	3725			300	530		358	
Starvation Cap Reductn	0	214		0	1268			0	0		0	
Spillback Cap Reductin	0	255		0	0			0	4		2	
Storage Cap Reductin	0	255		0	0			0	0		0	
Reduced v/c Ratio	0.01	0.49		0.04	0.48			0.49	0.24		0.47	
Reduced NC Ratio	0.01	0.49		0.04	U.46			0.49	0.24		0.47	

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 70

Ms Synchro 9 Report Page 31 38: Brazos St & W. 15th St

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.85 Intersection Signal Delay: 11.5 Intersection Capacity Utilization 69.1%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 38: Brazos St & W. 15th St

Ms Synchro 9 Report

39: San Jacinto Blvd & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

Lane Configurations 1		•	\rightarrow	•	•	-	•	1	Ť	_	-	¥	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Traffic Volume (vph)	ane Configurations		ተ ቀኄ		ች	^ ^						4413	
Future Volume (vph)	Fraffic Volume (vph)	0		115	66		0	0	0	0	516		31
Conf. Petes (#hr) 12 12 12 12 2 32 32 3		0		115	66	885	0	0	0	0	516	636	31
Peak Hour Factor 0.93	Confl. Peds. (#/hr)			12	12						32		
Adj. Flow (vph) 0 1933 124 71 952 0 0 0 0 555 684 Shared Lane Traffic (%) Lane Group Flow (vph) 0 2057 0 71 952 0 0 0 0 0 0 1239 Turn Type NA pm+pt NA pm+pt NA Perm N	Confl. Bikes (#/hr)												
Shared Lane Traffic (%) Lane Group Flow (vph) 0 2057 0 71 952 0 0 0 0 0 1239 Protected Phases 1 1 6 4 Permitted Phases 2 1 1 6 4 Permitted Phases 4 4 Detector Phase 2 1 1 6 4 Switch Phase 4 4 Winimum Initial (s) Winimum Split (s) 10.0 3.0 10.0 7.0 7.0 7.0 7.0 10.1 10.1 10.1 1	Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.9
Lane Group Flow (vph) 0 2057 0 71 952 0 0 0 0 1239 Turn Type NA pm+pt NA pm+pt NA Perm NA Permitted Phases 2 1 6 4 4 4 Description 4 4 4 Description 4	Adj. Flow (vph)	0	1933	124	71	952	0	0	0	0	555	684	33
Turn Type													
Turn Type	Lane Group Flow (vph)	0	2057	0	71	952	0	0	0	0	0	1239	33
Protected Phases 2 1 6 4 Permitted Phases 6 4 Defector Phase 2 2 1 6 4 4 Switch Phase Switch Phase Switch Phase Winimum Split (s) 10.0 3.0 10.0 7.0 7.0 7.0 Winimum Split (s) 80.0 15.0 95.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 4					pm+pt						Perm		Peri
Detector Phase 2			2									4	
Detector Phase 2	Permitted Phases				6						4		
Minimum Initial (s) 10.0 3.0 10.0 7.0 7.0 Minimum Split (s) 28.0 8.0 28.0 32.0 32.0 32.0 10 total Split (s) 80.0 15.0 95.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 4	Detector Phase		2			6					4	4	
Minimum Split (s) 28.0 8.0 28.0 32.0 32.0 32.0 5.0 5.0 5.0 5.0 40.0 40.0 40.0 40.0 10.0 40.0 10.0 40.0 10.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Switch Phase												
Minimum Split (s) 28.0 8.0 28.0 32.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	Minimum Initial (s)		10.0		3.0	10.0					7.0	7.0	7.
Total Split (s) 80.0 15.0 95.0 40.0 40.0 27.0 Total Split (%) 59.3% 11.1% 70.4% 29.6% 29											32.0		32.
Total Split (%) 59.3% 11.1% 70.4% 29.6% 29.6% 29 Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1													40.
Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Al. Pate Time (s) 1.0 1.													29.6
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0					4.0	4.0					4.0	4.0	4.
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead Lead Lead Lead-Lag Lead-Lag Cytimize? Yes Yes Lead-Lag Optimize? Yes Yes Secal Mode C-Max None C-Max None None None None Note End Comment of the Comm													1.
Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lead Lag Lead Lag Delaid Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None None None None Note Effct Green (s) 79.6 90.0 90.0 35.0 35.0 36.0 36.0 35.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 36													0
Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None C-Max None None None Recall Mode C-Max None C-Max None None <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.</td></td<>													5.
Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None Non						0.0						0.0	0.
Recall Mode C-Max None C-Max None													
Act Effet Green (s) 79.6 90.0 90.0 35.0 3 Actuated g/C Ratio 0.59 0.67 0.67 0.26 0 Vic Ratio 0.69 0.46 0.28 1.24dl 0 Control Delay 9.7 41.5 6.1 71.0 4 Queue Delay 0.1 0.0 0.2 0.0 0 Total Delay 9.9 41.5 6.3 71.0 4 LOS A D A E E Approach Delay 9.9 8.7 65.4 A A E Queue Length 50th (ft) 147 23 84 397 0 397 Queue Length 50th (ft) 346 m72 97 #502 115 272 11m Bay Length (ft) 297 282 125 272 12m Bay Length (ft) 70 8ase Capacity (vph) 2970 183 3390 1261 35arvation Cap Reductn 193 0 1322 0 0 0 0 0 0 0 0 0 0 0 0 0						C-Max					None	None	Non
Actuated g/C Ratio 0.59 0.67 0.67 0.26 0 v/c Ratio 0.69 0.46 0.28 1.24dl 0 Control Delay 9.7 41.5 6.1 71.0 4 Queue Delay 0.1 0.0 0.2 0.0 0 Total Delay 9.9 41.5 6.3 71.0 4 LOS A D A E Approach Delay 9.9 8.7 65.4 Approach LOS A A A E Approach LOS A A E Queue Length 50th (ft) 147 23 84 397 #502 Queue Length 95th (ft) 346 m72 97 #502 #502 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 8 2 1261 Starvation Cap Reductn 193 0 1322 0 0 0 Spillback Cap Reductn 0 0 0 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>35.</td></t<>													35.
v/c Ratio 0.69 0.46 0.28 1.24dl C Control Delay 9.7 41.5 6.1 71.0 4 Queue Delay 0.1 0.0 0.2 0.0 Total Delay 9.9 41.5 6.3 71.0 4 LOS A D A E Approach Delay 9.9 8.7 65.4 4 Approach LOS A A A E Queue Length 50th (ft) 147 23 84 397 Queue Length 95th (ft) 346 m72 97 #502 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 88 22 125 272 Turn Bay Length (ft) 70 83 3390 1261 54 Starvation Cap Reductn 193 0 1322 0 0 Spillback Cap Reductn 0 0 0 0 0													0.2
Control Delay 9.7 41.5 6.1 71.0 4 Queue Delay 0.1 0.0 0.2 0.0 Total Delay 9.9 41.5 6.3 71.0 4 LOS A D A E Approach Delay 9.9 8.7 65.4 65.4 Approach LOS A A E E Queue Length 50th (ft) 147 23 84 397 Queue Length 95th (ft) 346 m72 97 #502 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 83 3390 1261 Starvation Cap Reductn 193 0 1322 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.74 0.39 0.46 0.98 0													0.7
Queue Delay 0.1 0.0 0.2 0.0 Total Delay 9.9 41.5 6.3 71.0 4 LOS A D A E 65.4 Approach Delay 9.9 8.7 65.4 Approach LOS A A A E Queue Length 50th (ft) 147 23 84 397 Queue Length 95th (ft) 346 m72 97 #502 125 272 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 Base Capacity (vph) 2970 183 3390 1261 334 334 1322 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>44.</td></t<>													44.
Total Delay													0.
A D A B E													44.
Approach Delay 9.9 8.7 65.4 Approach LOS A A A Queue Length 50th (ft) 147 23 84 397 Queue Length 95th (ft) 346 m72 97 #502 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 83es Capacity (vph) 2970 183 3390 1261 Starvation Cap Reductn 193 0 1322 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.74 0.39 0.46 0.98 0 0													
Approach LOS A A A B Queue Length 50th (ft) 147 23 84 397 Queue Length 95th (ft) 346 m72 97 #502 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 Base Capacity (vph) 2970 183 3390 1261 Salvardion Cap Reductn 193 0 1322 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.74 0.39 0.46 0.98 (
Oueue Length 50th (ft) 147 23 84 397 Queue Length 95th (ft) 346 m72 97 #502 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 Base Capacity (vph) 2970 183 3390 1261 Starvation Cap Reductn 193 0 1322 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.74 0.39 0.46 0.98 0													
Queue Length 95th (ft) 346 m72 97 #502 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 883 1261 Base Capacity (vph) 2970 183 3390 1261 Starvation Cap Reductn 193 0 1322 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.74 0.39 0.46 0.98 0					23								20
Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8 1261 Base Capacity (vph) 2970 183 3390 1261 Starvation Cap Reductn 193 0 1322 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.74 0.39 0.46 0.98 0													32
Turn Bay Length (ft) 70 Base Capacity (vph) 2970 183 3390 1261 Starvation Cap Reductn 193 0 1322 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.74 0.39 0.46 0.98 0					11172				125				52
Base Capacity (vph) 2970 183 3390 1261 Starvation Cap Reductn 193 0 1322 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.74 0.39 0.46 0.98 0			2//		70	202			120			2,72	5
Starvation Cap Reductn 193 0 1322 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.74 0.39 0.46 0.98 0			2970			3390						1261	46
Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.74 0.39 0.46 0.98													
Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.74 0.39 0.46 0.98 0													
Reduced v/c Ratio 0.74 0.39 0.46 0.98 (-								
Intersection Summary													0.7
	Intersection Summary												

Ms Synchro 9 Report Page 33

39: San Jacinto Blvd & W. 15th St

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.98

Intersection Signal Delay: 28.4 Intersection Capacity Utilization 76.3% Analysis Period (min) 15 Intersection LOS: C ICU Level of Service D

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

Ms Synchro 9 Report

40: Trinity St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

пи по техаз сар	itoi con	ipicx iv	iasici	Idii Z	0100	Juaic					······································	
	•	-	•	•	←	•	4	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ			ተተ _ጉ			414	7			
Traffic Volume (vph)	88	2000	0	0	777	146	179	309	283	0	0	0
Future Volume (vph)	88	2000	0	0	777	146	179	309	283	0	0	0
Confl. Peds. (#/hr)	2					2	7		8			
Confl. Bikes (#/hr)									8			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	92	2083	0	0	809	152	186	322	295	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	92	2083	0	0	961	0	0	508	295	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		35.0	35.0	35.0			
Total Split (s)	10.0	100.0			90.0		35.0	35.0	35.0			
Total Split (%)	7.4%	74.1%			66.7%		25.9%	25.9%	25.9%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	95.0	95.0			85.0			30.0	30.0			
Actuated g/C Ratio	0.70	0.70			0.63			0.22	0.22			
v/c Ratio	0.25	0.58			0.31			0.66	0.77			
Control Delay	5.9	6.8			15.0			52.6	53.7			
Queue Delay	0.0	0.3			0.0			0.0	0.1			
Total Delay	5.9	7.1			15.0			52.6	53.8			
LOS	Α	Α			В			D	D			
Approach Delay		7.1			15.0			53.1				
Approach LOS		Α			В			D				
Queue Length 50th (ft)	19	160			182			215	200			
Queue Length 95th (ft)	m25	m169			195			278	#331			
Internal Link Dist (ft)		282			641			149			621	
Turn Bay Length (ft)	100											
Base Capacity (vph)	372	3578			3137			769	385			
Starvation Cap Reductn	0	683			0			0	0			
Spillback Cap Reductn	0	291			0			0	2			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.25	0.72			0.31			0.66	0.77			

Intersection Summary

Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

Ms Synchro 9 Report Page 35

40: Trinity St & W. 15th St

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.77

Intersection LOS: B

Intersection Signal Delay: 18.4 Intersection Capacity Utilization 76.3% ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 40: Trinity St & W. 15th St _____ø₂ (₽)

11: Colorado St & W. 18th St

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection			
Intersection Delay, s/veh	26		
Intersection LOS	D		

Movement	EDU	EDL	EDI	EDK	WDU	WDL	WDI	WDK	INDU	INDL	INDI	NDR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	6	105	14	0	64	202	10	0	15	154	259
Future Vol, veh/h	0	6	105	14	0	64	202	10	0	15	154	259
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	8	135	18	0	82	259	13	0	19	197	332
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		13.4				21.3				37.1		
HCM LOS		В				С				Е		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	4%	5%	23%	12%
Vol Thru, %	36%	84%	73%	60%
Vol Right, %	61%	11%	4%	28%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	428	125	276	149
LT Vol	15	6	64	18
Through Vol	154	105	202	90
RT Vol	259	14	10	41
Lane Flow Rate	549	160	354	191
Geometry Grp	1	1	1	1
Degree of Util (X)	0.881	0.315	0.651	0.357
Departure Headway (Hd)	5.778	7.078	6.621	6.728
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	626	505	541	531
Service Time	3.841	5.175	4.697	4.82
HCM Lane V/C Ratio	0.877	0.317	0.654	0.36
HCM Control Delay	37.1	13.4	21.3	13.6
HCM Lane LOS	E	В	С	В
HCM 95th-tile Q	10.4	1.3	4.7	1.6

Ms Synchro 9 Report Page 1

11: Colorado St & W. 18th St

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection		
Intersection Del	ay,	s/veh
Intersection LO	S	

Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	18	90	41
Future Vol, veh/h	0	18	90	41
Peak Hour Factor	0.78	0.78	0.78	0.78
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	23	115	53
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NID		

Approach	SB
Opposing Approach	NB
Opposing Lanes	1
Conflicting Approach Left	WB
Conflicting Lanes Left	1
Conflicting Approach Right	EB
Conflicting Lanes Right	1
HCM Control Delay	13.6
HCM LOS	В

Intersection Intersection Delay, s/veh Intersection LOS 11.9 B

EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
		ર્ન				ĵ.				↑	
0	0	384	0	0	0	334	0	0	0	0	0
0	0	384	0	0	0	334	0	0	0	0	0
0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
2	2	2	2	2	2	2	2	2	2	2	2
0	0	447	0	0	0	388	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	1	0
		EB				WB				NB	
		WB				EB				SB	
		1				1				1	
		SB				NB				EB	
		1				1				1	
		NB				SB				WB	
		1				1				1	
		12.4				11.4				0	
		В				В				-	
	0 0 0.86 2	0 0 0 0 0.86 0.86 2 2 0 0	0 0 384 0 0 384 0.86 0.86 0.86 2 2 2 0 0 447 0 1 EB WB 1 SB 1 NB 1 124	0 0 384 0 0 0 384 0 0 0 384 0 0 0 86 0.86 0.86 0.86 0.86 0.86 0.86	0 0 384 0 0 0 0 384 0 0 0.86 0.86 0.86 0.86 0.86 2 2 2 2 2 2 2 0 0 447 0 0 0 0 1 0 0 EB WB 1 SB 1 NB 1 12.4	0 0 384 0 0 0 0 0 384 0 0 0 0 0.86 0.86 0.86 0.86 0.86 0.86 2 2 2 2 2 2 2 0 0 447 0 0 0 0 1 0 0 0 EB WB 1 SB 1 SB 1 NB 1 124	0 0 384 0 0 0 334 0 0 0 384 0 0 0 0 334 0.86 0.86 0.86 0.86 0.86 0.86 2 2 2 2 2 2 2 2 2 0 0 447 0 0 0 388 0 0 1 0 0 0 1 EB WB WB SB 1 1 1 SB NB 1 1 NB SB 1 1 11 NB SB 1 1 11 NB SB 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 384 0 0 0 334 0 0 0 384 0 0 0 334 0 0.86 0.86 0.86 0.86 0.86 0.86 0.86 2 2 2 2 2 2 2 2 2 2 2 0 0 447 0 0 0 388 0 0 0 1 0 0 0 1 0 EB WB WB SB 1 1 SB NB 1 1 NB SB 1 1 1 1 NB SB 1 1 1 1 NB SB 1 1 1 1 11 NB SB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 384 0 0 0 334 0 0 0 0 384 0 0 0 334 0 0 0.86 0.86 0.86 0.86 0.86 0.86 0.86 2 2 2 2 2 2 2 2 2 2 2 2 0 0 447 0 0 0 388 0 0 0 0 1 0 0 0 1 0 0 EB WB WB SB 1 1 SB NB 1 1 NB SB SB 1 1 12.4 11.4	0 0 384 0 0 0 334 0 0 0 0 0 384 0 0 0 334 0 0 0 0 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86	1

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	0%	
Vol Right, %	0%	0%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	384	334	13	
LT Vol	0	0	0	0	
Through Vol	0	384	334	0	
RT Vol	0	0	0	13	
Lane Flow Rate	0	447	388	15	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0.541	0.477	0.021	
Departure Headway (Hd)	5.737	4.363	4.417	5.092	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	831	819	701	
Service Time	3.784	2.377	2.431	3.137	
HCM Lane V/C Ratio	0	0.538	0.474	0.021	
HCM Control Delay	8.8	12.4	11.4	8.2	
HCM Lane LOS	N	В	В	Α	
HCM 95th-tile Q	0	3.3	2.6	0.1	

Synchro 9 Report Page 3 Ms

12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations				7
Traffic Vol, veh/h	0	0	0	13
Future Vol, veh/h	0	0	0	13
Peak Hour Factor	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	0	15
Number of Lanes	0	0	0	1
Approach				SB
Opposing Approach				NB
Opposing Lanes				1
Conflicting Approach Left				WB
Conflicting Lanes Left				1
Conflicting Approach Right				EB
Conflicting Lanes Right				1
HCM Control Delay				8.2
HCM LOS				Α

Total Total Cupitor Complex Master Fiam 2010 Opaulo

Intersection												
Intersection Delay, s/veh	40.9											
Intersection LOS	Е											
Movement	FBU	FBI	FBT	FBR	WBU	WBI	WBT	WBR	NBU	NBI	NBT	NBR

Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	40	379	25	0	11	64	25	0	187	163	0
Future Vol, veh/h	0	40	379	25	0	11	64	25	0	187	163	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	47	441	29	0	13	74	29	0	217	190	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		62.1				14.2				36		
HCM LOS		F				B				F		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	53%	9%	11%	36%
Vol Thru, %	47%	85%	64%	21%
Vol Right, %	0%	6%	25%	43%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	350	444	100	270
LT Vol	187	40	11	97
Through Vol	163	379	64	57
RT Vol	0	25	25	116
Lane Flow Rate	407	516	116	314
Geometry Grp	1	1	1	1
Degree of Util (X)	0.822	0.985	0.266	0.634
Departure Headway (Hd)	7.27	6.867	8.234	7.266
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	497	527	440	493
Service Time	5.35	4.936	6.234	5.354
HCM Lane V/C Ratio	0.819	0.979	0.264	0.637
HCM Control Delay	36	62.1	14.2	22.2
HCM Lane LOS	E	F	В	С
HCM 95th-tile Q	8	13.4	1.1	4.4

Ms Synchro 9 Report Page 5

14: Brazos St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background + Site Timing Plan: PM

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
mersection 200				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	97	57	116
Future Vol, veh/h	0	97	57	116
Peak Hour Factor	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	113	66	135
Number of Lanes	0	0	1	0
Approach		SB		
Approach				
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		22.2		
HCM LOS		С		

TIA for Texas Capitol Complex Master Plan 2018 Update

ntersection	
ntersection Delay, s/veh	25
ntersection LOS	С

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ĵ.				ર્ન					
Traffic Vol, veh/h	0	0	202	303	0	36	53	0	0	0	0	0
Future Vol, veh/h	0	0	202	303	0	36	53	0	0	0	0	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	213	319	0	38	56	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	0	0
Approach			EB			WB						
Opposing Approach			WB			EB						
Opposing Lanes			1			1						
Conflicting Approach Left			SB									
Conflicting Lanes Left			3			0						
Conflicting Approach Right						SB						
Conflicting Lanes Right			0			3						
HCM Control Delay			37.7			11.8						
HCM LOS			Е			В						

Lane	EBLn1	WBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	0%	40%	0%	0%	0%
Vol Thru, %	40%	60%	100%	100%	0%
Vol Right, %	60%	0%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	505	89	279	279	23
LT Vol	0	36	0	0	0
Through Vol	202	53	279	279	0
RT Vol	303	0	0	0	23
Lane Flow Rate	532	94	294	294	24
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.881	0.19	0.528	0.528	0.027
Departure Headway (Hd)	5.965	7.282	6.467	6.467	3.993
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	606	491	555	555	890
Service Time	3.722	5.059	4.222	4.222	1.747
HCM Lane V/C Ratio	0.878	0.191	0.53	0.53	0.027
HCM Control Delay	37.7	11.8	16.3	16.3	6.9
HCM Lane LOS	E	В	С	С	Α
HCM 95th-tile Q	10.3	0.7	3.1	3.1	0.1

Ms Synchro 9 Report Page 7

16: San Jacinto Blvd & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background + Site Timing Plan: PM

ntersection
ntersection Delay, s/veh
ntersection LOS

Movement	SBU	SBL	SBT	SBR
Lane Configurations			4₽	7
Traffic Vol, veh/h	0	0	558	23
Future Vol, veh/h	0	0	558	23
Peak Hour Factor	0.95	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	587	24
Number of Lanes	0	0	2	1
Approach			SB	
Opposing Approach				
Opposing Lanes			0	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			15.9	
HCM LOS			С	

20: Colorado St & E. 17th St

2022 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

ntersection	
ntersection Delay, s/veh	13.2
ntersection LOS	В

iviovement	FRU	EBL	FRI	EBK	WRU	WBL	WBI	WBR	NBO	NBL	MRI	MRK
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	79	36	15	0	0	174	0	0	15	300	0
Future Vol, veh/h	0	79	36	15	0	0	174	0	0	15	300	0
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	96	44	18	0	0	212	0	0	18	366	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB					WB			NB		
Opposing Approach		WB					EB			SB		
Opposing Lanes		1					1			1		
Conflicting Approach Left		SB					NB			EB		
Conflicting Lanes Left		1					1			1		
Conflicting Approach Right		NB					SB			WB		
Conflicting Lanes Right		1					1			1		
HCM Control Delay		11.3					12.1			15.7		
HCM LOS		В					В			С		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	5%	61%	0%	0%
Vol Thru, %	95%	28%	100%	51%
Vol Right, %	0%	12%	0%	49%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	315	130	174	178
LT Vol	15	79	0	0
Through Vol	300	36	174	91
RT Vol	0	15	0	87
Lane Flow Rate	384	159	212	217
Geometry Grp	1	1	1	1
Degree of Util (X)	0.578	0.266	0.347	0.325
Departure Headway (Hd)	5.414	6.043	5.882	5.394
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	665	591	609	662
Service Time	3.468	4.116	3.949	3.461
HCM Lane V/C Ratio	0.577	0.269	0.348	0.328
HCM Control Delay	15.7	11.3	12.1	11.1
HCM Lane LOS	С	В	В	В
HCM 95th-tile Q	3.7	1.1	1.5	1.4

Ms Synchro 9 Report Page 9

20: Colorado St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background + Site Timing Plan: PM

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	0	91	87
Future Vol, veh/h	0	0	91	87
Peak Hour Factor	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	111	106

Number of Lanes	0	0	1	0		
Approach			SB			
Opposing Approach			NB			
Opposing Lanes			1			
Conflicting Approach Left			WB			
Conflicting Lanes Left			1			
Conflicting Approach Right			EB			
Conflicting Lanes Right			1			
HCM Control Delay			11.1			
HCM LOS			В			

24: E. 17th St & Brazos St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection			
Intersection Delay, s/veh	8.7		
Intersection LOS	Α		

Movement	EBU	EBL	EBT	WBU	WBT	WBR	SBU	SBL	SBR
Lane Configurations			ર્ન		₽.			W	
Traffic Vol, veh/h	0	0	193	0	40	51	0	96	0
Future Vol, veh/h	0	0	193	0	40	51	0	96	0
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	238	0	49	63	0	119	0
Number of Lanes	0	0	1	0	1	0	0	1	0
Approach			EB		WB			SB	
Opposing Approach			WB		EB				
Opposing Lanes			1		1			0	
Conflicting Approach Left			SB					WB	
Conflicting Lanes Left			1		0			1	
Conflicting Approach Right					SB			EB	
Conflicting Lanes Right			0		1			1	
HCM Control Delay			9.1		7.8			8.9	
HCM LOS			Α		A			Α	

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	0%	0%	100%
Vol Thru, %	100%	44%	0%
Vol Right, %	0%	56%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	193	91	96
LT Vol	0	0	96
Through Vol	193	40	0
RT Vol	0	51	0
Lane Flow Rate	238	112	119
Geometry Grp	1	1	1
Degree of Util (X)	0.288	0.13	0.161
Departure Headway (Hd)	4.354	4.155	4.903
Convergence, Y/N	Yes	Yes	Yes
Cap	827	864	732
Service Time	2.369	2.173	2.926
HCM Lane V/C Ratio	0.288	0.13	0.163
HCM Control Delay	9.1	7.8	8.9
HCM Lane LOS	Α	Α	Α
HCM 95th-tile Q	1.2	0.4	0.6

2022 Background + Site

 Timing Plan: PM	

IIILEI SECLIOII							
Int Delay, s/veh 1.8	}						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	↑ 1>		ሻ	^	Y		
Traffic Vol, veh/h	659	39	44	1340	13	170	
Future Vol, veh/h	659	39	44	1340	13	170	
Conflicting Peds, #/hr	0	8	8	0	0	12	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None		None	
Storage Length	-	-	40	-	0	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	94	94	94	94	94	94	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	701	41	47	1426	14	181	

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	751	0	1536	391	
Stage 1	-	-	-	-	730	-	
Stage 2	-	-	-	-	806	-	
Critical Hdwy	-	-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2		-	-	-	5.84	-	
Follow-up Hdwy	-	-	2.22	-	3.52	3.32	
Pot Cap-1 Maneuver	-	-	854	-	107	608	
Stage 1	-	-	-	-	438	-	
Stage 2		-	-	-	400	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver		-	844	-	100	596	
Mov Cap-2 Maneuver	-	-	-	-	100	-	
Stage 1	-	-	-	-	435	-	
Stage 2	-	-	-	-	378	-	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.3		19.5		
HCM LOS					С		

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	441	-	-	844	-
HCM Lane V/C Ratio	0.441	-	-	0.055	-
HCM Control Delay (s)	19.5	-	-	9.5	-
HCM Lane LOS	С	-	-	Α	-
HCM 95th %tile O(veh)	2.2	-	-	0.2	-

Synchro 9 Report Page 1 Ms

9: Guadalupe St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

	38.1												
Int Delay, s/veh													
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		+	7			4						4î Þ	
Traffic Vol, veh/h	0	20	12		202	96	0	0	0	0	36	1024	2
Future Vol, veh/h	0	20	12		202	96	0	0	0	0	36	1024	2
Conflicting Peds, #/hr	0	0	0		55	0	0	0	0	0	0	0	4
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Fre
RT Channelized		-	None		-	-	None	-	-	None	-	-	Non
Storage Length	-	-	0		-	-	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	-		-	0	-	-	-	-	-	0	
Grade, %	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	97	97	97		97	97	97	97	97	97	97	97	9
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	
Mvmt Flow	0	21	12		208	99	0	0	0	0	37	1056	2
Major/Minor	Minor2			Mi	inor1						Major2		
Conflicting Flow All	-	1182	635		667	1194	-				0	0	
Stage 1	-	1182	-		0	0	-				-	-	
Stage 2		0	-		667	1194	-				-	-	
Critical Hdwy		6.54	6.94		7.54	6.54	-				4.14		
Critical Hdwy Stg 1		5.54	-		-		-				-	-	
Critical Hdwy Stg 2		-	-		6.54	5.54	-				-	-	
Follow-up Hdwy		4.02	3.32		3.52	4.02	-				2.22	-	
Pot Cap-1 Maneuver	0	188	421		344	185	0				-	-	
Stage 1	0	262	-		-	-	0				-	-	
Stage 2	0	-	-		414	258	0				-	-	
Platoon blocked, %													
Mov Cap-1 Maneuver	-	181	405		304	178	-				-	-	
Mov Cap-2 Maneuver		181	-		304	178	-						
Stage 1		252			-	-							
Stage 2		-			369	248	-					-	
, and the second													
Approach	EB				WB						SB		
HCM Control Delay, s	22.4				178								
HCM LOS	С				F								
Minor Lano/Major Mumt	EBLn1	EDI p21	MDI n1	SBL	SBT	SBR							
Minor Lane/Major Mvmt					JDT	SDR							
Capacity (veh/h)	181	405	248	-	-	-							
HCM Lane V/C Ratio	0.114	0.031	1.239	-	-	-							
HCM Control Delay (s)	27.4	14.2	178	-	-	-							
HCM Lane LOS HCM 95th %tile Q(veh)	D 0.4	0.1	F 15.1	-	-	-							

EBL EBT EBR

53

0

0

2 2

0

0

NBL NBT NBR EBLn1WBLn1

- None

Stop Stop Stop

11 53 0

95 95 95

12 56

751 1439

25 25

726 1414

6.44 6.54

6.74 5.54

3.82 4.02

357 132 0

347 202 0

- 121

- 121

24 190

0.061

8.4

Α

0.2

Minor2

WBL WBT WBR

1→

0 21

- - None

0

- 1398 659

- 6.54 7.14

- 4.02 3.92

0 ~ 140 348

- ~ 128 348

0 180

- 1373

- 25

- 5.54

0 212

- ~ 128

- 199

\$ 360.4

- 159

- 1.629

-\$ 360.4

- 17.9 ~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

95 95

79

95

2 2 2

Minor1

Stop Stop Stop

0 171

75

Intersection Int Delay, s/veh Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, # Grade, %

Traffic Vol, veh/h

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Mymt Flow

Major/Minor

Critical Hdwy

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Capacity (veh/h)

HCM Lane LOS

Approach HCM Control Delay, s

HCM LOS

Follow-up Hdwy

2022 Background + Site Timing Plan: PM

SBL SBT SBR

Free Free Free

- - None

0

95 95

> 2 2

0

0

0 0 0

NBL NBT NBR

77

81

† ††

65 1136

Free Free Free

0

- None

25 0

0

95 95 95

2 2

Major1

25 0 0

3.12

1124

68 1196

13: W. 18th St & Parking Dr. 2 TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

Intersection								
Int Delay, s/veh	4.9							
Movement	EBL	EBT			WBT	WBR	SBL	SBR
Lane Configurations		ની			1₃		Y	
Traffic Vol, veh/h	24	389			348	20	97	116
Future Vol, veh/h	24	389			348	20	97	116
Conflicting Peds, #/hr	0	0			0	0	0	0
Sign Control	Free	Free			Free	Free	Stop	Stop
RT Channelized		None			-	None	-	None
Storage Length		-			-	-	0	
Veh in Median Storage, #		0			0	-	0	-
Grade, %		0			0		0	-
Peak Hour Factor	92	92			92	92	92	92
Heavy Vehicles, %	2	2			2	2	2	2
Mvmt Flow	26	423			378	22	105	126
Major/Minor	Major1			N	/lajor2		Minor2	
Conflicting Flow All	400	0		- 11	najorz -	0	864	389
Stage 1	-	-				-	389	-
Stage 2							475	
Critical Hdwy	4.12						6.42	6.22
Critical Hdwy Stg 1	4.12						5.42	0.22
Critical Hdwy Stg 2	-				-		5.42	
Follow-up Hdwy	2.218						3.518	3.318
Pot Cap-1 Maneuver	1159						3.310	659
Stage 1	1137						685	037
Stage 2							626	
Platoon blocked. %							520	
Mov Cap-1 Maneuver	1159						316	659
Mov Cap-1 Maneuver	1137						316	-
Stage 1							685	
Stage 2							608	
Jugo 2							300	
Approach	EB				WB		SB	
HCM Control Delay, s	0.5				0		21.8	
HCM LOS	0.5				U		21.0 C	
200							C	
Minor Lane/Major Mvmt	EBL	EBT	WBT WB	R SBLn1				
Capacity (veh/h)	1159	EDI	VVDI VVD	- 441				
HCM Lane V/C Ratio	0.023			- 441				
HCM Control Delay (s)	8.2	0	-	- 0.525				
HCM Control Delay (s) HCM Lane LOS	8.2 A	A		- 21.8				
	0.1							
HCM 95th %tile Q(veh)	0.1	-	•	- 3				

Ms	Synchro 9 Report
	Page 3

EBR

145

145

0

Stop

None

92

2

158

84

6.22

3.318

975

975

NBL NBT EBLn1 SBT SBR

- 716 - 0.588

0 16.9

A C

- 3.9

NBL NBT

4 30 199

30 199

0 0

- None

- 0

33 216

92 92

2 2

Major1

111 0

4.12

2.218

1479

1479

0

Free Free

9.4

EBL

242

242

Stop

0

0

0

92

263

Minor2

366

84

282

6.42

5.42

5.42

634

939

766

618

618

939

747

EB

16.9

1479

0.022

7.5

0.1

Α

3.518

Intersection

Int Delay, s/veh Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, #

Traffic Vol, veh/h

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

HCM Control Delay, s

Minor Lane/Major Mvmt

Capacity (veh/h) HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

Approach

HCM LOS

Follow-up Hdwy

Grade, %

Mymt Flow

Major/Minor

Critical Hdwy

2022 Background + Site Timing Plan: PM

SBT SBR

50

1→ 52

52 50

0 0

0

92 92

2 2

57 54

0

Major2

Free Free

- None

17: Trinity St & W. 18th St
TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

Int Delay, s/yeh 21	4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configurations		ની			Þ			ተተተ				
Traffic Vol, veh/h	285	0	0	0	0	0	173	595	0	0	0	
Future Vol, veh/h	285	0	0	0	0	0	173	595	0	0	0	
Conflicting Peds, #/hr	0	0	18	0	0	0	21	0	0	0	0	
Sign Control	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	
Storage Length	-	-	-	-	-	-	115	-	-	-	-	
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	335	0	0	0	0	0	204	700	0	0	0	
Major/Minor	Minor2			Major2			Major1					
Conflicting Flow All	709	1129	-	-	-	0	22	0	-			
Stage 1	22	22	-	-	-	-	-	-	-			
Stage 2	687	1107	-	-	-	-	-	-	-			
Critical Hdwy	6.08	6.53	-	-	-	-	4.13	-	-			
Critical Hdwy Stg 1	5.43	5.53	-	-	-	-	-	-	-			
Critical Hdwy Stg 2	6.03	5.53	-	-	-	-	-	-	-			
Follow-up Hdwy	3.669	4.019	-	-	-	-	2.219	-	-			
Pot Cap-1 Maneuver	416	203	0	0	-	-	1593	-	0			
Stage 1	960	877	0	0	-	-	-	-	0			
Stage 2	432	285	0	0	-	-	-	-	0			
Platoon blocked, %					-	-		-				
Mov Cap-1 Maneuver	348	0	-	-	-	-	1593	-	-			
Mov Cap-2 Maneuver	348	0	-		-	-	-	-	-			
Stage 1	941	0	-		-	-	-	-	-			
Stage 2	369	0	-	-	-	-	-	-	-			
Approach	EB			WB			NB					
HCM Control Delay, s	74.6			0			1.7					
HCM LOS	F											
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	WBT WBR								
Capacity (veh/h)	1593	-	348									
HCM Lane V/C Ratio	0.128	-	0.963									
HCM Control Delay (s)	7.6	-	74.6									
HCM Lane LOS	Α	-	F									
HCM 95th %tile Q(veh)	0.4		10.4									

Ms	Synchro 9 Report
	Page 5

Intersection													
Int Delay, s/veh 37	.2												
Movement	EBL	EBT	EBR	V	VBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7			ની						41	7
Traffic Vol, veh/h	0	147	159		36	43	0	0	0	0	106	1035	20
Future Vol, veh/h	0	147	159		36	43	0	0	0	0	106	1035	20
Conflicting Peds, #/hr	0	0	19		0	0	0	0	0	0	96	0	0
Sign Control	Stop	Stop	Stop	9	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	None
Storage Length	-	-	40		-	-	-	-	-	-	-	-	50
Veh in Median Storage, #	-	0	-		-	0	-	-	-	-	-	0	-
Grade, %	-	0	-		-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95		95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	2
Mvmt Flow	0	155	167		38	45	0	0	0	0	112	1089	21
Major/Minor	Minor2			Mir	nor1						Major2		
Conflicting Flow All	-	1409	564		960	1409	-				96	0	0
Stage 1		1313	-		96	96	-				-	-	-
Stage 2		96	-		864	1313	-				-	-	
Critical Hdwy		6.54	6.94		7.54	6.54	-				4.14	-	-
Critical Hdwy Stg 1	-	5.54			-	-	-				-	-	
Critical Hdwy Stg 2	-	-	-	(6.54	5.54	-				-	-	-
Follow-up Hdwy	-	4.02	3.32	:	3.52	4.02	-				2.22	-	
Pot Cap-1 Maneuver	0	~ 137	469		211	137	0				1496	-	-
Stage 1	0	226			-	-	0				-	-	
Stage 2	0	-	-		315	226	0				-	-	-
Platoon blocked, %												-	
Mov Cap-1 Maneuver	-	~ 100	469		-	100	-				1496	-	-
Mov Cap-2 Maneuver	-	~ 100			-	100	-				-	-	-
Stage 1	-	181	-		-	-	-				-	-	-
Stage 2	-		-		- 24	181	-				-	-	-
,													
Approach	EB				WB						SB		
HCM Control Delay, s	184										1.1		
HCM LOS	F				-								
Minor Lane/Major Mvmt	EBLn1	EBLn2\	VBLn1	SBL :	SBT	SBR							
Capacity (veh/h)	100	469	-	1496	-	-							
HCM Lane V/C Ratio		0.357		0.075	-								
HCM Control Delay (s)	\$ 364.7	16.9		7.6	0.4	-							
HCM Lane LOS	F	C		A	A								
HCM 95th %tile Q(veh)	11.8	1.6		0.2	-	-							
	0	0		0.2									

Ms Synchro 9 Report Page 7

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

26: Trinity St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update 2022 Background + Site Timing Plan: PM

Intersection						
Int Delay, s/veh	4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	J.			446		
Traffic Vol, veh/h	228	0	20	540	0	0
Future Vol, veh/h	228	0	20	540	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-		-
Veh in Median Storage, #	0	-	-	0		-
Grade, %	0	-		0	0	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	275	0	24	651	0	0
Major/Minor	Minor2		Major1			
Conflicting Flow All	308		0	0		
Stage 1	0		-	-		
Stage 2	308					
Critical Hdwy	5.74		5.34			
Critical Hdwy Stg 1	3.74		3.34			
Critical Hdwy Stg 2	6.04					
Follow-up Hdwy	3.82		3.12			
Pot Cap-1 Maneuver	676	0	J. 12			
Stage 1	0/0	0				
Stage 2	659	0		-		
Platoon blocked, %	009	U	-			
Mov Cap-1 Maneuver	676	_		-		
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	676					
Stage 1	- 450	-		-		
Stage 2	659	-	-			
Annracah	ED		NB			
Approach	EB		INB			
HCM Control Delay, s HCM LOS	13.9 B					
HCW LUS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1				
Capacity (veh/h)	-	- 676				
HCM Lane V/C Ratio	-	- 0.406				
HCM Control Delay (s)	-	- 13.9				
HCM Lane LOS	-	- B				
HCM 95th %tile Q(veh)	-	- 2				

2022 Backgro

27: Guadalupe St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update

round + Site	29: Colorado St & E. 16th St
Timing Plan: PM	TIA for Texas Capitol Complex Master Plan 2018 Update

2022 Background + Site Timing Plan: PM

Intersection Int Delay, s/veh	64.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	LDI	1	LDIT	*****	4	W Dit	1102	1101	HUIT	002	414	
Traffic Vol, veh/h	(12	124	96	0	0	0	0	48	1268	2
Future Vol. veh/h	(12	124	96	0	0	0	0	48	1268	2
Conflicting Peds, #/hr	(0	24	0	0	0	0	0	0	0	4
Sign Control	Stor		Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	3101		None	Jiop -	310p	None	1166	1166	None	1166	-	
Storage Length		-	NONE	-	-	None	-		NOTIC	-		NUII
Veh in Median Storage, i	4	0			0						0	
Grade, %	,	-			0			0			0	
Peak Hour Factor	87		87	87	87	87	87	87	87	87	87	8
Heavy Vehicles, %	2		2	2	2	2	2	2	2	2	2	0
Mymt Flow	(14	143	110	0	0	0	0	55	1457	2
WIVIIIL FIOW	(23	14	143	110	U	U	U	U	33	1437	
Major/Minor	Minor2			Minor1						Major2		
Conflicting Flow All	Willion		795	875	1610					0	0	
Stage 1		1610	175	0/3	0					-	-	
Stage 2				875	1610							
Critical Hdwy		6.54	6.94	7.54	6.54					4.14		
Critical Hdwy Stg 1			0.94	7.04	0.34					4.14		
Critical Hdwy Stg 2		5.54		6.54	5.54					-		
Follow-up Hdwy		4.02	3.32	3.52	4.02					2.22		
Pot Cap-1 Maneuver			330		~ 104	0				2.22		
	(330	243	~ 104	0						
Stage 1	(-	-	
Stage 2	(-	-	310	162	0				-		
Platoon blocked, %		100	047	404	100						-	
Mov Cap-1 Maneuver			317	191	~ 100	-				-	-	
Mov Cap-2 Maneuver		100	-	191	~ 100	-				-	-	
Stage 1		156	-			-				-	-	
Stage 2		-	-	253	156	-				-	-	
Annroach	FE			WB						SB		
Approach	41.4									JD.		
HCM Control Delay, s				\$ 462.5								
HCM LOS	E			F								
Minor Lane/Major Mvmt	FRI n1	WBLn1	SBL	SBT SBR								
Capacity (veh/h)	135		-									
HCM Lane V/C Ratio		1.846										
HCM Control Delay (s)		\$ 462.5										
HCM Lane LOS	41.4 E											
HCM 95th %tile Q(veh)	1											
` '		17.4										
Notes -: Volume exceeds capa			ceeds 30			n Not De				n platoon		

Intersection														
Int Delay, s/veh	31.5													
Movement	EBL	EBT	EBR		WBL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		4				4				4			4	
Traffic Vol, veh/h	38	70	53		36	45	8		56	203	41	10	380	4
Future Vol, veh/h	38	70	53		36	45	8		56	203	41	10	380	4
Conflicting Peds, #/hr	0	0	0		0	0	15		87	0	0	0	0	8
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop		Free	Free	Free	Free	Free	Fre
RT Channelized		-	None		-	-	None		-	-	None	-	-	Non
Storage Length	-	-	-		-	-	-		-	-	-	-	-	
Veh in Median Storage,	# -	0	-		-	0	-		-	0	-	-	0	
Grade, %	-	0	-		-	0	-		-	0	-	-	0	
Peak Hour Factor	78	78	78		78	78	78		78	78	78	78	78	78
Heavy Vehicles, %	2	2	2		2	2	2		2	2	2	2	2	
Mvmt Flow	49	90	68		46	58	10		72	260	53	13	487	58
Major/Minor	Minor2				/linor1			N.A	nior1			Major2		
Major/Minor		1005	(00	IV.		1000	200	IVI	ajor1			Major2		
Conflicting Flow All	1108	1085	603		1051	1088	302		632	0	0	313	0	(
Stage 1	629	629	-		430	430	-		-	-	-		-	
Stage 2	479	456	- (00		621	658	- (00		- 4.40	-	-	- 4.10	-	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-		-	-	-	
Critical Hdwy Stg 2	6.12	5.52	- 0.010		6.12	5.52	- 010	,	-	-	-	- 0.010	-	
Follow-up Hdwy		4.018			3.518	4.018	3.318	-	2.218	-	-	2.218	-	
Pot Cap-1 Maneuver	187	217	499		205	216	738		951	-	-	1247	-	
Stage 1	470	475	-		603	583	-		-			-	-	
Stage 2	568	568	-		475	461	-		-	-	-	-	-	
Platoon blocked, %	445	170	450		00	477	707		051			4000	-	
Mov Cap-1 Maneuver	115	178	458		98	177	727		951	-	-	1229	-	
Mov Cap-2 Maneuver	115	178	-		98	177	-		-	-	-	-	-	
Stage 1	391	429	-		548	529	-		-	-	-	-	-	
Stage 2	447	516	-		315	416	-		-	-	-	-		
Approach	EB				WB				NB			SB		
HCM Control Delay, s	137.4				93.2				1.7			0.2		
HCM LOS	F				F									
	NDI	NDT	NDD	EDL 4M	IDL 4	CDI	CDT	CDD						
Minor Lane/Major Mvmt	NBL	NBT	MRK I	EBLn1W		SBL	SBT	SBR						
Capacity (veh/h)	951	-	-	192	141	1229	-	-						
HCM Lane V/C Ratio	0.075	-		1.075		0.01	-	-						
HCM Control Delay (s)	9.1	0	-	137.4	93.2	8	0	-						
HCM Lane LOS	A	Α	-	F	F	Α	Α	-						
HCM 95th %tile Q(veh)	0.2	-	-	9.7	5.1	0	-	-						

Synchro 9 Report Page 9 Ms

Synchro 9 Report Page 10 Ms

Intersection						
	.9					
	EBT	EDD	WD	WDT	NBL	NDD
Movement		EBR	WB			NBR
Lane Configurations	^			ન	Y	
Traffic Vol, veh/h	81	0	1		43	0
Future Vol, veh/h	81	0	1		43	0
Conflicting Peds, #/hr	0	0		1 0	0	0
Sign Control	Free	Free	Fre		Stop	Stop
RT Channelized	-	None		- None		None
Storage Length	-	-			0	-
Veh in Median Storage, #	0	-		- 0	0	-
Grade, %	0	-		- 0	0	-
Peak Hour Factor	58	58	5		58	58
Heavy Vehicles, %	2			2 2	2	2
Mvmt Flow	140	0	2	5 114	74	0
Major/Minor	Major1		Major	2	Minor1	
Conflicting Flow All	0	0	14	1 0	307	141
Stage 1		-			141	-
Stage 2		-			166	
Critical Hdwy		-	4.1	2 -	6.42	6.22
Critical Hdwy Stg 1		-			5.42	-
Critical Hdwy Stg 2		-			5.42	-
Follow-up Hdwy		-	2.21	3 -	3.518	3.318
Pot Cap-1 Maneuver		-	144		685	907
Stage 1		-			886	-
Stage 2					863	
Platoon blocked, %		-			003	
Mov Cap-1 Maneuver		-	144		671	906
Mov Cap-1 Maneuver			177		671	700
Stage 1					885	
Stage 2		-			847	
Stage 2	•				047	
Annragah	EB		WI	,	NB	
Approach	0				11	
HCM Control Delay, s HCM LOS	U		1.	1	B B	
HCM LOS					В	
				_		
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL WB			
Capacity (veh/h)	671 -	-		-		
HCM Lane V/C Ratio	0.11 -	-	0.010	-		
HCM Control Delay (s)	11 -	-)		
HCM Lane LOS	В -	-	Α ,	Ą		
HCM 95th %tile Q(veh)	0.4 -	-	0.1	-		

MS			

Intersection												
Int Delay, s/veh	10											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		^			^			↑			↑	
Traffic Vol, veh/h	0	124	0	0	152	0	0	0	0	0	0	
Future Vol, veh/h	0	124	0	0	152	0	0	0	0	0	0	
Conflicting Peds, #/hr	0	0	0	58	0	25	21	0	0	0	0	2
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	Non
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, #		0	-	-	0	-	-	0	-	-	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	8
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	153	0	0	188	0	0	0	0	0	0	(
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	-	1		IVIII IOI I	1		iviajoi i	0		iviajui 2	-	
Stage 1		1			0			0			-	
Stage 2		0			1				-			
Critical Hdwy		6.52			6.52			-	-	-	-	
Critical Hdwy Stg 1		5.52			5.52				-			
Critical Hdwy Stg 2		5.52		-	5.52		-		-	-		
Follow-up Hdwy		4.018							-			
Pot Cap-1 Maneuver		895	0	0	895	0	0		0	0	-	
	0	895	0	0		0	0		0	0		- (
Stage 1			0		895	0	0	-	0	0	-	
Stage 2 Platoon blocked, %	0	-	U	0	895	U	U	-	Ü	Ü	-	- (
		895			895			-			-	
Mov Cap-1 Maneuver	-		-		895				-	-	-	
Mov Cap-2 Maneuver	-	895	-		895	-	-		-	-	-	
Stage 1		895	-		895	-	-	-	-	-	-	
Stage 2		-	-	-	895		-			-		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.9			10.1			0			0		
HCM LOS	Α			В								
Minor Lane/Major Mvmt	NDT	EBLn1\	VDI p1	SBT								
		895	895	3D1								
Capacity (veh/h)	-											
HCM Cantrol Dalay (a)	-		0.21	-								
HCM Control Delay (s)	-	9.9	10.1	-								
HCM Lane LOS	-	A	В	-								
HCM 95th %tile Q(veh)	-	0.6	8.0	-								

Intersection

Ms

Int Dolay, chich

2022 Background + Site Timing Plan: PM

Synchro 9 Report

Page 13

Intersection Int Delay, s/veh 3.5 Movement WBL NBT NBR SBL SBT Lane Configurations ¥ Þ Traffic Vol, veh/h 89 95 87 16 21 509 Future Vol, veh/h 89 95 87 16 21 509 Conflicting Peds, #/hr 0 0 0 0 Sign Control Stop Stop Free Free Free Free - None - None **RT** Channelized None Storage Length 0 Veh in Median Storage, # 0 Grade, % 0 0 0 Peak Hour Factor 92 92 92 92 92 92 Heavy Vehicles, % 2 2 2 2 2 2 Mvmt Flow 97 103 95 17 23 553 Major/Minor Minor1 Major1 Major2 Conflicting Flow All 103 702 0 0 112 0 Stage 1 103 599 Stage 2 Critical Hdwy 6.42 6.22 4.12 Critical Hdwy Stg 1 5.42 Critical Hdwy Stg 2 5.42 Follow-up Hdwy 3.518 3.318 2.218 Pot Cap-1 Maneuver 952 1478 404 Stage 1 921 Stage 2 549 Platoon blocked, % Mov Cap-1 Maneuver 395 952 1478 Mov Cap-2 Maneuver 395 Stage 1 921 Stage 2 537 WB Approach HCM Control Delay, s 14.8 0.3 HCM LOS В Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 566 1478 HCM Lane V/C Ratio - - 0.353 0.015

2022 Background + Site

Timing Plan: PM

Page 14

33: Colorado St & Parking Dr. 3

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

TIA for Texas Capitol Complex Master Plan 2018 Update

Int Delay, s/veh	0.9					
Movement	EBL	EBR		NBT	SBT	SBR
Lane Configurations		7	1		^	1
Traffic Vol, veh/h	0	62	0	0	1277	52
Future Vol, veh/h	0	62	0	0	1277	52
Conflicting Peds, #/hr	0	0	0	0	0	15
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	·-	None	-	None		None
Storage Length	-	0	-	-		50
Veh in Median Storage, #	[#] 0		-	-	0	-
Grade, %	0		-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	70	0	0	1435	58
Major/Minor	Minor2				Major2	
Conflicting Flow All	-	732			-	0
Stage 1	-					-
Stage 2	-					-
Critical Hdwy		7.14				-
Critical Hdwy Stg 1						
Critical Hdwy Stg 2	-					-
Follow-up Hdwy		3.92				
Pot Cap-1 Maneuver	0	312				-
Stage 1	0					
Stage 2	0					-
Platoon blocked, %						-
Mov Cap-1 Maneuver	-	308				-
Mov Cap-2 Maneuver	-	-			-	-
Stage 1	-	-				
Stage 2	-				-	-
-						
Approach	EB				SB	
HCM Control Delay, s	20.1				0	
HCM LOS	С					
Minor Lane/Major Mvmt	EBLn1	SBT SBR				
Capacity (veh/h)	308					
HCM Lane V/C Ratio	0.226					
HCM Control Delay (s)	20.1					
HCM Lane LOS	20.1 C					
HCM 95th %tile Q(veh)	0.9					
ricivi zatir zatile Q(veri)	0.7					

Ms Synchro 9 Report

0

0

- - 14.8 7.5

- - B A A - - 1.6

HCM 95th %tile Q(veh)

Intersection						
	3.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ની	f)	
Traffic Vol, veh/h	79	79	15	167	452	17
Future Vol, veh/h	79	79	15	167	452	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	86	86	16	182	491	18
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	715	501	510	0		0
Stage 1	501	-	-	-		-
Stage 2	214	-	-	-		-
Critical Hdwy	6.42	6.22	4.12	-		-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-		-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	397	570	1055	-		-
Stage 1	609	-	-	-	-	-
Stage 2	822	-	-	-	-	-
Platoon blocked, %				-		-
Mov Cap-1 Maneuver	390	570	1055	-	-	-
Mov Cap-2 Maneuver	390		-	-		-
Stage 1	609		-	-	-	-
Stage 2	808	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	17.3		0.7		0	
HCM LOS	17.3 C		0.7		U	
TICIVI EOS	C					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1055	- 463				
HCM Lane V/C Ratio	0.015	- 0.371				
HCM Control Delay (s)	8.5	0 17.3				
HCM Lane LOS	Α	A C				
LICM 0Eth 9/tilo O(voh)	0	17				

LIDIL III I	0						
Int Delay, s/veh 4	.9						
Movement	EB		2	WBL	WBT	NBL	NBR
Lane Configurations		þ			ર્લ	W	
Traffic Vol, veh/h	10			16	129	121	63
Future Vol, veh/h	10	3 21		16	129	121	63
Conflicting Peds, #/hr		0 ()	0	0	0	0
Sign Control	Fre	e Free	;	Free	Free	Stop	Stop
RT Channelized		- None	;	-	None	-	None
Storage Length				-	-	0	-
Veh in Median Storage, #		0		-	0	0	
Grade, %		0		-	0	0	-
Peak Hour Factor	Ġ	2 92	2	92	92	92	92
Heavy Vehicles, %		2 2		2	2	2	2
Mvmt Flow	11	2 23	3	17	140	132	68
Major/Minor	Majo	1	- 1	Major2		Minor1	
Conflicting Flow All		0 (135	0	298	123
Stage 1		-			-	123	-
Stage 2						175	
Critical Hdwy				4.12	-	6.42	6.22
Critical Hdwy Stg 1						5.42	-
Critical Hdwy Stg 2				-	-	5.42	-
Follow-up Hdwy				2.218		3.518	3.318
Pot Cap-1 Maneuver				1449		693	928
Stage 1						902	720
Stage 2						855	
Platoon blocked, %		_				300	
Mov Cap-1 Maneuver		-		1449	-	684	928
Mov Cap-2 Maneuver						684	,20
Stage 1					-	902	
Stage 2		-				844	
Stuge 2						511	
Approach	F	В		WB		NB	
HCM Control Delay, s		0		0.8		11.5	
HCM LOS		U		0.0		11.5 B	
HOW EUG						D	
Minor Lane/Major Mvmt	NBLn1 EB	T EBF	R WBL	WBT			
Capacity (veh/h)	752	- EDF		WDI			
HCM Lane V/C Ratio	0.266						
				-			
HCM Control Delay (s)	11.5	-	7.5	0			
HCM Lane LOS HCM 95th %tile Q(veh)	B 1.1		- A	A			

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

	•	-	•	•	←	•	4	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑			^	7				ሻ	^	7
Traffic Volume (vph)	68	807	409	0	563	335	0	0	0	294	738	134
Future Volume (vph)	68	807	409	0	563	335	0	0	0	294	738	134
Confl. Peds. (#/hr)	28		19	19		28				29		19
Confl. Bikes (#/hr)			1			1						13
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	72	859	435	0	599	356	0	0	0	313	785	143
Shared Lane Traffic (%)												
Lane Group Flow (vph)	72	1294	0	0	599	356	0	0	0	313	785	143
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases	_	2			,	6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase Minimum Initial (s)	2.0	15.0			15.0	10.0				10.0	5.0	5.0
	7.0	27.0			34.0	15.0				15.0	32.0	32.0
Minimum Split (s) Total Split (s)	18.0	75.0			57.0	45.0				45.0	45.0	45.0
Total Split (%)	15.0%	62.5%			47.5%	37.5%				37.5%	37.5%	37.5%
Yellow Time (s)	4.0	4.0			47.570	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag	0.0			Lead	0.0				5.0	0.0	0.0
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max	None				None	Max	Max
Act Effct Green (s)	11.6	70.0			55.6	95.6				40.0	40.0	40.0
Actuated g/C Ratio	0.10	0.58			0.46	0.80				0.33	0.33	0.33
v/c Ratio	0.42	0.66			0.37	0.28				0.53	0.67	0.25
Control Delay	58.1	18.5			24.6	1.5				36.4	37.6	13.0
Queue Delay	0.0	0.0			0.0	0.1				0.0	0.0	0.0
Total Delay	58.1	18.5			24.6	1.6				36.4	37.6	13.0
LOS	E	В			С	Α				D	D	В
Approach Delay		20.6			16.0						34.5	
Approach LOS		С			В						С	
Queue Length 50th (ft)	53	330			165	3				195	273	28
Queue Length 95th (ft)	101	405			246	49				287	342	78
Internal Link Dist (ft)		228			45			159			210	
Turn Bay Length (ft)	160									130		120
Base Capacity (vph)	191	1949			1639	1276				590	1179	564
Starvation Cap Reductn	0	0			0	136				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.38	0.66			0.37	0.31				0.53	0.67	0.25
Intersection Summary												

Cycle Length: 120

Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 75

MS Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

Splits and Phases: 1: Martin Luther King Jr. Blvd & Guadalupe St

MS Synchro 9 Report

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

	-	•	•	•	1	_
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44			^	ሻሻ	7
Traffic Volume (vph)	1101	0	0	736	375	227
Future Volume (vph)	1101	0	0	736	375	227
Confl. Peds. (#/hr)	1101	J	3	, 50	3,3	11
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	1280	0.00	0.00	856	436	264
Shared Lane Traffic (%)	1200	U	U	030	400	204
Lane Group Flow (vph)	1280	0	0	856	436	264
1 11 /		U	U		436 Prot	
Turn Type	NA			NA		Perm
Protected Phases	2			6	8	
Permitted Phases						3
Detector Phase	2			6	8	3
Switch Phase						
Minimum Initial (s)	10.0			10.0	5.0	5.0
Minimum Split (s)	30.0			15.0	10.0	29.0
Total Split (s)	87.0			87.0	33.0	33.0
Total Split (%)	72.5%			72.5%	27.5%	27.5%
Yellow Time (s)	4.0			4.0	4.0	4.0
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	5.0			5.0	5.0	5.0
. ,	3.0			5.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?	0.14			0.14		
Recall Mode	C-Max			C-Max	Max	Max
Act Effct Green (s)	82.0			82.0	28.0	28.0
Actuated g/C Ratio	0.68			0.68	0.23	0.23
v/c Ratio	0.53			0.35	0.54	0.62
Control Delay	8.5			5.8	59.9	50.8
Queue Delay	0.4			0.0	0.0	0.0
Total Delay	8.8			5.8	59.9	50.8
LOS	A			A	Е	D
Approach Delay	8.8			5.8	56.5	
Approach LOS	Α			J.0	50.5 E	
Queue Length 50th (ft)	159			61	181	149
	171			68	213	167
Queue Length 95th (ft)						107
Internal Link Dist (ft)	272			277	337	
Turn Bay Length (ft)						
Base Capacity (vph)	2418			2418	801	428
Starvation Cap Reductn	547			0	0	0
Spillback Cap Reductn	0			0	0	0
Storage Cap Reductn	0			0	0	0
Reduced v/c Ratio	0.68			0.35	0.54	0.62
Internation Comments						
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12						
Offset: 0 (0%), Referenced	to phase 2:1	EBT and	6:WBT, :	Start of G	ireen	
Natural Cycle: 60						
Control Type: Actuated-Co	ordinated					
John Type. Actualcu Ct	o. unidicu					

MS Synchro 9 Report Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

Maximum v/c Ratio: 0.62
Intersection Signal Delay: 19.7 Intersection LOS: B
Intersection Capacity Utilization 58.8% ICU Level of Service B
Analysis Period (min) 15

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

→ø2 (R)	ľø3
87 s	33 s
← Ø6 (R)	→ Ø8
87 s	33 s

MS Synchro 9 Report

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

	-	*	1	•	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	♦ %		Ť	^		
Traffic Volume (vph)	1138	0	9	1054	0	0
Future Volume (vph)	1138	0	9	1054	0	0
Confl. Peds. (#/hr)		6	6	.001	1	,
Confl. Bikes (#/hr)		1	- 0			
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	1279	0.07	10	1184	0.07	0.07
Shared Lane Traffic (%)	1217	Ū	10	1101	Ū	Ū
Lane Group Flow (vph)	1279	0	10	1184	0	0
Turn Type	NA	U	pm+pt	NA	U	U
Protected Phases	2		1	6		
Permitted Phases	2		6	U		
Detector Phase	2		1	6		
Switch Phase	2		'	U		
Minimum Initial (s)	15.0		1.0	5.0		
	34.0		5.5			
Minimum Split (s)				29.0		
Total Split (s)	107.0		13.0	120.0		
Total Split (%)	89.2%			100.0%		
Yellow Time (s)	4.0		3.5	4.0		
All-Red Time (s)	1.0		1.0	1.0		
Lost Time Adjust (s)	0.0		0.0	0.0		
Total Lost Time (s)	5.0		4.5	5.0		
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		
Act Effct Green (s)	116.4		119.1	120.0		
Actuated g/C Ratio	0.97		0.99	1.00		
v/c Ratio	0.37		0.02	0.33		
Control Delay	0.5		0.1	0.2		
Queue Delay	0.0		0.0	0.0		
Total Delay	0.5		0.1	0.2		
LOS	Α		Α	Α		
Approach Delay	0.5			0.2		
Approach LOS	А			Α		
Queue Length 50th (ft)	0		0	0		
Queue Length 95th (ft)	46		m0	0		
Internal Link Dist (ft)	366		0	377	331	
Turn Bay Length (ft)			115	2.7		
Base Capacity (vph)	3433		480	3539		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.37		0.02	0.33		
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12	ın n					
Offset: 0 (0%), Referenced		EDT and	4-\M/DTI	Start of C	roon	
Natural Cycle: 40	ı to pnase 2:1	ERI ANO	O:MRIT	., Start of C	oreen	
ivatural Cycle: 40						

MS Synchro 9 Report
Page 5

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

MS Synchro 9 Report

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	\rightarrow	•	—	•	1	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	^	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	143	772	231	293	1047	141	20	Ö	35	43	i	11
Future Volume (vph)	143	772	231	293	1047	141	20	0	35	43	1	11
Confl. Peds. (#/hr)	18		9	9		18	24		8	8		24
Confl. Bikes (#/hr)			3			3						1
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	170	919	275	349	1246	168	24	0	42	51	1	13
Shared Lane Traffic (%)												
Lane Group Flow (vph)	170	1194	0	349	1246	168	0	24	42	0	52	13
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	1.0	10.0		1.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	5.5	22.0		5.5	28.0	28.0	22.0	22.0	22.0	28.0	28.0	28.0
Total Split (s)	20.0	70.0		20.0	70.0	70.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	16.7%	58.3%		16.7%	58.3%	58.3%	25.0%	25.0%	25.0%	25.0%	25.0%	25.0%
Yellow Time (s)	3.5	4.0		3.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	4.5	5.0		4.5	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	75.4	65.3		85.0	70.9	70.9		25.0	25.0		25.0	25.0
Actuated g/C Ratio	0.63	0.54		0.71	0.59	0.59		0.21	0.21		0.21	0.21
v/c Ratio	0.55	0.64		0.93	0.60	0.19		0.09	0.11		0.18	0.04
Control Delay	16.9	15.0		58.0	12.3	4.4		39.5	6.2		41.2	0.2
Queue Delay	0.0	0.4		0.0	0.4	0.0		0.0	0.0		0.0	0.0
Total Delay	16.9	15.4		58.0	12.8	4.4		39.5	6.2		41.2	0.2
LOS	В	В		E	В	Α		D	Α		D	Α
Approach Delay		15.6			20.9			18.3			33.0	
Approach LOS		В			С			В			С	
Queue Length 50th (ft)	32	215		150	212	12		15	0		33	0
Queue Length 95th (ft)	80	185		#276	227	21		37	16		65	0
Internal Link Dist (ft)		377			273			135			212	
Turn Bay Length (ft)	160			100		100			100			
Base Capacity (vph)	396	1858		378	2090	906		270	367		283	360
Starvation Cap Reductn	0	252		0	375	0		0	0		0	0
Spillback Cap Reductn	0	0		0	0	0		0	0		0	0
Storage Cap Reductn	0	0		0	0	0		0	0		0	0
Reduced v/c Ratio	0.43	0.74		0.92	0.73	0.19		0.09	0.11		0.18	0.04

Intersection Summary

Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 90

MS Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd

2024 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.93
Intersection Signal Delay: 18.9 Inte
Intersection Capacity Utilization 76.4% ICU
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles. Intersection LOS: B ICU Level of Service D

Splits and Phases: 6: Brazos St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

MS

	۶	→	•	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† %		ሻ	44					ሻ	44	7
Traffic Volume (vph)	0	744	172	625	1469	0	0	0	0	37	52	56
Future Volume (vph)	0	744	172	625	1469	0	0	0	0	37	52	56
Confl. Peds. (#/hr)			54	54						8		49
Confl. Bikes (#/hr)			2									29
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	800	185	672	1580	0	0	0	0	40	56	60
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	985	0	672	1580	0	0	0	0	40	56	60
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		19	6						4	
Permitted Phases				6						4		4
Detector Phase		2		19	6					4	4	4
Switch Phase												
Minimum Initial (s)		5.0			10.0					10.0	10.0	10.0
Minimum Split (s)		30.0			30.0					28.0	28.0	28.0
Total Split (s)		62.0			92.0					28.0	28.0	28.0
Total Split (%)		51.7%			76.7%					23.3%	23.3%	23.3%
Yellow Time (s)		4.0			4.0					4.0	4.0	4.0
All-Red Time (s)		1.0			1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0					0.0	0.0	0.0
Total Lost Time (s)		5.0			5.0					5.0	5.0	5.0
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Max
Act Effct Green (s)		57.0		87.5	87.0					23.0	23.0	23.0
Actuated g/C Ratio		0.48		0.73	0.72					0.19	0.19	0.19
v/c Ratio		0.61		1.36	0.62					0.12	0.08	0.17
Control Delay		14.9		188.3	5.6					41.4	40.3	2.2
Queue Delay		0.5		1.3	0.9					0.0	0.0	0.1
Total Delay		15.3		189.6	6.5					41.4	40.3	2.3
LOS		В		F	Α					D	D	Α
Approach Delay		15.3			61.1						26.0	
Approach LOS		В			E						С	
Queue Length 50th (ft)		110		~394	125					26	18	0
Queue Length 95th (ft)		122		m#344	m118					58	37	8
Internal Link Dist (ft)		273			321			343			244	
Turn Bay Length (ft)				120						100		100
Base Capacity (vph)		1623		495	2565					334	678	353
Starvation Cap Reductn		246		66	629					0	0	0
Spillback Cap Reductn		0		0	24					0	0	46
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.72		1.57	0.82					0.12	0.08	0.20
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120		EDT	(MDT:	CL L	0							
Offset: 0 (0%), Referenced to	o phase 2:	EB1 and	6:WBfL	, Start of	Green							
Natural Cycle: 110												

Lane Group	Ø1	Ø9
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	9
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	5.0
Minimum Split (s)	5.5	9.5
Total Split (s)	15.0	15.0
Total Split (%)	13%	13%
Yellow Time (s)	3.5	3.5
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)	1.0	1.0
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	None	None
Act Effct Green (s)	140110	TVOIC
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

MS

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd ÿ9 →ø2 (R) ₩ Ø6 (R)

MS Synchro 9 Report Page 11

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

	۶	→	•	•	—	•	1	†	<i>></i>	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^			∱ î>		ሻ	ની	7			
Traffic Volume (vph)	155	552	0	0	2015	60	68	86	126	0	0	0
Future Volume (vph)	155	552	0	0	2015	60	68	86	126	0	0	0
Confl. Peds. (#/hr)			36			60	35		28			
Confl. Bikes (#/hr)						4			4			
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	174	620	0	0	2264	67	76	97	142	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	174	620	0	0	2331	0	68	105	142	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	26.0			5.5		26.0	26.0	26.0			
Total Split (s)	15.0	94.0			79.0		26.0	26.0	26.0			
Total Split (%)	12.5%	78.3%			65.8%		21.7%	21.7%	21.7%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	89.5	89.0			75.0		21.0	21.0	21.0			
Actuated g/C Ratio	0.75	0.74			0.62		0.18	0.18	0.18			
v/c Ratio	0.83	0.24			1.06		0.25	0.34	0.38			
Control Delay	76.7	1.0			43.5		41.5	42.6	8.8			
Queue Delay	0.0	0.1			17.2		2.2	0.0	0.0			
Total Delay	76.7	1.1			60.7		43.7	42.6	8.8			
LOS	Е	Α			Е		D	D	A			
Approach Delay	=	17.7			60.7		=	27.6				
Approach LOS		В			E			C				
Queue Length 50th (ft)	101	14			~346		47	73	5			
Queue Length 95th (ft)	#202	16			m123		m67	m103	m28			
Internal Link Dist (ft)	"LUL	321			675		11107	350	11120		106	
Turn Bay Length (ft)	120	OL.			0.0			000			100	
Base Capacity (vph)	217	2624			2200		276	306	376			
Starvation Cap Reductn	0	930			0		0	0	0			
Spillback Cap Reductn	0	0			228		124	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.80	0.37			1.18		0.45	0.34	0.38			
I Lead of Control of C	0.50	0.07			5		00	0.01	0.00			

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 130

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.06
Intersection Signal Delay: 47.8 Intersection LOS: D
Intersection Capacity Utilization 95.5% ICU Level of Service F
Analysis Period (min) 15
- Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd

MS Synchro 9 Report
Page 13

18: Guadalupe St & E. 17th St
TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

Page 14

	•	-	•	•	•	•	1	†		-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		↑	7		ર્ની						413-	
Traffic Volume (vph)	0	14	48	52	10	0	0	0	0	128	1197	18
Future Volume (vph)	0	14	48	52	10	0	0	0	0	128	1197	18
Confl. Peds. (#/hr)			18							45		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)		0										
Adj. Flow (vph)	0	15	52	57	11	0	0	0	0	139	1301	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	15	52	0	68	0	0	0	0	0	1460	(
Turn Type		NA	Perm	Perm	NA					Perm	NA	
Protected Phases		4 12			4 12						2 10	
Permitted Phases			4 12	4 12						2 10		
Detector Phase		4 12	4 12	4 12	4 12					2 10	2 10	
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		21.8	21.8		21.8						82.9	
Actuated g/C Ratio		0.18	0.18		0.18						0.69	
v/c Ratio		0.05	0.16		0.27						0.61	
Control Delay		20.7	4.1		26.9						8.2	
Queue Delay		0.0	0.0		0.0						0.0	
Total Delay		20.7	4.1		26.9						8.2	
LOS		С	Α		С						Α	
Approach Delay		7.8			26.9						8.2	
Approach LOS		Α			С						Α	
Queue Length 50th (ft)		5	0		36						193	
Queue Length 95th (ft)		16	13		50						234	
Internal Link Dist (ft)		177			244			271			262	
Turn Bay Length (ft)												
Base Capacity (vph)		754	714		628						2392	
Starvation Cap Reductn		0	0		0						0	
Spillback Cap Reductn		0	0		0						0	
Storage Cap Reductn		0	0		0						0	
Reduced v/c Ratio		0.02	0.07		0.11						0.61	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												

Offset: 0 (9%), Referenced to phase 2:SBTL, Start of Green
Natural Cycle: 95

MS Synchro 9 Report

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type	_	,	10	4.0
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	23.0	23.0	22.5	22.5
Total Split (s)	26.0	43.0	28.0	23.0
Total Split (%)	22%	36%	23%	19%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	2.0	2.0	1.0	1.0
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				
intersection Summary				

Synchro 9 Report Page 15 MS

18: Guadalupe St & E. 17th St

2024 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 9.0 Intersection Capacity Utilization 78.1% Analysis Period (min) 15 Intersection LOS: A ICU Level of Service D

Splits and Phases: 18: Guadalupe St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	•	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ર્ન			ĵ.			414	7			
Traffic Volume (vph)	4	121	0	0	28	26	90	813	132	0	0	(
Future Volume (vph)	4	121	0	0	28	26	90	813	132	0	0	(
Confl. Peds. (#/hr)	31								34			
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Parking (#/hr)		0										
Adj. Flow (vph)	5	146	0	0	34	31	108	980	159	0	0	(
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	151	0	0	65	0	0	1088	159	0	0	(
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase							2.3	5	2.5			
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
ost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag Lead-Lag Optimize?												
Recall Mode												
		25.4			25.4			70.6	70.6			
Act Effct Green (s)		0.21			0.21			0.59	0.59			
Actuated g/C Ratio												
v/c Ratio		0.43			0.17			0.37	0.18			
Control Delay		27.1			12.8			10.8	6.1			
Queue Delay		0.0			0.0			0.0	0.0			
Total Delay		27.1			12.8			10.8	6.1			
LOS		С			В			В	Α			
Approach Delay		27.1			12.8			10.2				
Approach LOS		С			В			В				
Queue Length 50th (ft)		62			14			167	46			
Queue Length 95th (ft)		87			29			98	33			
Internal Link Dist (ft)		244			319			272			254	
Turn Bay Length (ft)									100			
Base Capacity (vph)		595			644			3126	901			
Starvation Cap Reductn		0			0			392	0			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.25			0.10			0.40	0.18			
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120 Offset: 0 (0%), Referenced t		NIDTI C+	ort of Cro	on								

Offset: 0 (0%), Referenced to phase 2:NBTL, Start of Green Natural Cycle: 100

Synchro 9 Report Page 17 MS

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type	0		10	10
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	26.0	28.0	22.5	22.5
Total Split (s)	38.0	29.0	27.0	26.0
Total Split (%)	32%	24%	23%	22%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)	C-IVIAX	None	None	None
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

Synchro 9 Report Page 18 MS

19: Lavaca St & E. 17th St

2024 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actualed-Coordinated

Maximum v/c Ratio: 0.43

Intersection Signal Delay: 12.1 Intersection LOS: B

Intersection Capacity Utilization 40.0% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 19: Lavaca St & E. 17th St

≠ _{Ø4}	Ø2 (R)	≠ _{Ø12}	1 ø₁0	
29 c	38 c	26 e	27 s	

MS Synchro 9 Report Page 19

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

> •	•	←	•	1	†	/	-	↓	4
T EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ર્લ		î»			ተተቡ	7			
39 0	0	23	33	90	985	92	0	0	0
39 0	0	23	33	90	985	92	0	0	0
			11	60					
			2						
34 0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
		0							
55 0	0	27	39	107	1173	110	0	0	0
70 0	0	66	0	0	1280	110	0	0	0
ΙA		NA		Perm	NA	Perm			
12		4 12			2 10				
				2 10		2 10			
12		4 12		2 10	2 10	2 10			
.6		22.6			73.4	73.4			
19		0.19			0.61	0.61			
19		0.17			0.42	0.01			
.8		15.5			3.8	0.11			
.0		0.0			0.2	0.9			
.8		15.5			4.0	0.0			
.o C		15.5 B			4.0 A	0.9 A			
.8		15.5			3.7	Α.			
.o C		15.5 B			3.7 A				
66		18			35	1			
94		m35			m52	m8			
74 33		60			281	IIIQ		272	
10		00			201	100		212	
93		585			3055	994			
0		0			849	0			
0		0			0	0			
						0 11			
25		0.11			0.58	0.11			
Ctart of C	roon								
	, Start of G	, Start of Green							

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type	0		10	10
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	28.0	32.0	21.0	20.0
Total Split (s)	42.0	32.0	21.0	25.0
Total Split (%)	35%	27%	18%	21%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Interception Cumma-				
Intersection Summary				

Synchro 9 Report Page 21 MS

28: Lavaca St & E. 16th St

2024 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 105 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.49

Intersection LOS: A ICU Level of Service A

Intersection Signal Delay: 6.7 Intersection Capacity Utilization 46.2% ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 28: Lavaca St & E. 16th St

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

•	-	*	*		`	7	- 1	- 7	-	*	*
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
	↑ ↑↑		"							414	í
											7
0	1792			994	0	0	0	0		697	7
		32	32						30		3
											2
											0.9
0	1829	337	209	1014	0	0	0	0	107	711	8
0		0			0	0	0	0	_		8
									Perm		Perr
	2			6						4	
	2		13	6					4	4	
											_
											5.
											32.
											36.
											30.09
											4.
									1.0		1.
											0.
				5.0						5.0	5.
			70.0						Max		Ma
											31.
											0.2
											0.1
											5.
											0.
											5.
			E								
			400								
			183				107				m2
	262		Ε0.	240			197			285	10
	0110			22.47						1000	10
											45
											0.1
	1.04		0.92	0.42						0.71	0.1
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL EBT	EBL EBT EBR	EBL EBT EBR WBL 11792 330 205 0 1792 330 205 0 1792 330 205 32 32 0.98 0.98 0.98 0.98 0 1829 337 209 0 2166 0 209 NA pm+pt 2 13 6 2 13 10.0 25.0 56.0 46.7% 4.0 1.0 0.0 5.0 Lag Yes C-Max 51.2 79.0 0.43 0.66 1.02 0.65 59.2 39.7 6.1 15.4 65.3 55.1 E 65.3 E 665.3 E 6700 100 100 355 00 100 355 00 100 355 00 100 355 00 100 355 00 100 355 00 100 355 00 100 100	EBL EBT EBR WBL WBT 1792 330 205 994 0 1792 330 205 994 0 1792 330 205 994 0 1829 337 209 1014 0 2166 0 209 1014 0 2166 0 209 1014 0 2166 0 209 1014 0 2166 0 50 250 0 50 250 0 50 250 0 50 250 0 50 250 0 50 0 84.0 0 40.0 1.0 1.0 1.0 0.0 0.0 5.0 50 Lag Yes C-Max C-Max 51.2 79.0 79.0 0.43 0.66 0.66 1.02 0.65 0.30 59.2 39.7 3.5 6.1 15.4 0.1 65.3 55.1 3.6 E A 65.3 12.4 E B -649 109 35 #745 183 40 262 240 50 2118 327 3347 0 100 927 35 0 0 0 0 0 0 0 1.04 0.92 0.42	EBL EBT EBR WBL WBT WBR 10 1792 330 205 994 0 0 1792 330 205 994 0 0 1792 330 205 994 0 0 1829 337 209 1014 0 0 2166 0 209 1014 0 0 2166 0 209 1014 0 0 1829 337 209 1014 0 0 2166 0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	EBL EBT EBR WBL WBT WBR NBL 1	EBL EBT EBR WBL WBT WBR NBL NBT 1	EBL EBT EBR WBL WBT WBR NBL NBT NBR 1	EBL EBR EBR WBL WBT WBR NBL NBT NBR SBL 11 0 1792 330 205 994 0 0 0 0 0 105 0 1792 330 205 994 0 0 0 0 0 105 32 32 32 3 30 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	FBL FBR FBR

Synchro 9 Report Page 23 MS

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases	'	3
Detector Phase		
Switch Phase		
Minimum Initial (s)	8.0	5.0
Minimum Split (s)	13.0	10.0
	14.0	14.0
Total Split (s)	14.0	14.0
Total Split (%)		4.0
Yellow Time (s)	4.0	
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
INCUUCCU WE RAIIU		
Intersection Summary		

Synchro 9 Report Page 24 MS

34: Guadalupe St & W. 15th St

2024 Background Timing Plan: AM

Page 25

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.02 Intersection Signal Delay: 43.6 Intersection Capacity Utilization 88.8% Intersection LOS: D ICU Level of Service E Analysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite.
 Oueue shown is maximum after two cycles.

 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

M Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 34: Guadalupe St & W. 15th St

MS Synchro 9 Report

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

	۶	→	•	•	+	4	1	†	<i>></i>	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	^			^			414	7			
Traffic Volume (vph)	308	1513	0	0	1076	132	133	694	179	0	0	0
Future Volume (vph)	308	1513	0	0	1076	132	133	694	179	0	0	0
Confl. Peds. (#/hr)	38					38	17		48			
Confl. Bikes (#/hr)									11			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	328	1610	0	0	1145	140	141	738	190	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	328	1610	0	0	1285	0	0	879	190	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0	33.0			
Total Split (s)	19.0	79.0			60.0		41.0	41.0	41.0			
Total Split (%)	15.8%	65.8%			50.0%		34.2%	34.2%	34.2%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			6.0	6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	74.0	74.0			55.0			35.0	35.0			
Actuated g/C Ratio	0.62	0.62			0.46			0.29	0.29			
v/c Ratio	1.02	0.51			0.56			0.60	0.41			
Control Delay	76.4	2.7			11.3			38.5	25.2			
Queue Delay	13.3	0.5			0.1			0.0	0.0			
Total Delay	89.8	3.1			11.4			38.5	25.2			
LOS	F	Α			В			D	С			
Approach Delay		17.8			11.4			36.2				
Approach LOS		В			В			D				
Queue Length 50th (ft)	~198	47			78			213	76			
Queue Length 95th (ft)	m#196	m46			86			260	146			
Internal Link Dist (ft)		240			335			116			281	
Turn Bay Length (ft)	50											
Base Capacity (vph)	323	3135			2288			1465	469			
Starvation Cap Reductn	13	912			181			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	1.06	0.72			0.61			0.60	0.41			

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

35: Lavaca St & W. 15th St

2024 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.02 Intersection Signal Delay: 20.5 Intersection Capacity Utilization 88.8% Intersection LOS: C ICU Level of Service E Analysis Period (min) 15 Analysis Petiod (IIII) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Wolume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 35: Lavaca St & W. 15th St

MS Synchro 9 Report Page 27

36: Colorado St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

	•	→	•	1	•	4	4	†	1	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^		ሻ	ተ ተጉ			4			4	7
Traffic Volume (vph)	270	1407	53	73	1131	262	1	22	22	26	19	31
Future Volume (vph)	270	1407	53	73	1131	262	1	22	22	26	19	31
Confl. Peds. (#/hr)	6		83	83		6	4		35	35		4
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	287	1497	56	78	1203	279	1	23	23	28	20	33
Shared Lane Traffic (%)												
Lane Group Flow (vph)	287	1553	0	78	1482	0	0	47	0	0	48	33
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	custom
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		6
Detector Phase	5	2		1	6		4	4		8	8	6
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	15.0
Minimum Split (s)	10.0	22.0		10.0	30.0		32.0	32.0		32.0	32.0	30.0
Total Split (s)	15.0	72.0		15.0	72.0		33.0	33.0		33.0	33.0	72.0
Total Split (%)	12.5%	60.0%		12.5%	60.0%		27.5%	27.5%		27.5%	27.5%	60.0%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	C-Max
Act Effct Green (s)	79.9	71.9		74.2	67.0			28.0			28.0	67.0
Actuated g/C Ratio	0.67	0.60		0.62	0.56			0.23			0.23	0.56
v/c Ratio	1.06	0.52		0.33	0.53			0.11			0.13	0.04
Control Delay	105.5	4.7		11.0	9.1			22.8			37.7	0.7
Queue Delay	0.0	0.1		0.0	0.1			0.0			0.0	0.0
Total Delay	105.5	4.8		11.0	9.2			22.8			37.7	0.7
LOS	F	Α		В	Α			С			D	Α
Approach Delay		20.5			9.3			22.8			22.6	
Approach LOS		С			Α			С			С	
Queue Length 50th (ft)	~172	85		11	190			15			30	0
Queue Length 95th (ft)	#321	98		24	241			47			63	4
Internal Link Dist (ft)		335			362			155			114	
Turn Bay Length (ft)	90			90								100
Base Capacity (vph)	270	3002		274	2773			410			358	896
Starvation Cap Reductn	0	356		0	193			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	1.06	0.59		0.28	0.57			0.11			0.13	0.04

Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

36: Colorado St & W. 15th St

2024 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Maximum v/c Ratio: 1.06
Intersection Signal Delay: 15.6
Intersection Capacity Utilization 83.6%
ICU Level of Service E
Analysis Period (min) 15
Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 36: Colorado St & W. 15th St

37: N. Congress Ave & W. 15th St
TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

-	*	€	•	1	~
EBT	EBR V	NBL	WBT	NBL	NBR
					7
1427	28	18	1555	0	1
					1
	30	30		13	21
					13
0.98	0.98	0.98	0.98	0.98	0.98
	29	18		0.70	1
55			.00,	J	
1485	0	18	1587	0	1
	-			J	Perm
	ρii				i Giili
2			J		4
2			6		4
2		- 1	U		4
5.0		5.0	5.0		5.0
					33.0
					33.0
					27.5%
	12				
					4.0
					1.0
					0.0
			5.0		5.0
					Max
					28.0
					0.23
	(0.00
4.1		5.3	7.0		0.0
0.0					0.0
4.1		5.3	7.1		0.0
Α		Α	Α		Α
4.1			7.1		
Α			Α		
46		3	178		0
54		m5	71		0
362			356	125	
		100			
3270		286	3474		484
172		0	507		0
0		0	0		0
					0
0.48	(0.53		0.00
25	`				
1					
0 I to phase 2:1	EDT I (''	(DTI	61.1.6		
	1427 1427 1427 1427 1427 1427 1427 1427	1427 28 1427 28 1427 28 1427 28 30 0.98 0.98 1 456 29 1485 0 NA pn 2 2 5.0 25.0 72.0 60.0% 12 4.0 1.0 0.0 5.0 Lag L Yes C-Max N 77.5 6.65 0.45 4.1 0.0 4.1 A 4.1 A 4.1 A 4.1 A 4.1 A 4.1 A 4.6 5.4 3.62 3270 172 0 0	1427 28 18 1427 28 18 1427 28 18 30 30 0.98 0.98 0.98 1456 29 18 1485 0 18 NA pm+pt 2 1 6 2 1 5.0 5.0 25.0 10.0 72.0 15.0 60.0% 12.5% 4.0 4.0 1.0 1.0 0.0 0.0 5.0 5.0 Lag Lead Yes Yes C-Max None 77.5 82.0 77.5 82.0 0.65 0.68 0.45 0.08 4.1 5.3 A A A 4.1 A A 46 3 54 m5 362 100 3270 286 172 0 0 0 0 0	1427 28 18 1555 1427 28 18 1555 1427 28 18 1555 30 30 0.98 0.98 0.98 0.98 1456 29 18 1587 1485 0 18 1587 1485 0 18 1587 NA pm+pt NA 2 1 6 6 2 1 6 5.0 5.0 5.0 5.0 25.0 10.0 25.0 72.0 15.0 87.0 60.0% 12.5% 72.5% 4.0 4.0 4.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 5.0 5.0 5.0 5.0 Lag Lead Yes Yes C-Max None C-Max 77.5 82.0 82.0 0.65 0.68 0.68 0.45 0.08 0.46 4.1 5.3 7.1 A A A 4.1 7.1 A A 4.1	1427 28 18 1555 0 1427 28 18 1555 0 1427 28 18 1555 0 30 30 30 13 0.98 0.98 0.98 0.98 0.98 1456 29 18 1587 0 1485 0 18 1587 0 1485 0 18 1587 0 1485 0 50 50 50 25.0 10.0 25.0 72.0 15.0 87.0 60.0% 12.5% 72.5% 4.0 4.0 4.0 4.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 5.0 Lag Lead Yes Yes C-Max None C-Max 77.5 82.0 82.0 0.65 0.68 0.68 0.45 0.08 0.46 4.1 5.3 7.0 0.0 0.0 0.0 1 4.1 5.3 7.1 A A A A 4.1 7.1 A A A 4.1 7.1 A A A A 4.1 A A

MS Synchro 9 Report
Page 30

37: N. Congress Ave & W. 15th St

2024 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.46 Intersection Signal Delay: 5.6 Intersection Capacity Utilization 59.9% Intersection LOS: A ICU Level of Service B Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 37: N. Congress Ave & W. 15th St

MS Synchro 9 Report Page 31

38: Brazos St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

	۶	→	•	•	←	•	1	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	^		٦	^			ર્ન	7		4	
Traffic Volume (vph)	80	1153	49	27	1577	115	4	2	8	2	0	4
Future Volume (vph)	80	1153	49	27	1577	115	4	2	8	2	0	4
Confl. Peds. (#/hr)	1		10	10		1	10		4	4		10
Confl. Bikes (#/hr)						1						17
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	82	1189	51	28	1626	119	4	2	8	2	0	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	82	1240	0	28	1745	0	0	6	8	0	6	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4		4	8		
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0	32.0	32.0	32.0	
Total Split (s)	15.0	78.0		10.0	73.0		32.0	32.0	32.0	32.0	32.0	
Total Split (%)	12.5%	65.0%		8.3%	60.8%		26.7%	26.7%	26.7%	26.7%	26.7%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Act Effct Green (s)	103.0	105.0		99.4	100.4			10.0	10.0		10.0	
Actuated g/C Ratio	0.86	0.88		0.83	0.84			0.08	0.08		0.08	
v/c Ratio	0.32	0.28		0.07	0.41			0.05	0.03		0.03	
Control Delay	10.5	4.0		2.0	1.8			51.7	0.2		0.2	
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Delay	10.5	4.1		2.0	1.8			51.7	0.2		0.2	
LOS	В	Α		A	A			D	A		A	
Approach Delay	_	4.5			1.8			22.3			0.2	
Approach LOS		A			A			C			A	
Queue Length 50th (ft)	11	103		1	17			4	0		0	
Queue Length 95th (ft)	52	119		m3	141			18	0		0	
Internal Link Dist (ft)	02	356		1110	297			199	Ū		273	
Turn Bay Length (ft)	100	000		40	2				50		2.0	
Base Capacity (vph)	299	4413		383	4206			346	434		412	
Starvation Cap Reductn	0	1012		0	504			0	0		0	
Spillback Cap Reductn	0	0		0	0			0	0		0	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.27	0.36		0.07	0.47			0.02	0.02		0.01	
	0.27	0.00		0.07	0.17			0.02	0.02		0.01	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 70

38: Brazos St & W. 15th St

2024 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.41

Intersection Signal Delay: 3.0 Intersection LOS: A

Intersection Capacity Utilization 62.3% ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 38: Brazos St & W. 15th St

MS Synchro 9 Report Page 33

39: San Jacinto Blvd & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

	•	-	•	•	←	•	4	†	/	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		ተተኩ		ሻ	^ ^						ተተጉ	
Traffic Volume (vph)	0	878	357	164	1696	0	0	0	0	93	182	4
Future Volume (vph)	0	878	357	164	1696	0	0	0	0	93	182	4
Confl. Peds. (#/hr)			23	23						10		
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.9
Adj. Flow (vph)	0	887	361	166	1713	0	0	0	0	94	184	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1248	0	166	1713	0	0	0	0	0	278	4
Turn Type		NA		pm+pt	NA					Perm	NA	Perr
Protected Phases		2		1	6						4	
Permitted Phases				6						4		
Detector Phase		2		1	6					4	4	
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					7.0	7.0	7.
Minimum Split (s)		28.0		8.0	28.0					32.0	32.0	32.
Total Split (s)		68.0		20.0	88.0					32.0	32.0	32.
Total Split (%)		56.7%		16.7%	73.3%					26.7%	26.7%	26.79
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.
Lost Time Adjust (s)		0.0		0.0	0.0					1.0	0.0	0.
Total Lost Time (s)		5.0		5.0	5.0						5.0	5.
Lead/Lag		Lag		Lead	5.0						3.0	J.
Lead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					None	None	Non
Act Effct Green (s)		84.9		97.8	97.8					None	12.2	12.
Actuated g/C Ratio		0.71		0.82	0.82						0.10	0.1
v/c Ratio		0.36		0.45	0.41						0.10	0.1
Control Delay		2.4		8.1	3.9						55.1	7.
Queue Delay		0.1		0.0	0.3						0.0	0.
Total Delay		2.6		8.1	4.2						55.1	7.
LOS		2.0 A		Α.1	4.2 A						55.1 E	7.
Approach Delay		2.6			4.5						48.6	
Approach LOS		2.0 A			4.5 A						40.0 D	
Queue Length 50th (ft)		0		24	102						76	
Queue Length 95th (ft)		0		m29	113						104	2
Internal Link Dist (ft)		297		11129	282			125			272	
Turn Bay Length (ft)		291		70	202			123			212	5
Base Capacity (vph)		3433		456	4143						1119	39
		927		430	1601						0	39
Starvation Cap Reductn Spillback Cap Reductn		927		0	0						0	
Storage Cap Reductn		0		0	0						0	0.1
Reduced v/c Ratio		0.50		0.36	0.67						0.25	0.1
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120		EDT :	/ M/DT:	CL	0							
Offset: 0 (0%), Referenced t	to phase 2	:FRI and	6:WB1L	Start of	Green							
Natural Cycle: 70												
Control Type: Actuated-Coo	rdinated											

39: San Jacinto Blvd & W. 15th St

2024 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Maximum v/c Ratio: 0.55 Intersection Signal Delay: 7.9 Inters
Intersection Capacity Utilization 92.6% ICU I
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: A ICU Level of Service F

Splits and Phases: 39: San Jacinto Blvd & W. 15th St

MS Synchro 9 Report Page 35

40: Trinity St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

	٠	→	•	•	←	•	4	†	/	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ţ	ተተተ			ተተ _ጉ			414	7			
Traffic Volume (vph)	222	800	0	0	1808	649	61	169	12	0	0	C
Future Volume (vph)	222	800	0	0	1808	649	61	169	12	0	0	C
Confl. Peds. (#/hr)	1					1	3		6			
Confl. Bikes (#/hr)									2			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	229	825	0	0	1864	669	63	174	12	0	0	C
Shared Lane Traffic (%)												
Lane Group Flow (vph)	229	825	0	0	2533	0	0	237	12	0	0	C
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	28.0			5.5		28.0	28.0	28.0			
Total Split (s)	20.0	92.0			72.0		28.0	28.0	28.0			
Total Split (%)	16.7%	76.7%			60.0%		23.3%	23.3%	23.3%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5			5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	87.5	87.0			69.0			23.0	23.0			
Actuated g/C Ratio	0.73	0.72			0.58			0.19	0.19			
v/c Ratio	0.85	0.22			0.89			0.35	0.03			
Control Delay	64.3	3.6			10.7			43.8	0.2			
Queue Delay	0.0	0.1			0.3			0.0	0.0			
Total Delay	64.3	3.7			10.9			43.8	0.2			
LOS	E	A			В			D	A			
Approach Delay	_	16.9			10.9			41.7				
Approach LOS		В			В			D				
Queue Length 50th (ft)	123	36			160			84	0			
Queue Length 95th (ft)	#231	43			m165			124	0			
Internal Link Dist (ft)		282			657			149			621	
Turn Bay Length (ft)	100				557			,			OL.	
Base Capacity (vph)	289	3686			2849			668	344			
Starvation Cap Reductn	0	1600			47			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.79	0.40			0.90			0.35	0.03			
Neduced We Natio	0.77	0.10			0.70			0.55	0.00			

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90

40: Trinity St & W. 15th St

2024 Background Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.89
Intersection Signal Delay: 14.6 Intersection LOS: B
Intersection Capacity Utilization 92.6% ICU Level of Service F
Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 40: Trinity St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection	
Intersection Delay, s/veh	11.9
Intersection LOS	В

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	4	202	36	0	22	32	5	0	15	31	62
Future Vol, veh/h	0	4	202	36	0	22	32	5	0	15	31	62
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	5	230	41	0	25	36	6	0	17	35	70
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		11.8				9.4				9.2		
HCM LOS		В				Α				Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	14%	2%	37%	1%	
Vol Thru, %	29%	83%	54%	94%	
Vol Right, %	57%	15%	8%	5%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	108	242	59	326	
LT Vol	15	4	22	4	
Through Vol	31	202	32	306	
RT Vol	62	36	5	16	
Lane Flow Rate	123	275	67	370	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.174	0.401	0.106	0.521	
Departure Headway (Hd)	5.11	5.243	5.703	5.062	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	701	688	627	715	
Service Time	3.148	3.277	3.749	3.062	
HCM Lane V/C Ratio	0.175	0.4	0.107	0.517	
HCM Control Delay	9.2	11.8	9.4	13.4	
HCM Lane LOS	Α	В	Α	В	
HCM 95th-tile Q	0.6	1.9	0.4	3	

MS Synchro 9 Report Page 1

11: Colorado St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background Timing Plan: AM

ntersection					
Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Lane Configurations			4		
Traffic Vol, veh/h	0	4	306	16	
Future Vol, veh/h	0	4	306	16	
Peak Hour Factor	0.88	0.88	0.88	0.88	
Heavy Vehicles, %	2	2	2	2	
Mvmt Flow	0	5	348	18	
Number of Lanes	0	0	1	0	
Approach		SB			
Opposing Approach		NB			
Opposing Lanes		1			
Conflicting Approach Left		WB			
Conflicting Lanes Left		1			
Conflicting Approach Right		EB			
Conflicting Lanes Right		1			
HCM Control Delay		13.4			
HCM LOS		В			

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ર્ન				ĵ.				^	
Traffic Vol, veh/h	0	0	271	0	0	0	55	0	0	0	0	0
Future Vol, veh/h	0	0	271	0	0	0	55	0	0	0	0	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	311	0	0	0	63	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach			EB				WB				NB	
Opposing Approach			WB				EB				SB	
Opposing Lanes			1				1				1	
Conflicting Approach Left			SB				NB				EB	
Conflicting Lanes Left			1				1				1	
Conflicting Approach Right			NB				SB				WB	
Conflicting Lanes Right			1				1				1	
HCM Control Delay			9.1				7.6				0	
HCM LOS			Α				Α				-	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	0%	
Vol Right, %	0%	0%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	271	55	9	
LT Vol	0	0	0	0	
Through Vol	0	271	55	0	
RT Vol	0	0	0	9	
Lane Flow Rate	0	311	63	10	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0.346	0.073	0.012	
Departure Headway (Hd)	4.749	3.999	4.183	4.131	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	900	848	872	
Service Time	2.75	2.019	2.248	2.131	
HCM Lane V/C Ratio	0	0.346	0.074	0.011	
HCM Control Delay	7.8	9.1	7.6	7.2	
HCM Lane LOS	N	Α	Α	Α	
HCM 95th-tile Q	0	1.6	0.2	0	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations	350	JDL	351	3DK
	0	0	0	L.
Traffic Vol, veh/h	0	0	0	9
Future Vol, veh/h	0	0	0	9
Peak Hour Factor	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	0	10
Number of Lanes	0	0	0	1
Approach				SB
Opposing Approach				NB
Opposing Lanes				1
Conflicting Approach Left				WB
Conflicting Lanes Left				1
Conflicting Approach Right				EB
Conflicting Lanes Right				1
HCM Control Delay				7.2
HCM LOS				A

Intersection			
Intersection Delay, s/veh	13.2		
Intersection LOS	В		

Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	120	98	8	0	17	116	106	0	21	0	0
Future Vol, veh/h	0	120	98	8	0	17	116	106	0	21	0	0
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	152	124	10	0	22	147	134	0	27	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		13				12.3				9.8		
HCM LOS		В				В				Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	100%	53%	7%	5%
Vol Thru, %	0%	43%	49%	86%
Vol Right, %	0%	4%	44%	9%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	21	226	239	271
LT Vol	21	120	17	14
Through Vol	0	98	116	233
RT Vol	0	8	106	24
Lane Flow Rate	27	286	303	343
Geometry Grp	1	1	1	1
Degree of Util (X)	0.047	0.442	0.439	0.525
Departure Headway (Hd)	6.398	5.565	5.227	5.508
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	557	647	687	655
Service Time	4.469	3.61	3.272	3.55
HCM Lane V/C Ratio	0.048	0.442	0.441	0.524
HCM Control Delay	9.8	13	12.3	14.5
HCM Lane LOS	Α	В	В	В
HCM 95th-tile O	0.1	2.3	2.2	3.1

Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	14	233	24
Future Vol, veh/h	0	14	233	24
Peak Hour Factor	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	18	295	30
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		14.5		
HCM LOS		В		

14: Brazos St & W. 18th St

Intersection

TIA for Texas Capitol Complex Master Plan 2018 Update

16: San Jacinto Blvd & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background Timing Plan: AM

Intersection	
Intersection Delay, s/veh	17.3
Intersection LOS	С

EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
		ĵ.				ર્ન					
0	0	23	77	0	74	173	0	0	0	0	0
0	0	23	77	0	74	173	0	0	0	0	0
0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
2	2	2	2	2	2	2	2	2	2	2	2
0	0	24	82	0	79	184	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0
		EB			WB						
		WB			EB						
		1			1						
		SB									
		3			0						
					SB						
		0			3						
		10.9			16.6						
		В			С						
	0 0 0.94 2	0 0 0 0 0.94 0.94 2 2 0 0	0 0 23 0 0 23 0.94 0.94 0.94 2 2 2 0 0 24 0 0 1 EB WB 1 SB 3	0 0 23 77 0 0 0 23 77 0.94 0.94 0.94 0.94 2 2 2 2 2 0 0 24 82 0 0 1 0 EB WB 1 SB 3 0 0 10.9	0 0 23 77 0 0 0 23 77 0 0 0 0 23 77 0 0 0 0 23 77 0 0 0 0 24 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.9	0 0 23 77 0 74 0 0 0 23 77 0 74 0.94 0.94 0.94 0.94 0.94 2 2 2 2 2 2 2 2 0 0 0 24 82 0 79 0 0 1 0 0 0 EB WB WB BB SB 3 0 SB 0 3 10.9	0 0 23 77 0 74 173 0 0 0 23 77 0 74 173 0.94 0.94 0.94 0.94 0.94 0.94 2 2 2 2 2 2 2 2 2 0 0 2 4 82 0 79 184 0 0 1 0 0 0 1 EB WB WB SB 3 0 SB 3 0 SB 10.9 SB 10.9 16.6	10	0 0 23 77 0 74 173 0 0 0 0 0 0 0 23 77 0 74 173 0 0 0 0 0 0 0 23 77 0 0 74 173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 23 77 0 74 173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 23 77 0 74 173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lane	EBLn1	WBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	0%	30%	0%	0%	0%
Vol Thru, %	23%	70%	100%	100%	0%
Vol Right, %	77%	0%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	100	247	389	389	69
LT Vol	0	74	0	0	0
Through Vol	23	173	389	389	0
RT Vol	77	0	0	0	69
Lane Flow Rate	106	263	413	413	73
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.193	0.505	0.667	0.667	0.068
Departure Headway (Hd)	6.539	6.924	5.807	5.807	3.348
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	548	520	624	624	1067
Service Time	4.285	4.664	3.538	3.538	1.077
HCM Lane V/C Ratio	0.193	0.506	0.662	0.662	0.068
HCM Control Delay	10.9	16.6	19.4	19.4	6.3
HCM Lane LOS	В	С	С	С	Α
HCM 95th-tile Q	0.7	2.8	5	5	0.2

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4₽	7
Traffic Vol, veh/h	0	0	777	69
Future Vol, veh/h	0	0	777	69
Peak Hour Factor	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	0	827	73
Number of Lanes	0	0	2	1
Approach			SB	
Opposing Approach				
Opposing Lanes			0	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			18.3	
HCM LOS			С	

20: Colorado St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: AM

ntersection	
Intersection Delay, s/veh	11.8
Intersection LOS	В

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	31	185	36	0	0	25	0	0	15	69	0
Future Vol, veh/h	0	31	185	36	0	0	25	0	0	15	69	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	35	210	41	0	0	28	0	0	17	78	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB					WB			NB		
Opposing Approach		WB					EB			SB		
Opposing Lanes		1					1			1		
Conflicting Approach Left		SB					NB			EB		
Conflicting Lanes Left		1					1			1		
Conflicting Approach Right		NB					SB			WB		
Conflicting Lanes Right		1					1			1		
HCM Control Delay		11.6					8.9			9.2		
HCM LOS		В					Α			Α		

	NDI 4	ED! 4	11/01 4	001 4
Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	18%	12%	0%	0%
Vol Thru, %	82%	73%	100%	92%
Vol Right, %	0%	14%	0%	8%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	84	252	25	333
LT Vol	15	31	0	0
Through Vol	69	185	25	305
RT Vol	0	36	0	28
Lane Flow Rate	95	286	28	378
Geometry Grp	1	1	1	1
Degree of Util (X)	0.142	0.402	0.044	0.506
Departure Headway (Hd)	5.361	5.057	5.625	4.816
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	673	704	640	742
Service Time	3.361	3.145	3.631	2.894
HCM Lane V/C Ratio	0.141	0.406	0.044	0.509
HCM Control Delay	9.2	11.6	8.9	12.8
HCM Lane LOS	Α	В	Α	В
HCM 95th-tile Q	0.5	1.9	0.1	2.9

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	0	305	28
Future Vol, veh/h	0	0	305	28
Peak Hour Factor	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	347	32
Number of Lanes	0	0	1	0
Approach			SB	
Opposing Approach			NB	
Opposing Lanes			1	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			12.8	
HCM LOS			В	

Intersection	
Intersection Delay, s/veh	8.4
Intersection LOS	Α

Movement	EBU	EBL	EBI	WBU	WBI	WBR	SRO	SRF	SBK
Lane Configurations			ર્ન		4			Y	
Traffic Vol, veh/h	0	0	28	0	206	16	0	39	0
Future Vol, veh/h	0	0	28	0	206	16	0	39	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	32	0	234	18	0	44	0
Number of Lanes	0	0	1	0	1	0	0	1	0
Approach			EB		WB			SB	
Opposing Approach			WB		EB				
Opposing Lanes			1		1			0	
Conflicting Approach Left			SB					WB	
Conflicting Lanes Left			1		0			1	
Conflicting Approach Right					SB			EB	
Conflicting Lanes Right			0		1			1	
HCM Control Delay			7.5		8.6			8	
HCM LOS			Α		A			Α	

Lane	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	100%	
Vol Thru, %	100%	93%	0%	
Vol Right, %	0%	7%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	28	222	39	
LT Vol	0	0	39	
Through Vol	28	206	0	
RT Vol	0	16	0	
Lane Flow Rate	32	252	44	
Geometry Grp	1	1	1	
Degree of Util (X)	0.037	0.28	0.058	
Departure Headway (Hd)	4.201	3.991	4.747	
Convergence, Y/N	Yes	Yes	Yes	
Cap	840	896	759	
Service Time	2.288	2.037	2.747	
HCM Lane V/C Ratio	0.038	0.281	0.058	
HCM Control Delay	7.5	8.6	8	
HCM Lane LOS	A	Α	Α	
HCM 95th-tile Q	0.1	1.2	0.2	

Intersection						
Int Delay, s/veh	2.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ 19	,	*	^	¥	
Traffic Vol, veh/h	1121		210	792	2	30
Future Vol, veh/h	1121	125	210	792	2	30
Conflicting Peds, #/hr	0	1	1	0	0	5
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None		None	-	None
Storage Length		-	40	-	0	-
Veh in Median Storage, #	ŧ 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	87		87	87	87	87
Heavy Vehicles, %	2		2	2	2	2
Mvmt Flow	1289	144	241	910	2	34
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	C		1433	0	2299	722
Stage 1	-	-	-	-	1361	
Stage 2					938	
Critical Hdwy			4.14	-	6.84	6.94
Critical Hdwy Stg 1		-	-		5.84	-
Critical Hdwy Stg 2		-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver		-	470	-	33	369
Stage 1	-	-		-	203	
Stage 2		-	-	-	341	-
Platoon blocked, %		-		-		
Mov Cap-1 Maneuver		-	468	-	16	367
Mov Cap-2 Maneuver		-	-	-	16	
Stage 1		-	-	-	203	
Stage 2		-	-	-	165	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		4.3		35.3	
HCM LOS			1.0		E	
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL WBT			
Capacity (veh/h)	155 -		468 -			
HCM Lane V/C Ratio	0.237		0.516 -			
HCM Control Delay (s)	35.3		20.6 -			
HCM Lane LOS	E -		C -			
HCM 95th %tile Q(veh)	0.9		2.9 -			
110W 70W 70W Q(VCH)	0.7		2.,			

Int Delay, s/veh	2.7												
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations			7			ર્ન						413	
Traffic Vol. veh/h	0	13	48		61	10	0	0	0	0	75	1234	1
Future Vol, veh/h	0	13	48		61	10	0	0	0	0	75	1234	18
Conflicting Peds, #/hr	0	0	0		13	0	0	0	0	0	0	0	38
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free
RT Channelized	-	-	None			-	None	-	-	None	-		None
Storage Length	-	-	0		-	-	-	-	-	-	-	-	
Veh in Median Storage, #	-	0	-		-	0	-	-	-	-	-	0	
Grade, %	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	95	95	95		95	95	95	95	95	95	95	95	9!
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	
Mvmt Flow	0	14	51		64	11	0	0	0	0	79	1299	19
Major/Minor	Minor2			N.A	inor1						Major2		
Conflicting Flow All	- 101111012	1504	710	IVI	827	1514					0	0	
Stage 1		1504	710		027	0					-	U	,
Stage 2		1504			827	1514							
Critical Hdwy		6.54	6.94		7.54	6.54					4.14		
Critical Hdwy Stg 1		5.54	0.74		7.34	0.54					4.14		
Critical Hdwy Stg 2		3.34	-		6.54	5.54							
Follow-up Hdwy		4.02	3.32		3.52	4.02					2.22		
Pot Cap-1 Maneuver	0	120	376		264	119	0				2.22		
Stage 1	0	183	-		-	- 117	0				-		
Stage 2	0	-	_		332	181	0				-		
Platoon blocked, %					002	101							
Mov Cap-1 Maneuver		116	362		207	115	-				-	-	
Mov Cap-2 Maneuver		116	-		207	115	-				-	-	
Stage 1		176	-		-	-	-				-	-	
Stage 2	-	-	-		263	174	-				-	-	
	ED.				WD						CD		
Approach	EB				WB						SB		
HCM Control Delay, s	21.6				36.8								
HCM LOS	С				Е								
Minor Lane/Major Mvmt	EBLn1 l	EBLn2V	VBLn1	SBL	SBT	SBR							
Capacity (veh/h)	116	362	186	-	-								
HCM Lane V/C Ratio	0.118		0.402										
HCM Control Delay (s)	40.1	16.6	36.8	-	-	-							
HCM Lane LOS	E	С	E		-	-							
	0.4	0.5	1.8										

EBL EBT EBR

70

0 0

0

2 2

74

0

0

NBL NBT NBR EBLn1WBLn1

- - 223 301

- - 0.353 0.187

- - 29.7 19.7

- - D C - - 1.5 0.7

- None

Stop Stop Stop

4 70 0

94 94 94

498 999

17 17

481 982

6.44 6.54

6.74 5.54

3.82 4.02

391 218

391 218

382 297 EB

29.7

0.085

8.5

Α

D

498 242 0

489 325 0

Minor2

34

0 29

- - None

0

94 94

907 424

- 6.54 7.14

- 4.02 3.92

0 274 495

- 247 495

Stop Stop Stop

0 34 19

94

2 2 2

0 36 20

- 890 - 17

- 5.54

0 359

- 247

- 329

19.7

Minor1

4.2

Intersection Int Delay, s/veh

Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, # Grade, %

Traffic Vol, veh/h

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt Capacity (veh/h)

HCM Lane V/C Ratio

HCM Lane LOS

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Approach HCM Control Delay, s

HCM LOS

Follow-up Hdwy

Mymt Flow

Major/Minor

Critical Hdwy

SBL SBT SBR

Free Free Free

- - None

0

94

2

0

0 0 0

NBL NBT NBR

Free Free Free

0

96 606 184

0 0

90

90

0

94 94 94

2 2

3.12

1133

1133

ች ተተጐ 90 570 173

570 173

0 0

- None

2024 Background

Timing Plan: AM

Interception									
Intersection Int Delay, s/veh	2.8								
Movement	EBL	EBT			WI	рΤ	WBR	SBL	SBR
Lane Configurations	LDL	4			VVI	1→	WDIX	₩ ₩	JUIK
Traffic Vol, veh/h	123	147				58	103	14	17
Future Vol. veh/h	123	147				58	103	14	17
Conflicting Peds, #/hr	0	0				0	0	0	0
Sign Control	Free	Free			Fr	ee	Free	Stop	Stop
RT Channelized	-	None				-	None	- Stop	None
Storage Length		-					-	0	-
Veh in Median Storage, #		0				0		0	-
Grade, %		0				0	-	0	
Peak Hour Factor	92	92				92	92	92	92
Heavy Vehicles, %	2	2				2	2	2	2
Mvmt Flow	134	160				63	112	15	18
Major/Minor	Major1				Majo	nr2		Minor2	
Conflicting Flow All	175	0			iviaje		0	546	119
Stage 1	175	-					-	119	117
Stage 2								427	
Critical Hdwy	4.12							6.42	6.22
Critical Hdwy Stg 1	1.12							5.42	0.22
Critical Hdwy Stg 2						-		5.42	-
Follow-up Hdwy	2.218							3.518	3.318
Pot Cap-1 Maneuver	1401					-		499	933
Stage 1		-				-	-	906	-
Stage 2	-					-		658	-
Platoon blocked, %		-				-			
Mov Cap-1 Maneuver	1401	-				-	-	447	933
Mov Cap-2 Maneuver	-	-				-	-	447	
Stage 1		-				-	-	906	
Stage 2	-	-				-	-	589	-
Approach	EB				V	VB		SB	
HCM Control Delay, s	3.6					0		11.1	
HCM LOS	0.0					Ŭ		В	
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR S	CRI n1				
Capacity (veh/h)	1401	EDI	WDI	WDK	626				
HCM Lane V/C Ratio	0.095				0.054				
HCM Control Delay (s)	7.8	0	-		11.1				
HCM Lane LOS	7.6 A	A	-		В				
HCM 95th %tile Q(veh)	0.3	A			0.2				
ricivi 95tii 76tile Q(VeII)	0.3	-	-	-	U.Z				

EBR

21

21

0

Stop

None

92

2

23

430

6.22

3.318

625

625

NBL NBT EBLn1 SBT SBR

- 349

- 0.174

0 17.5

A C

- 0.6

NBL NBT

154

154 71

0

92 92

2 2

167 77

Major1

570 0

4.12

2.218

1002

1002

6.4

Free Free

- None

- 0

0

र्स 71

EBL

Ψ

35

35

Stop

0

0

92

38

Minor2

842

430

412

6.42

5.42

5.42

334

656

669

276

276

656

553 EB

17.5

1002

0.167

9.3

Α

3.518

Intersection
Int Delay, s/veh
Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, #

Traffic Vol, veh/h

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Capacity (veh/h)

HCM Lane LOS

Approach
HCM Control Delay, s

HCM LOS

Follow-up Hdwy

Grade, %

Mymt Flow

Major/Minor

Critical Hdwy

SBT SBR

267 257

Free Free

0

92 92

2 2

Major2

290 279

0

0 0

- None

257

₽

267

2024 Background

Timing Plan: AM

17: Trinity St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Int Delay, s/veh 6.	3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		ની			ĵ»		ሻ	^				
Traffic Vol, veh/h	44	0	0	0	0	0	348	227	0	0	0	
Future Vol, veh/h	44	0	0	0	0	0	348	227	0	0	0	
Conflicting Peds, #/hr	0	0	5	0	0	0	6	0	0	0	0	
Sign Control	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	Stop	Stop	Sto
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	Non
Storage Length	-	-	-	-	-	-	115	-	-	-	-	
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	8
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	50	0	0	0	0	0	395	258	0	0	0	
Major/Minor	Minor2			Major2			Major1					
Conflicting Flow All	901	1056	-	-	-	0	7	0	-			
Stage 1	7.01	7		_	_	-		-				
Stage 2	894	1049										
Critical Hdwy	6.78	6.53					4.13					
Critical Hdwy Stg 1	6.13	5.53					4.13					
Critical Hdwy Stg 2	6.73	5.53										
Follow-up Hdwy		4.019					2.219					
Pot Cap-1 Maneuver	275	225	0	0	_		1613		0			
Stage 1	973	890	0	0			1013		0			
Stage 2	281	303	0	0					0			
Platoon blocked. %	201	303	U	U					U			
Mov Cap-1 Maneuver	222	169					1613					
Mov Cap-1 Maneuver	222	169					1013					
Stage 1	731	885			-							
Stage 2	212	229										
Stage 2	212	229	-	-			-	-				
Approach	EB			WB			NB					
HCM Control Delay, s	25.9			0			4.8					
HCM LOS	D											
Minor Lane/Major Mvmt	NBL	NRT	EBLn1	WBT WBR								
Capacity (veh/h)	1613	-	222									
HCM Lane V/C Ratio	0.245		0.225									
HCM Control Delay (s)	8		25.9									
HOW CONTROL DOING (3)	0		20.7									
HCM Lane LOS	Α		D									

MS	Synchro 9 Report
	Page 5

EBL EBT EBR

21 60

0 23

0

847 393

- 843 -

- 6.54 6.94

- 4.02 3.32

0 297 606

- 277 606

277

- 354

EB

13.6

Δ

- 5.54

0 378

- None

40

Stop Stop Stop

0 21 60

92 92 92

2 2 2

Minor2

0 23 65 WBL WBT WBR

4 121

Stop Stop Stop

- - None

0

0

0

73 121

73

0 0

92 92 92

2 2 2

Minor1

79 132

512 847

4 4

508 843

7.54 6.54

6.54 5.54

3.52 4.02

353 277

353 277

404 354

40.7

Α

EBLn1 EBLn2WBLn1 SBL SBT SBR

19.2 11.7 40.7 7.3 0.1 -

277 606 301 1616

C B E A

0.3 0.4 4.9 0.1

0.082 0.108 0.701 0.032

445 297 0

516 378 0

NBL NBT NBR

0

Free Free Free

- - None

0

0

0 0 0

92 92 92

2 2 2

0

Intersection Int Delay, s/veh Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, # Grade, %

Traffic Vol, veh/h

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Capacity (veh/h)

HCM Lane LOS

Approach HCM Control Delay, s

HCM LOS

Follow-up Hdwy

Mymt Flow

Major/Minor

Critical Hdwy

€1↑ 680

0 0

- - None

0

52 739 112

92 92

Free Free Free

48

48 680 103

92

2 2

4 0

2.22

1616

103

50

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			ተተኩ		
Traffic Vol, veh/h	36	0	103	542	0	0
Future Vol, veh/h	36	0	103	542	0	0
Conflicting Peds, #/hr	3	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0	-	-	-		-
Veh in Median Storage, #	0	-	-	0		-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	41	0	118	623	0	0
Major/Minor	Minor2		Major1			
Conflicting Flow All	489		0	0		
Stage 1	0		-	-		
Stage 2	489	-	-	-		
Critical Hdwy	5.74	-	5.34	-		
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	6.04	-	-	-		
Follow-up Hdwy	3.82	-	3.12	-		
Pot Cap-1 Maneuver	554	0	-	-		
Stage 1		0	-	-		
Stage 2	532	0	-	-		
Platoon blocked, %				-		
Mov Cap-1 Maneuver	554	-	-			
Mov Cap-2 Maneuver	554			-		
Stage 1	-	-	-	-		
Stage 2	532			-		
-						
Approach	EB		NB			
HCM Control Delay, s	12		710			
HCM LOS	B					
Minor Lane/Major Mvmt	NBL	NBT EBLn1				
Capacity (veh/h)	INDL -	- 554				
HCM Lane V/C Ratio		- 0.075				
HCM Control Delay (s)	-	- 0.075				
HCM Lane LOS		- 12 - B				
HCM 95th %tile Q(veh)		- 0.2				
FIGINI 95011 /otile Q(VeII)		- 0.2				

Stage 1	0	
Stage 2	489	
Critical Hdwy	5.74	
Critical Hdwy Stg 1		
Critical Hdwy Stg 2	6.04	
Follow-up Hdwy	3.82	
Pot Cap-1 Maneuver	554	
Stage 1		
Stage 2	532	
Platoon blocked, %		
Mov Cap-1 Maneuver	554	
Mov Cap-2 Maneuver	554	
Stage 1	-	
Stage 2	532	
Approach	EB	
	12	
HCM Control Delay, s HCM LOS	12 B	
HCM Control Delay, s		
HCM Control Delay, s		NBT EE
HCM Control Delay, s HCM LOS	В	NBT EB
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	В	NBT EE
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	В	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	В	-

MS Synchro 9 Report Page 7

MS

29: Colorado St & E. 16th St

2024 Background Timing Plan: AM

Int Delay, s/veh 13	.8												
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBI	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4				4			4			4	
Traffic Vol, veh/h	8	26	82		112	56	5	4!	313	9	2	120	3-
Future Vol, veh/h	8	26	82		112	56	5	45	313	9	2	120	3.
Conflicting Peds, #/hr	0	0	0		0	0	15	:	3 0	0	0	0	:
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	e Free	Free	Free	Free	Free
RT Channelized	-	-	None		-	-	None			None	-	-	None
Storage Length	-	-	-		-	-	-			-	-	-	
Veh in Median Storage, #	-	0	-		-	0	-		- 0	-	-	0	
Grade, %	-	0	-		-	0	-		- 0	-	-	0	
Peak Hour Factor	79	79	79		79	79	79	79	79	79	79	79	79
Heavy Vehicles, %	2	2	2		2	2	2	-	2 2	2	2	2	:
Mvmt Flow	10	33	104		142	71	6	57	7 396	11	3	152	43
Major/Minor	Minor2				Minor1			Major*	l		Major2		
Conflicting Flow All	750	703	176		763	719	417	198		0	408	0	-
Stage 1	181	181	-		516	516				-	-	-	
Stage 2	569	522			247	203				-	_		
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4.12) -	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-						
Critical Hdwy Stg 2	6.12	5.52			6.12	5.52	-				-		
Follow-up Hdwy		4.018	3.318			4.018	3.318	2.218	3 -		2,218		
Pot Cap-1 Maneuver	328	362	867		321	354	636	137		-	1151	-	
Stage 1	821	750	-		542	534	-				-	-	
Stage 2	507	531			757	733	-				-		
Platoon blocked. %												-	
Mov Cap-1 Maneuver	256	340	865		250	333	627	137!	· -		1135	-	
Mov Cap-2 Maneuver	256	340	-		250	333	-	.07			-		
Stage 1	774	746			513	505					-		
Stage 2	402	502			635	729				-		-	
Approach	EB				WB			NE)		SB		
	13.4				53.6			0.0			0.1		
HCM Control Delay, s	13.4 B				53.6 F			0.9	,		0.1		
HCM LOS	Б				г								
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	1375	-	-	573	277	1135	-	-					
HCM Lane V/C Ratio	0.041	-	-	0.256	0.791	0.002	-	-					
HCM Control Delay (s)	7.7	0	-	13.4	53.6	8.2	0	-					
HCM Lane LOS	Α	Α	-	В	F	Α	Α	-					
	0.1			1	6.1	0							

Int Delay, s/veh	2.8												
Movement	EBL	EBT	EBR	١	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		ĵ»				ની						-41	i
Traffic Vol, veh/h	0	13	48		47	9	0	0	0	0	144	1129	1
Future Vol, veh/h	0	13	48		47	9	0	0	0	0	144	1129	1
Conflicting Peds, #/hr	0	0	0		21	0	0	0	0	0	0	0	2
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	Non
Storage Length	-	-	-		-	-	-	-	-	-	-	-	
Veh in Median Storage, #	-	0	-		-	0	-	-	-	-	-	0	
Grade, %	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92		92	92	92	92	92	92	92	92	9
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	
Mvmt Flow	0	14	52		51	10	0	0	0	0	157	1227	2
Major/Minor	Minor2			Mi	nor1						Major2		
Conflicting Flow All	-	1565	660		955	1565	-				0	0	
Stage 1		1565	-		0	0	-				-	-	
Stage 2	-	0	-		955	1565	-				-	-	
Critical Hdwy	-	6.54	6.94		7.54	6.54	-				4.14	-	
Critical Hdwy Stg 1	-	5.54	-		-	-	-				-	-	
Critical Hdwy Stg 2	-	-	-		6.54	5.54	-				-	-	
Follow-up Hdwy	-	4.02	3.32		3.52	4.02	-				2.22	-	
Pot Cap-1 Maneuver	0	110	406		213	110	0				-	-	
Stage 1	0	170	-		-	-	0				-	-	
Stage 2	0	-	-		278	170	0				-	-	
Platoon blocked, %												-	
Mov Cap-1 Maneuver	-	107	396		166	107	-				-	-	
Mov Cap-2 Maneuver	-	107	-		166	107	-				-	-	
Stage 1		166	-		-	-	-				-	-	
Stage 2	-	-	-		221	166	-				-	-	
Approach	FB				WB						SB		
Approach HCM Control Delay, s	24.4				43.7						SD		
	24.4 C				43.7 F								
HCM LOS	C												
Minor Lane/Major Mvmt	EBLn1V	VBI n1	SBL	SBT :	SBR								
Capacity (veh/h)	251	152		-	-								
HCM Lane V/C Ratio	0.264	0.4		-									
HCM Control Delay (s)	24.4	43.7		-									
HCM Lane LOS	24.4 C	43.7											
HCM 95th %tile Q(veh)	1	1.7			-								
HOW JULI JULIE Q(VEII)		1.7											

MS

EBL EBT EBR

37

0

0

92 92

2 2

0

- 6.52

- 5.52

- 5.52

- 4.018

0 895

0 895

895

895

NBT EBLn1WBLn1 SBT

895 895

- 0.045 0.205

- 9.2 10.1

Α В

- 0.1 0.8

- 895

EB

9.2

0

0

0

- None

Stop Stop Stop

0 37 0

0 40

Minor2

WBL WBT WBR

169

Stop Stop Stop

- - None

0

0 0 0

12

92 92 92

2 2

0

0

Free Free Free

- - None

0

0

0

0

0 169

11 0 11

92 92 92

2 2 2

Minor1

0 184 0

- 6.52

- 5.52

- 5.52

- 4.018

0 895

- 895

- 895

10.1

0 -

0 895 0

0

Intersection Int Delay, s/veh Movement

Lane Configurations Traffic Vol, veh/h

Conflicting Peds, #/hr

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length Veh in Median Storage, # Grade, %

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1 Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Capacity (veh/h)

HCM Lane LOS

Approach HCM Control Delay, s

HCM LOS

Follow-up Hdwy

Mymt Flow

Major/Minor

Critical Hdwy

0 0 0

92

2 2 2

Free Free Free

- - None

0

0

92 92

Intersection							
	.2						
Movement	EBT	EBR		WBL	WBT	NBL	NBR
Lane Configurations	1-	•			4	M	
Traffic Vol, veh/h	36			3	133	44	0
Future Vol, veh/h	36	0		3	133	44	0
Conflicting Peds, #/hr	(0		26	0	0	0
Sign Control	Free	Free		Free	Free	Stop	Stop
RT Channelized		None		-	None	-	None
Storage Length				-	-	0	-
Veh in Median Storage, #	() -		-	0	0	-
Grade, %	() -		-	0	0	
Peak Hour Factor	83	83		83	83	83	83
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	43	0		4	160	53	0
Major/Minor	Major1		M	ajor2		Minor1	
Conflicting Flow All	(69	0	236	69
Stage 1		_		-	-	69	-
Stage 2						167	
Critical Hdwy				4.12	-	6.42	6.22
Critical Hdwy Stg 1						5.42	-
Critical Hdwy Stg 2					-	5.42	-
Follow-up Hdwy			2	2.218	-	3.518	3.318
Pot Cap-1 Maneuver				1532		752	994
Stage 1				-	-	954	-
Stage 2					-	863	-
Platoon blocked, %					-		
Mov Cap-1 Maneuver				1532	-	731	969
Mov Cap-2 Maneuver				-		731	
Stage 1				-	-	930	
Stage 2				-		860	
Ŭ							
Approach	EE			WB		NB	
HCM Control Delay, s	()		0.2		10.3	
HCM LOS						В	
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL	WBT			
Capacity (veh/h)	731		1532				
HCM Lane V/C Ratio	0.073		0.002				
HCM Control Delay (s)	10.3		7.4	0			
HCM Lane LOS	В -		Α.	A			
HCM 95th %tile Q(veh)	0.2		0	٨.			
HOW /JUI /OUIC Q(VCII)	0.2		U				

MS	Synchro 9 Report
	Page 11

Intersection	1.1						
Int Delay, s/veh	1.1						
Movement	EBL	E	BR	NBL	NBT	SBT	SBR
Lane Configurations			7			^	7
Traffic Vol, veh/h	0		45	0	0	345	155
Future Vol, veh/h	0		45	0	0	345	155
Conflicting Peds, #/hr	0		0	0	0	0	125
Sign Control	Stop	S	top	Free	Free	Free	Free
RT Channelized	-	No	one	-	None		None
Storage Length	-		0	-	-	-	50
Veh in Median Storage,	# 0		-	-	-	0	-
Grade, %	0		-	-	0	0	-
Peak Hour Factor	83		83	83	83	83	83
Heavy Vehicles, %	2		2	2	2	2	2
Mvmt Flow	0		54	0	0	416	187
Major/Minor	Minor2					Major2	
Conflicting Flow All	-		333				0
Stage 1			-				-
Stage 2							
Critical Hdwy		. 7	.14				
Critical Hdwy Stg 1			-				
Critical Hdwy Stg 2							-
Follow-up Hdwy		3	.92				-
Pot Cap-1 Maneuver	0	Ī	566				-
Stage 1	0		-				
Stage 2	0						-
Platoon blocked, %	_						
Mov Cap-1 Maneuver			499				-
Mov Cap-2 Maneuver							
Stage 1							
Stage 2							
. .							
Approach	EB					SB	
HCM Control Delay, s	13.1					0	
HCM LOS	13.1 B					U	
TIOM EOS	ь						
Minor Lane/Major Mvmt	EBLn1	SBT S	BR				
Capacity (veh/h)	499		-				
HCM Lane V/C Ratio	0.109	-					
HCM Control Delay (s)	13.1						
HCM Lane LOS	13.1 B						
HCM 95th %tile Q(veh)	0.4	-					
HOW FOUT TOUR CE(VEII)	0.4						

Intersection							
Int Delay, s/veh	1.6						
Movement	WBL	WBR		NB ⁻	r NBR	SBL	SBT
Lane Configurations	¥			1			4
Traffic Vol, veh/h	14	15		464		120	354
Future Vol, veh/h	14	15		464		120	354
Conflicting Peds, #/hr	0	0				0	0
Sign Control	Stop	Stop		Free		Free	Free
RT Channelized		None			- None	-	None
Storage Length	0	-					
Veh in Median Storage,	# 0	-		() -		0
Grade, %	0	-		() -	-	0
Peak Hour Factor	92	92		92	92	92	92
Heavy Vehicles, %	2	2			2 2	2	2
Mvmt Flow	15	16		504	1 98	130	385
Major/Minor	Minor1			Major'	1	Major2	
Conflicting Flow All	1199	553		(0	602	0
Stage 1	553	-				-	-
Stage 2	646	-				-	-
Critical Hdwy	6.42	6.22				4.12	-
Critical Hdwy Stg 1	5.42	-				-	-
Critical Hdwy Stg 2	5.42	-				-	-
Follow-up Hdwy	3.518	3.318				2.218	-
Pot Cap-1 Maneuver	205	533				975	-
Stage 1	576	-				-	-
Stage 2	522	-				-	-
Platoon blocked, %							-
Mov Cap-1 Maneuver	170	533				975	-
Mov Cap-2 Maneuver	170					-	-
Stage 1	576	-				-	-
Stage 2	433						-
Approach	WB			NE		SB	
HCM Control Delay, s	20.6			()	2.3	
HCM LOS	С						
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	-	- 262	975	-			
HCM Lane V/C Ratio	-		0.134	-			
HCM Control Delay (s)		- 20.6	9.3	0			
HCM Lane LOS	-	- C	Α	Α			
HCM 95th %tile Q(veh)		- 0.4	0.5	-			

1.2

Intersection
Int Delay, s/veh

MS

4 Background	69: Parking Dr. 5 & E. 16th St
Timing Plan: AM	TIA for Texas Capitol Complex Master Plan 2018 Update

Int Delay, s/veh 2	.6						
Movement	EBT	EBR		WBL	WBT	NBL	NE
Lane Configurations	1				ર્ન	W	
Traffic Vol, veh/h	110	120		90	45	19	10
Future Vol, veh/h	110	120		90	45	19	10
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Free	Free		Free	Free	Stop	Stop
RT Channelized	-	None		-	None	-	None
Storage Length	-	-		-	-	0	-
Veh in Median Storage, #	0	-		-	0	0	-
Grade, %	0			-	0	0	-
Peak Hour Factor	92			92	92	92	92
Heavy Vehicles, %	2			2	2	2	2
Mvmt Flow	120	130		98	49	21	11
Major/Minor	Major1		- 1	Major2		Minor1	
Conflicting Flow All	0	0		250	0	430	185
Stage 1	-	-		-	-	185	
Stage 2	-	-		-	-	245	-
Critical Hdwy	-	-		4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-		-	-	5.42	-
Critical Hdwy Stg 2	-	-		-	-	5.42	
Follow-up Hdwy	-	-		2.218	-	3.518	3.318
Pot Cap-1 Maneuver		-		1316	-	582	857
Stage 1	-	-		-	-	847	-
Stage 2					-	796	
Platoon blocked, %	-	-			-		
Mov Cap-1 Maneuver	-	-		1316	-	537	857
Mov Cap-2 Maneuver	-	-		-	-	537	-
Stage 1	-	-		-	-	847	-
Stage 2	-	-		-	-	735	-
Approach	EB			WB		NB	
HCM Control Delay, s	0			5.3		11.2	
HCM LOS						В	
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL	WBT			
Capacity (veh/h)	616 -	-		-			
HCM Lane V/C Ratio	0.051 -		0.074				
HCM Control Delay (s)	11.2 -	-	8	0			
HCM Lane LOS	В -	-	Α	Α			

iiii Deiay, siveii	1.2						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			ની	f a		
Traffic Vol, veh/h	12	12	84	394	462	96	
Future Vol, veh/h	12	12	84	394	462	96	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None		None	
Storage Length	0	-	-	-		-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	13	13	91	428	502	104	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1165	554	607	0	iviajorz	0	
Stage 1	554	334	-	-		-	
Stage 2	611						
Critical Hdwy	6.42	6.22	4.12				
Critical Hdwy Stg 1	5.42	0.22	7.12		_		
Critical Hdwy Stg 2	5.42						
Follow-up Hdwy	3.518	3.318	2.218				
Pot Cap-1 Maneuver	215	532	971		_		
Stage 1	575	332	- // [
Stage 2	542						
Platoon blocked. %	J7Z						
Mov Cap-1 Maneuver	189	532	971			-	
Mov Cap-1 Maneuver	189	-	- 7/1			-	
Stage 1	575					-	
Stage 2	475						
Stuge Z	473						
Annroach	EB		NB		SB		
Approach	19.2		1.6				
HCM Control Delay, s			1.6		0		
HCM LOS	С						
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR				
Capacity (veh/h)	971	- 279					
HCM Lane V/C Ratio	0.094	- 0.094					
HCM Control Delay (s)	9.1	0 19.2					
HCM Lane LOS	Α	A C					
HCM 95th %tile Q(veh)	0.3	- 0.3					

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	\rightarrow	•	←	*	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† î>			^	7				ሻ	^	7
Traffic Volume (vph)	155	381	149	0	1308	720	0	0	0	194	650	237
Future Volume (vph)	155	381	149	0	1308	720	0	0	0	194	650	237
Confl. Peds. (#/hr)	30		70	70		30				42		70
Confl. Bikes (#/hr)			1			6						3
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	165	405	159	0	1391	766	0	0	0	206	691	252
Shared Lane Traffic (%)												
Lane Group Flow (vph)	165	564	0	0	1391	766	0	0	0	206	691	252
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases						6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase												
Minimum Initial (s)	2.0	15.0			15.0	10.0				10.0	5.0	5.0
Minimum Split (s)	7.0	27.0			34.0	15.0				15.0	32.0	32.0
Total Split (s)	25.0	92.0			67.0	43.0				43.0	43.0	43.0
Total Split (%)	18.5%	68.1%			49.6%	31.9%				31.9%	31.9%	31.9%
Yellow Time (s)	4.0	4.0			4.0	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag				Lead							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max	None				None	Max	Max
Act Effct Green (s)	20.0	87.0			62.0	100.0				38.0	38.0	38.0
Actuated g/C Ratio	0.15	0.64			0.46	0.74				0.28	0.28	0.28
v/c Ratio	0.63	0.27			0.86	0.65				0.41	0.69	0.50
Control Delay	65.7	10.3			29.1	2.6				42.5	47.7	19.9
Queue Delay	0.0	0.0			47.4	0.3				0.0	0.0	0.0
Total Delay	65.7	10.3			76.5	2.9				42.5	47.7	19.9
LOS	E	В			E	Α				D	D	В
Approach Delay		22.8			50.4						40.6	
Approach LOS		С			D						D	
Queue Length 50th (ft)	138	100			525	24				147	285	72
Queue Length 95th (ft)	217	129			m592	m51				224	356	159
Internal Link Dist (ft)		228			45			159			210	
Turn Bay Length (ft)	160									130		120
Base Capacity (vph)	262	2106			1625	1172				498	996	500
Starvation Cap Reductn	0	0			382	84				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.63	0.27			1.12	0.70				0.41	0.69	0.50

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 90

MS Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

	-	•	•	_	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			^	ሻሻ	7
Traffic Volume (vph)	554	0	0	1356	1006	248
Future Volume (vph)	554	0	0	1356	1006	248
Confl. Peds. (#/hr)						82
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	609	0	0	1490	1105	273
Shared Lane Traffic (%)						
Lane Group Flow (vph)	609	0	0	1490	1105	273
Turn Type	NA		- 3	NA	Prot	Perm
Protected Phases	2			6	8	i ciili
Permitted Phases				0	0	3
Detector Phase	2			6	8	3
Switch Phase				0	0	3
Minimum Initial (s)	10.0			10.0	5.0	5.0
Minimum Split (s)	30.0			15.0	10.0	10.0
Total Split (s)	86.0			86.0	49.0	49.0
	63.7%			63.7%	36.3%	36.3%
Total Split (%)						
Yellow Time (s)	4.0			4.0	4.0	4.0
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	5.0			5.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max			C-Max	Max	Max
Act Effct Green (s)	81.0			81.0	44.0	44.0
Actuated g/C Ratio	0.60			0.60	0.33	0.33
v/c Ratio	0.29			0.70	0.99	0.45
Control Delay	13.8			14.4	78.5	24.4
Queue Delay	0.3			0.7	9.9	0.0
Total Delay	14.1			15.1	88.4	24.4
LOS	В			В	F	С
Approach Delay	14.1			15.1	75.7	
Approach LOS	В			В	Е	
Queue Length 50th (ft)	126			266	518	86
Queue Length 95th (ft)	155			330	#658	175
Internal Link Dist (ft)	272			277	337	
Turn Bay Length (ft)	LIL			211	337	
Base Capacity (vph)	2123			2123	1118	611
Starvation Cap Reductn	865			126	0	011
Spillback Cap Reductn	000			303	41	0
	0			303	0	0
Storage Cap Reductn Reduced v/c Ratio	0.48			0.82	1.03	0.45
Keduced WC Rallo	0.48			0.82	1.03	0.45
Intersection Summary						
Cycle Length: 135						
Actuated Cycle Length: 13	15					
Offset: 0 (0%), Referenced		BT and	6:WBT	Start of G	reen	
Natural Cycle: 60	pridoo Zit					
	ordinated					
Control Type: Actuated-Co	Jordinaled					

MS Synchro 9 Report
Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

Maximum v/c Ratio: 0.99
Intersection Signal Delay: 38.9
Intersection Capacity Utilization 93.9%
ICU Level of Service F
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	-	•	1	•	•	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ ↑		ች	^		
Traffic Volume (vph)	819	0	13	1300	0	0
Future Volume (vph)	819	0	13	1300	0	0
Confl. Peds. (#/hr)		33	33		35	
Confl. Bikes (#/hr)		4				
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	871	0	14	1383	0	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	871	0	14	1383	0	0
Turn Type	NA	Ü	pm+pt	NA		
Protected Phases	2		1	6		
Permitted Phases			6	Ü		
Detector Phase	2		1	6		
Switch Phase	2			J		
Minimum Initial (s)	15.0		3.0	15.0		
Minimum Split (s)	34.0		8.0	20.0		
Total Split (s)	121.0		14.0	135.0		
Total Split (%)	89.6%			100.0%		
	89.6% 4.0		4.0	4.0		
Yellow Time (s) All-Red Time (s)	1.0		1.0	1.0		
			0.0	0.0		
Lost Time Adjust (s)	0.0					
Total Lost Time (s)	5.0		5.0	5.0		
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		
Act Effct Green (s)	127.4		133.0	135.0		
Actuated g/C Ratio	0.94		0.99	1.00		
v/c Ratio	0.26		0.02	0.39		
Control Delay	0.7		0.1	0.4		
Queue Delay	0.0		0.0	0.0		
Total Delay	0.7		0.1	0.4		
LOS	Α		Α	Α		
Approach Delay	0.7			0.4		
Approach LOS	Α			Α		
Queue Length 50th (ft)	0		0	3		
Queue Length 95th (ft)	41		m0	0		
Internal Link Dist (ft)	366			377	331	
Turn Bay Length (ft)			115			
Base Capacity (vph)	3339		650	3539		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.26		0.02	0.39		
Intersection Summary						
Cycle Length: 135						
Actuated Cycle Length: 13	5					
Actuated Cycle Length. 13	J					

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 45

MS Synchro 9 Report Page 5

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

Splits and Phases: 5: N. Congress Ave & Martin Luther King Jr. Blvd

MS Synchro 9 Report

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	•	•	←	•	4	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	^	7		ર્ન	7		ની	7
Traffic Volume (vph)	91	813	32	45	916	136	125	24	306	100	26	253
Future Volume (vph)	91	813	32	45	916	136	125	24	306	100	26	253
Confl. Peds. (#/hr)	44		7	7		44	22		23	23		22
Confl. Bikes (#/hr)			4			3						
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	94	838	33	46	944	140	129	25	315	103	27	261
Shared Lane Traffic (%)												
Lane Group Flow (vph)	94	871	0	46	944	140	0	154	315	0	130	261
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	3.0	10.0		3.0	10.0	10.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	8.0	22.0		8.0	28.0	28.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (s)	15.0	89.0		15.0	89.0	89.0	31.0	31.0	31.0	31.0	31.0	31.0
Total Split (%)	11.1%	65.9%		11.1%	65.9%	65.9%	23.0%	23.0%	23.0%	23.0%	23.0%	23.0%
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	96.0	89.7		92.9	86.5	86.5		26.0	26.0		26.0	26.0
Actuated g/C Ratio	0.71	0.66		0.69	0.64	0.64		0.19	0.19		0.19	0.19
v/c Ratio	0.24	0.37		0.11	0.42	0.16		0.75	0.61		0.69	0.55
Control Delay	5.3	7.7		2.3	5.7	2.0		75.0	13.9		70.8	14.2
Queue Delay	0.0	0.3 7.9		0.0	0.3	0.0 2.0		0.0 75.0	0.3		0.0	0.0
Total Delay	5.3			2.3	6.0			/5.0 E	14.2 B		70.8 E	14.2 B
LOS Approach Delay	А	A 7.7		Α	5.3	Α		34.2	В		33.0	В
Approach LOS		7.7 A			5.3 A			34.2 C			33.0 C	
	10	115		2	121	10		129	27		107	26
Queue Length 50th (ft) Queue Length 95th (ft)	15 25	128		6	161	28		#238	124		#200	113
Internal Link Dist (ft)	20	377		0	273	20		135	124		212	113
Turn Bay Length (ft)	160	3//		100	213	100		133	100		212	
Base Capacity (vph)	425	2334		479	2267	899		204	514		188	472
Starvation Cap Reductn	423	737		0	613	099		0	0		0	0
	0	316		0	013	0		0	24		0	0
Spillback Cap Reductn Storage Cap Reductn	0	310		0	0	0		0	0		0	0
Reduced v/c Ratio	0.22	0.55		0.10	0.57	0.16		0.75	0.64		0.69	0.55
Reduced N/C Kallo	U.22	0.00		0.10	0.57	U. 10		0.75	U.04		0.09	0.00

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 70

MS Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd

2024 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.75
Intersection Signal Delay: 14.3 Inte
Intersection Capacity Utilization 79.5% ICU
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles. Intersection LOS: B ICU Level of Service D

Splits and Phases: 6: Brazos St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	—	•	4	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑ 1>		J.	^					٦	^	7
Traffic Volume (vph)	0	1156	30	369	1152	0	0	0	0	39	204	144
Future Volume (vph)	0	1156	30	369	1152	0	0	0	0	39	204	144
Confl. Peds. (#/hr)			37	37						73		17
Confl. Bikes (#/hr)			8									14
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	1243	32	397	1239	0	0	0	0	42	219	155
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1275	0	397	1239	0	0	0	0	42	219	155
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		1	6						4	
Permitted Phases				6						4		4
Detector Phase		2		1	6					4	4	4
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					5.0	5.0	5.0
Minimum Split (s)		32.0		8.0	30.0					30.0	30.0	30.0
Total Split (s)		78.0		25.0	103.0					32.0	32.0	32.0
Total Split (%)		57.8%		18.5%	76.3%					23.7%	23.7%	23.7%
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					Max	Max	Max
Act Effct Green (s)		73.0		98.0	98.0					27.0	27.0	27.0
Actuated g/C Ratio		0.54		0.73	0.73					0.20	0.20	0.20
v/c Ratio		0.67		1.03	0.48					0.13	0.31	0.40
Control Delay		17.6		93.8	4.2					45.9	47.5	17.7
Queue Delay		0.5		9.1	0.3					0.0	0.0	0.0
Total Delay		18.1		102.9	4.5					45.9	47.5	17.7
LOS		В		F	Α					D	D	В
Approach Delay		18.1			28.4						36.2	
Approach LOS		В			С						D	
Queue Length 50th (ft)		349		~281	122					31	86	30
Queue Length 95th (ft)		422		m#472	m130					65	127	96
Internal Link Dist (ft)		273			321			343			244	
Turn Bay Length (ft)				120						100		100
Base Capacity (vph)		1904		385	2569					312	707	390
Starvation Cap Reductn		260		10	639					0	0	0
Spillback Cap Reductn		0		0	0					0	0	0
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.78		1.06	0.64					0.13	0.31	0.40
Intersection Summary												

Cycle Length: 135

Actuated Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 90

MS Synchro 9 Report Page 9

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	←	•	\triangleleft	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^			ħβ		ሻ	ર્ન	7			
Traffic Volume (vph)	87	1188	0	0	1253	53	217	327	595	0	0	0
Future Volume (vph)	87	1188	0	0	1253	53	217	327	595	0	0	0
Confl. Peds. (#/hr)			34			90	17		153			
Confl. Bikes (#/hr)						4			13			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	90	1225	0	0	1292	55	224	337	613	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	90	1225	0	0	1347	0	202	359	613	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	104.0			89.0		31.0	31.0	31.0			
Total Split (%)	11.1%	77.0%			65.9%		23.0%	23.0%	23.0%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	99.0	99.0			86.6		26.0	26.0	26.0			
Actuated g/C Ratio	0.73	0.73			0.64		0.19	0.19	0.19			
v/c Ratio	0.34	0.47			0.60		0.65	1.06	2.07			
Control Delay	8.1	1.4			7.5		69.4	123.7	518.5			
Queue Delay	0.0	0.1			0.8		3.6	16.7	0.0			
Total Delay	8.1	1.5			8.3		72.9	140.4	518.5			
LOS	Α	Α			Α		E	F	F			
Approach Delay		1.9			8.3			326.2				
Approach LOS		Α			Α			F				
Queue Length 50th (ft)	3	23			116		181	~366	~778			
Queue Length 95th (ft)	m18	25			132		273	#580	#1018			
Internal Link Dist (ft)		321			699			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	294	2595			2230		313	339	296			
Starvation Cap Reductn	0	216			528		0	0	0			
Spillback Cap Reductn	0	0			51		52	56	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.31	0.51			0.79		0.77	1.27	2.07			

Intersection Summary

Cycle Length: 135

Actuated Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

MS Synchro 9 Report Page 11

8: Trinity St & Martin Luther King Jr. Blvd

2024 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 2.07

Intersection Signal Delay: 103.4 Intersection Capacity Utilization 86.8% Intersection LOS: F ICU Level of Service E

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Oueue shown is maximum after two cycles.

Molume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

	•	-	•	•	-	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1	7		ની						414	
Traffic Volume (vph)	0	21	12	166	97	0	0	0	0	48	1199	23
Future Volume (vph)	0	21	12	166	97	0	0	0	0	48	1199	23
Confl. Peds. (#/hr)			69							44		
Confl. Bikes (#/hr)									2			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Parking (#/hr)		0										
Adj. Flow (vph)	0	22	13	173	101	0	0	0	0	50	1249	24
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	22	13	0	274	0	0	0	0	0	1323	(
Turn Type		NA	Perm	Perm	NA					Perm	NA	
Protected Phases		4 12			4 12						2 10	
Permitted Phases			4 12	4 12						2 10		
Detector Phase		4 12	4 12	4 12	4 12					2 10	2 10	
Switch Phase										,	,	
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		31.9	31.9		31.9						79.1	
Actuated g/C Ratio		0.24	0.24		0.24						0.59	
v/c Ratio		0.24	0.24		0.24						0.59	
Control Delay		21.6	0.03		34.8						13.3	
Queue Delay		0.0	0.2		0.0						0.0	
Total Delay		21.6	0.0		34.8						13.3	
LOS		21.0 C	0.2 A		34.0 C						13.3 B	
		13.6	А		34.8						13.3	
Approach Delay					34.6 C							
Approach LOS		B	0								B	
Queue Length 50th (ft)		10	0		89						213	
Queue Length 95th (ft)		24	0		128			074			294	
Internal Link Dist (ft)		177			244			271			262	
Turn Bay Length (ft)		F00	F00		474						00/1	
Base Capacity (vph)		533	508		471						2061	
Starvation Cap Reductn		0	0		1						0	
Spillback Cap Reductn		0	0		0						0	
Storage Cap Reductn		0	0		0						0	
Reduced v/c Ratio		0.04	0.03		0.58						0.64	
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135		CDTI C										
Offset: 0 (0%), Referenced t	ιυ pnase 2:	obit, St	art of Gre	en								

MS Synchro 9 Report Page 13 18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases	_		10	12
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	21.0	21.0	22.5	22.5
Total Split (s)	56.0	29.0	24.0	26.0
Total Split (%)	41%	21%	18%	19%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?	0.14	N1	Minima	NI.
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
NEUUCEU WC RAIIU				
Intersection Summary				

MS Synchro 9 Report Page 14

18: Guadalupe St & E. 17th St

2024 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 90 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.79 Intersection Signal Delay: 16.9 Intersection Capacity Utilization 77.1% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service D

Splits and Phases: 18: Guadalupe St & E. 17th St

MS Synchro 9 Report Page 15

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

	•	-	•	•	•	•	1	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્ન			^			414	7			
Traffic Volume (vph)	11	65	0	0	134	124	66	1182	70	0	0	0
Future Volume (vph)	11	65	0	0	134	124	66	1182	70	0	0	0
Confl. Peds. (#/hr)	34								47			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)		0										
Adj. Flow (vph)	12	71	0	0	146	135	72	1285	76	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	83	0	0	281	0	0	1357	76	0	0	C
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		31.4			31.4			79.6	79.6			
Actuated g/C Ratio		0.23			0.23			0.59	0.59			
v/c Ratio		0.23			0.66			0.45	0.10			
Control Delay		21.3			31.7			9.9	4.2			
Queue Delay		0.0			0.0			0.0	0.0			
Total Delay		21.3			31.7			9.9	4.2			
LOS		C			C			Α	A			
Approach Delay		21.3			31.7			9.6				
Approach LOS		С			С			A				
Queue Length 50th (ft)		33			128			141	10			
Queue Length 95th (ft)		m62			192			152	m18			
Internal Link Dist (ft)		244			319			272	IIIIO		254	
Turn Bay Length (ft)		211			317			2,2	100		201	
Base Capacity (vph)		509			584			3005	799			
Starvation Cap Reductn		0			0			249	0			
Spillback Cap Reductn		0			7			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.16			0.49			0.49	0.10			
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135	i											
Offset: 0 (0%), Referenced		NBTL, St	art of Gre	en								
Natural Cycle: 100												
•												

MS Synchro 9 Report Page 16

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	26.0	28.0	22.5	22.5
Total Split (s)	54.0	28.0	25.0	28.0
Total Split (%)	40%	21%	19%	21%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

Synchro 9 Report Page 17 MS

19: Lavaca St & E. 17th St

2024 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.66

Intersection Signal Delay: 13.6

Intersection Capacity Utilization 48.8%

ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: B ICU Level of Service A

Splits and Phases: 19: Lavaca St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

	۶	→	\rightarrow	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ર્ન			1,			ተተጉ	7			
Traffic Volume (vph)	11	66	0	0	93	149	65	1145	61	0	0	
Future Volume (vph)	11	66	0	0	93	149	65	1145	61	0	0	
Confl. Peds. (#/hr)						170	88					
Confl. Bikes (#/hr)						2						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Parking (#/hr)					0							
Adj. Flow (vph)	12	69	0	0	98	157	68	1205	64	0	0	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	81	0	0	255	0	0	1273	64	0	0	
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		31.6			31.6			79.4	79.4			
Actuated g/C Ratio		0.23			0.23			0.59	0.59			
v/c Ratio		0.20			0.23			0.43	0.07			
Control Delay		22.6			38.1			11.6	3.5			
Queue Delay		0.0			0.0			0.4	0.0			
Total Delay		22.6			38.1			12.0	3.5			
LOS		22.0 C			D			12.0 B	J.5			
Approach Delay		22.6			38.1			11.6				
Approach LOS		C			D			В				
Queue Length 50th (ft)		37			114			113	1			
Queue Length 95th (ft)		m67			170			m247	m7			
Internal Link Dist (ft)		233			60			281	1117		272	
Turn Bay Length (ft)		233			00			201	100		212	
Base Capacity (vph)		569			445			2955	961			
Starvation Cap Reductn		0			0			1042	0			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductin		0			0			0	0			
Reduced v/c Ratio		0.14			0.57			0.67	0.07			
		U. 14			0.57			0.07	0.07			
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												
Offset: 0 (0%), Referenced to	to phase 2:	NBTL, Sta	art of Gre	en								

MS Synchro 9 Report Page 19

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type			- 40	40
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	28.0	32.0	21.0	20.0
Total Split (s)	55.0	32.0	24.0	24.0
Total Split (%)	41%	24%	18%	18%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	2.0	2.0	1.0	1.0
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Reduced WC Rallo				

Synchro 9 Report Page 20 MS

28: Lavaca St & E. 16th St

2024 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 105 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.77

Intersection Signal Delay: 16.2 Intersection Capacity Utilization 55.1% ICU L
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

Intersection LOS: B ICU Level of Service B

Splits and Phases: 28: Lavaca St & E. 16th St

MS Synchro 9 Report Page 21

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

	•	-	•	•	←	•	1	†		-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		^		ሻ	ተተተ						ተተቡ	ĭ
Traffic Volume (vph)	0	952	99	237	1828	0	0	0	0	155	934	450
Future Volume (vph)	0	952	99	237	1828	0	0	0	0	155	934	450
Confl. Peds. (#/hr)			18	18						20		28
Confl. Bikes (#/hr)												28
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.8
Adj. Flow (vph)	0	1107	115	276	2126	0	0	0	0	180	1086	523
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1222	0	276	2126	0	0	0	0	0	1266	523
Turn Type		NA		pm+pt	NA					Perm	NA	Pern
Protected Phases		2		13	6						4	
Permitted Phases				6						4		1
Detector Phase		2		13	6					4	4	4
Switch Phase												
Minimum Initial (s)		10.0			5.0					5.0	5.0	5.0
Minimum Split (s)		25.0			25.0					32.0	32.0	32.0
Total Split (s)		58.0			88.0					47.0	47.0	47.0
Total Split (%)		43.0%			65.2%					34.8%	34.8%	34.8%
Yellow Time (s)		4.0			4.0					4.0	4.0	4.0
All-Red Time (s)		1.0			1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0						0.0	0.0
Total Lost Time (s)		5.0			5.0						5.0	5.0
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Max
Act Effct Green (s)		53.0		83.0	83.0						42.0	42.0
Actuated g/C Ratio		0.39		0.61	0.61						0.31	0.3
v/c Ratio		0.62		0.75	0.68						0.81	1.00
Control Delay		34.2		32.3	7.0						45.4	72.6
Queue Delay		0.0		22.9	0.4						0.0	0.0
Total Delay		34.2		55.2	7.3						45.4	72.6
LOS		С		E	Α						D	E
Approach Delay		34.2			12.8						53.4	
Approach LOS		С			В						D	
Queue Length 50th (ft)		308		113	139						331	317
Queue Length 95th (ft)		337		m153	142						377	#577
Internal Link Dist (ft)		262			240			197			285	
Turn Bay Length (ft)				50								100
Base Capacity (vph)		1968		370	3126						1564	524
Starvation Cap Reductn		0		91	416						0	(
Spillback Cap Reductn		0		0	0						0	(
Storage Cap Reductn		0		0	0						0	(
Reduced v/c Ratio		0.62		0.99	0.78						0.81	1.00
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												
Offset: 0 (0%), Referenced t	to phase 2:	EBT and	6:WBTL	Start of	Green							
Natural Cycle: 80												

MS Synchro 9 Report Page 22

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

Lane Group	Ø1	Ø3
LaneConfigurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	5.0	8.0
Minimum Split (s)	10.0	13.0
Total Split (s)	15.0	15.0
Total Split (%)	11%	11%
Yellow Time (s)	4.0	4.0
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)	110	1.0
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)	IVIIII	IVOIC
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn Reduced v/c Ratio		
Reduced V/C Rallo		
Intersection Summary		

MS Synchro 9 Report Page 23

34: Guadalupe St & W. 15th St

2024 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.00
Intersection Signal Delay: 31.1 Intersection LOS: C
Intersection Capacity Utilization 81.3% ICU Level of Service D
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 34: Guadalupe St & W. 15th St

MS Synchro 9 Report

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	•	•	←	•	4	†	-	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተተ			ተተ _ጉ			414	7			
Traffic Volume (vph)	127	947	0	0	1739	68	401	909	167	0	0	0
Future Volume (vph)	127	947	0	0	1739	68	401	909	167	0	0	0
Confl. Peds. (#/hr)	48					48	31		18			
Confl. Bikes (#/hr)			2						28			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	141	1052	0	0	1932	76	446	1010	186	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	141	1052	0	0	2008	0	0	1456	186	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0	33.0			
Total Split (s)	20.0	86.0			66.0		49.0	49.0	49.0			
Total Split (%)	14.8%	63.7%			48.9%		36.3%	36.3%	36.3%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			6.0	6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	81.0	81.0			64.7			43.0	43.0			
Actuated g/C Ratio	0.60	0.60			0.48			0.32	0.32			
v/c Ratio	0.70	0.34			0.83			0.93	0.34			
Control Delay	72.0	3.1			15.0			55.5	16.7			
Queue Delay	0.3	0.1			0.0			4.5	0.0			
Total Delay	72.3	3.3			15.0			60.0	16.7			
LOS	E	Α			В			Е	В			
Approach Delay		11.4			15.0			55.1				
Approach LOS		В			В			Е				
Queue Length 50th (ft)	90	45			137			451	50			
Queue Length 95th (ft)	m158	49			135			#543	115			
Internal Link Dist (ft)		240			335			116			281	
Turn Bay Length (ft)	50											
Base Capacity (vph)	248	3051			2416			1572	548			
Starvation Cap Reductn	8	873			0			0	0			
Spillback Cap Reductn	0	0			0			81	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.59	0.48			0.83			0.98	0.34			

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 80

MS Synchro 9 Report Page 25

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

MS Synchro 9 Report Page 26

36: Colorado St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	\rightarrow	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተ _ጉ		ሻ	ተተ _ጉ			4			ર્ન	7
Traffic Volume (vph)	42	1103	22	23	1429	35	9	27	113	263	6	347
Future Volume (vph)	42	1103	22	23	1429	35	9	27	113	263	6	347
Confl. Peds. (#/hr)	33		35	35		33	99		6	6		99
Confl. Bikes (#/hr)			1			2			2			1
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	48	1268	25	26	1643	40	10	31	130	302	7	399
Shared Lane Traffic (%)												
Lane Group Flow (vph)	48	1293	0	26	1683	0	0	171	0	0	309	399
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	custom
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		6
Detector Phase	5	2		1	6		4	4		8	8	6
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	15.0
Minimum Split (s)	10.0	20.0		10.0	22.0		36.0	36.0		10.0	10.0	22.0
Total Split (s)	10.0	79.0		10.0	79.0		46.0	46.0		46.0	46.0	79.0
Total Split (%)	7.4%	58.5%		7.4%	58.5%		34.1%	34.1%		34.1%	34.1%	58.5%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	C-Max
Act Effct Green (s)	81.0	78.0		80.0	76.0			41.0			41.0	76.0
Actuated g/C Ratio	0.60	0.58		0.59	0.56			0.30			0.30	0.56
v/c Ratio	0.31	0.44		0.11	0.59			0.31			1.03	0.47
Control Delay	11.9	6.8		5.3	9.8			15.6			105.9	3.9
Queue Delay		0.2 7.0		0.0 5.3	0.1 9.9			0.0 15.6			0.0 105.9	0.1
Total Delay	11.9 B							15.6 B			105.9 F	3.9 A
LOS Approach Delay	В	7.2		Α	A 9.9			15.6			48.4	А
Approach LOS		7.2 A			9.9 A			15.6 B			40.4 D	
	0	108		3	367			41			~289	7
Queue Length 50th (ft) Queue Length 95th (ft)	13	123		6	163			94			~289 #451	48
Internal Link Dist (ft)	13	335		0	362			155			#451 114	48
	90	333		90	302			100			114	100
Turn Bay Length (ft) Base Capacity (vph)	155	2927		229	2843			559			300	840
Starvation Cap Reductn	0	647		0	268			0			0	040
Spillback Cap Reductin	0	047		0	111			0			0	26
Storage Cap Reductn	0	0		0	0			0			0	26
Reduced v/c Ratio	0.31	0.57		0.11	0.65			0.31			1.03	0.49
Reduced N/C Kallo	0.31	0.57		0.11	0.00			0.51			1.03	0.49

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 75

MS Synchro 9 Report Page 27

36: Colorado St & W. 15th St

2024 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.03 Intersection Signal Delay: 16.1 Intersection Capacity Utilization 94.2%

Intersection LOS: B ICU Level of Service F

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

MS Synchro 9 Report

37: N. Congress Ave & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	-	•	•	•	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ተተ _ጉ		7	ተተተ		7
Traffic Volume (vph)	1539	0	0	1244	0	1
Future Volume (vph)	1539	0	0	1244	0	1
Confl. Peds. (#/hr)	,	49	49		41	14
Confl. Bikes (#/hr)			.,			4
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	1790	0.00	0.00	1447	0.00	1
Shared Lane Traffic (%)					,	
Lane Group Flow (vph)	1790	0	0	1447	0	1
Turn Type	NA	0	pm+pt	NA	J	Perm
Protected Phases	2		рин т ри 1	6		I GIIII
Permitted Phases	2		6	J		4
Detector Phase	2		1	6		4
Switch Phase	2		'	U		4
Minimum Initial (s)	5.0		5.0	5.0		5.0
. ,				25.0		
Minimum Split (s)	25.0		10.0			33.0
Total Split (s)	92.0		10.0	102.0		33.0
Total Split (%)	68.1%		7.4%	75.6%		24.4%
Yellow Time (s)	4.0		4.0	4.0		4.0
All-Red Time (s)	1.0		1.0	1.0		1.0
Lost Time Adjust (s)	0.0		0.0	0.0		0.0
Total Lost Time (s)	5.0		5.0	5.0		5.0
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		Max
Act Effct Green (s)	97.0			97.0		28.0
Actuated g/C Ratio	0.72			0.72		0.21
v/c Ratio	0.49			0.40		0.00
Control Delay	6.1			7.8		0.0
Queue Delay	0.0			0.1		0.0
Total Delay	6.1			8.0		0.0
LOS	Α			Α		Α
Approach Delay	6.1			8.0		
Approach LOS	Α			Α		
Queue Length 50th (ft)	139			182		0
Queue Length 95th (ft)	m149			80		0
Internal Link Dist (ft)	362			356	125	
Turn Bay Length (ft)	552			000	.23	
Base Capacity (vph)	3653			3653		383
Starvation Cap Reductn	326			953		0
Spillback Cap Reductn	0			293		0
Storage Cap Reductn	0			293		0
Reduced v/c Ratio	0.54			0.54		0.00
	0.54			0.54		0.00
Intersection Summary Cycle Length: 135						
	E					
Actuated Cycle Length: 13						
Offset: 0 (0%), Referenced	to phase 2:1	EBT and	6:WBTL	Start of G	ireen	
Natural Cycle: 75						
-						

MS Synchro 9 Report
Page 29

37: N. Congress Ave & W. 15th St

2024 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.49

Intersection Signal Delay: 7.0 Intersection LOS: A

Intersection Capacity Utilization 61.4% ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 37: N. Congress Ave & W. 15th St

MS Synchro 9 Report

38: Brazos St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	•	•	←	•	1	†	<i>></i>	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^		7	^			ર્ન	7		4	
Traffic Volume (vph)	5	1527	39	10	1098	11	135	3	119	66	3	89
Future Volume (vph)	5	1527	39	10	1098	11	135	3	119	66	3	89
Confl. Peds. (#/hr)	8		9	9		8	5		19	19		5
Confl. Bikes (#/hr)						1						1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	5	1642	42	11	1181	12	145	3	128	71	3	96
Shared Lane Traffic (%)												
Lane Group Flow (vph)	5	1684	0	11	1193	0	0	148	128	0	170	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4		4	8		
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0	32.0	32.0	32.0	
Total Split (s)	12.0	77.0		12.0	77.0		46.0	46.0	46.0	46.0	46.0	
Total Split (%)	8.9%	57.0%		8.9%	57.0%		34.1%	34.1%	34.1%	34.1%	34.1%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Act Effct Green (s)	96.2	96.2		98.8	98.8			24.0	24.0		24.0	
Actuated g/C Ratio	0.71	0.71		0.73	0.73			0.18	0.18		0.18	
v/c Ratio	0.02	0.47		0.05	0.32			0.85	0.36		0.74	
Control Delay	6.6	4.5		6.5	5.1			89.9	15.8		54.5	
Queue Delay	0.0	0.0		0.0	0.1			0.0	0.0		0.0	
Total Delay	6.6	4.6		6.5	5.2			89.9	15.8		54.5	
LOS	Α	Α		Α	A			F	В		D	
Approach Delay		4.6			5.3			55.5			54.5	
Approach LOS		Α		_	Α			E			D	
Queue Length 50th (ft)	0	43		2	84			127	22		102	
Queue Length 95th (ft)	m2	106		m7	220			193	74		173	
Internal Link Dist (ft)		356			297			199			273	
Turn Bay Length (ft)	100	0.405		40	0744				50		050	
Base Capacity (vph)	328	3605		240	3711			298	530		358	
Starvation Cap Reductn	0	173		0	1233			0	0		0	
Spillback Cap Reductn	0	269		0	0			0	4		2	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.02	0.50		0.05	0.48			0.50	0.24		0.48	

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 70

MS Synchro 9 Report Page 31

38: Brazos St & W. 15th St

2024 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.85
Intersection Signal Delay: 11.6
Intersection Capacity Utilization 69.9%
ICU L
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: B ICU Level of Service C

Splits and Phases: 38: Brazos St & W. 15th St

MS Synchro 9 Report

39: San Jacinto Blvd & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

Lane Configurations		•	-	•	•	•	•	1	Ť	~	-	¥	4
Traffic Volume (vph) 0 1830 117 67 902 0 0 0 0 522 648 Future Volume (vph) 0 1830 117 67 902 0 0 0 0 522 648 Confl. Peds. (#hr) Confl. Peds. (#hr) Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Traffic Volume (vph)	ane Configurations		ተ ቀኄ		ች	444						4413	
Future Volume (right)		0		117			0	0	0	0	522		31
Conf. Petes (#hr)		0		117	67	902	0	0	0	0	522	648	31
Confl. Bikes (#/hr) Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93											32		
Adj. Flow (vph)													
Adj. Flow (vph)	Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.9
Shared Lane Traffic (%) Lane Group Flow (yrh)	Adj. Flow (vph)	0	1968	126	72	970	0	0	0	0	561	697	33
Lane Group Flow (vph) 0 2094 0 72 970 0 0 0 0 1258 Turn Type NA pm+pt NA Permit NA Perm NA Permit NA													
Turn Type NA pm+pt NA Perm NA Ferm Perrotected Phases 4 4 Permotected Phases 2 1 6 4 4 Permitted Phases 4 Detector Phase 2 1 6 4 4 Audither Phase Welloct Phase 2 1 6 4 4 4 Audither Phase 3 0 0 7.0 <t< td=""><td>Lane Group Flow (vph)</td><td>0</td><td>2094</td><td>0</td><td>72</td><td>970</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1258</td><td>33</td></t<>	Lane Group Flow (vph)	0	2094	0	72	970	0	0	0	0	0	1258	33
Protected Phases 2 1 6 4 Permitted Phases 6 6 4 Switch Phase 2 1 6 4 4 Switch Phase Wilnimum Initial (s) 10.0 3.0 10.0 7.0 7.0 7.0 Minimum Split (s) 80.0 8.0 28.0 32.0 32.0 10.1 10.1 10.1 10.1 10.1 10.1 10.1 1													Peri
Permitted Phases 2													
Detector Phase 2					6						4		
Minimum Initial (s) 10.0 3.0 10.0 7.0 7.0 Minimum Split (s) 28.0 8.0 28.0 32.0 32.0 32.0 Total Split (s) 80.0 15.0 95.0 40.0 40.0 Total Split (s) 29.6% 29.6	Detector Phase		2			6					4	4	
Minimum Split (s) 28.0 8.0 28.0 32.0 32.0 Total Split (s) 80.0 15.0 95.0 40.0 40.0 Total Split (%) 59.3% 11.1% 70.4% 29.6% <td>Switch Phase</td> <td></td>	Switch Phase												
Minimum Split (s) 28.0 8.0 28.0 32.0 32.0 Total Split (s) 80.0 15.0 95.0 40.0 40.0 Total Split (%) 59.3% 11.1% 70.4% 29.6 20.0 4.0 2.0 4.0 2.0 2.0 2.0 2.0	Minimum Initial (s)		10.0		3.0	10.0					7.0	7.0	7
Total Split (s) 80.0 15.0 95.0 40.0 40.0 Total Split (%) 59.3% 11.1% 70.4% 29.6% 29.	. ,												32
Total Split (%) 59.3% 11.1% 70.4% 29.6% 29													40
Vellow Time (s) 4.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 2.0 4.0													29.6
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0													4.
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 Lead/Lag Lag Lead- Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None None None Note In Call Graph (Control Delay Note Delay N													1.
Total Lost Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Lead/Lag Clead Lag Lead Lead Lag Optimize? Yes Yes Faccall Mode C-Max None C-Max None None None Note Recall Mode C-Max None C-Max None None None Note Recall Mode C-Max None C-Max None None None Note Note Note Note Note Note Note Not											1.0		0
Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None Effet Green (s) 79.6 90.0 90.0 35.0 Actuated g/C Ratio 0.59 0.67 0.67 0.26 v/c Ratio 0.71 0.47 0.29 1.25dl Control Delay 9.9 41.8 6.2 74.5 Queue Delay 0.1 0.0 0.2 0.0 Total Delay 10.1 41.8 6.4 74.5 LOS B D A E Approach Delay 10.1 8.8 68.4 Approach LOS B A E Dueue Length 50th (ft) 150 24 87 405 Dueue Length 95th (it) 353 m72 101 #514 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8ase Capacity (vph) 2969 183													5.
Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None Non						0.0						0.0	0.
Recall Mode C-Max None C-Max None													
Act Effet Green (s) 79.6 90.0 90.0 35.0 Actuated g/C Ratio 0.59 0.67 0.67 0.26 V/c Ratio 0.71 0.47 0.29 1.25dl Control Delay 9.9 41.8 6.2 74.5 Queue Delay 0.1 0.0 0.2 0.0 Total Delay 10.1 41.8 6.4 74.5 LOS B D A E Approach Delay 10.1 8.8 68.4 Approach LOS B A E Queue Length 50th (ft) 150 24 87 405 Queue Length 95th (ft) 353 m72 101 #514 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8ase Capacity (vph) 2969 183 3390 1261 Starvation Cap Reductn 167 0 1301 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v						C-Max					None	None	Non
Actuated g/C Ratio 0.59 0.67 0.67 0.26 v/c Ratio 0.71 0.47 0.29 1.25dl Control Delay 9.9 41.8 6.2 74.5 Queue Delay 0.1 0.0 0.2 0.0 Total Delay 10.1 41.8 6.4 74.5 LOS B D A E Approach Delay 10.1 8.8 68.4 Approach LOS B A E Queue Length 50th (ft) 150 24 87 405 Queue Length 95th (ft) 353 m72 101 #514 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 83390 1261 3340 1261 Starvation Cap Reductn 167 0 1301 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0<											140110		35.
v/c Ratio 0.71 0.47 0.29 1.25dl Control Delay 9.9 41.8 6.2 74.5 Queue Delay 0.1 0.0 0.2 0.0 Total Delay 10.1 41.8 6.4 74.5 LOS B D A E Approach Delay 10.1 8.8 68.4 Approach LOS B A E Queue Length 50th (ft) 150 24 87 405 Queue Length 95th (ft) 353 m72 101 #514 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 88 1261 Starvation Cap Reductn 167 0 1301 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00													0.2
Control Delay 9.9 41.8 6.2 74.5 Queue Delay 0.1 0.0 0.2 0.0 Total Delay 10.1 41.8 6.4 74.5 LOS B D A E Approach Delay 10.1 8.8 68.4 Approach LOS B A E Queue Length 50th (ft) 150 24 87 405 Queue Length 95th (ft) 353 m72 101 #514 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8382 Capacity (vph) 2969 183 3390 1261 Starvation Cap Reductn 167 0 1301 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00 1.00													0.7
Queue Delay 0.1 0.0 0.2 0.0 Total Delay 10.1 41.8 6.4 74.5 LOS B D A E Approach Delay 10.1 8.8 68.4 Approach LOS B A E Queue Length 50th (ft) 150 24 87 405 Queue Length 95th (ft) 353 m72 101 #514 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8ase Capacity (vph) 2969 183 3390 1261 Starvation Cap Reductn 167 0 1301 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00													45.
Total Delay	,												0.
B													45.
Approach Delay 10.1 8.8 68.4 Approach LOS B A E Dueue Length 50th (ft) 150 24 87 405 Dueue Length 95th (ft) 353 m72 101 #514 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8ase Capacity (vph) 2969 183 3390 1261 Starvation Cap Reductn 167 0 1301 0 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00													10.
Approach LOS B A A E Queue Length 50th (ft) 150 24 87 405 Queue Length 95th (ft) 353 m72 101 #514 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 Base Capacity (vph) 2969 183 3390 1261 Starvation Cap Reductn 167 0 1301 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00					D								
Queue Length 50th (ft) 150 24 87 405 Queue Length 95th (ft) 353 m72 101 #514 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 888 Capacity (vph) 2969 183 3390 1261 Starvation Cap Reductn 167 0 1301 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00													
Queue Length 95th (ft) 353 m72 101 #514 Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 70 Base Capacity (vph) 2969 183 3390 1261 Starvation Cap Reductn 167 0 1301 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00	- 1 1				2/								21
Internal Link Dist (ft) 297 282 125 272 Turn Bay Length (ft) 70 8 1261 Base Capacity (vph) 2969 183 3390 1261 Starvation Cap Reductn 167 0 1301 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00													33
Turn Bay Length (n) 70 Base Capacity (vph) 2969 183 3390 1261 Starvation Cap Reductn 167 0 1301 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00					11172				125				Ju
Base Capacity (vph) 2969 183 3390 1261 Starvation Cap Reductn 167 0 1301 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00			271		70	202			123			212	5
Starvation Cap Reductn 167 0 1301 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00			2060			3300						1261	46
Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00													70
Storage Cap Reductn 0 0 0 Reduced v/c Ratio 0.75 0.39 0.46 1.00													
Reduced v/c Ratio 0.75 0.39 0.46 1.00					-								
Intersection Summany					-								0.7
	Intersection Summary												

MS Synchro 9 Report Page 33

39: San Jacinto Blvd & W. 15th St

2024 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.00
Intersection Signal Delay: 29.5 Intersection Capacity Utilization 77.4% ICU
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles. Intersection LOS: C ICU Level of Service D

- m Volume for 95th percentile queue is metered by upstream signal.
- dl Defacto Left Lane. Recode with 1 though lane as a left lane.

Splits and Phases: 39: San Jacinto Blvd & W. 15th St

MS Synchro 9 Report

40: Trinity St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	-	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ			ተተ _ጉ			414	7			
Traffic Volume (vph)	89	2032	0	0	791	147	183	315	289	0	0	0
Future Volume (vph)	89	2032	0	0	791	147	183	315	289	0	0	0
Confl. Peds. (#/hr)	2					2	7		8			
Confl. Bikes (#/hr)									9			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	93	2117	0	0	824	153	191	328	301	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	93	2117	0	0	977	0	0	519	301	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		35.0	35.0	35.0			
Total Split (s)	10.0	100.0			90.0		35.0	35.0	35.0			
Total Split (%)	7.4%	74.1%			66.7%		25.9%	25.9%	25.9%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	95.0	95.0			85.0			30.0	30.0			
Actuated g/C Ratio	0.70	0.70			0.63			0.22	0.22			
v/c Ratio	0.25	0.59			0.31			0.67	0.78			
Control Delay	5.9	6.8			15.3			53.1	55.2			
Queue Delay	0.0	0.3			0.0			0.0	0.2			
Total Delay	5.9	7.1			15.3			53.1	55.4			
LOS	Α	Α			В			D	E			
Approach Delay		7.0			15.3			54.0				
Approach LOS		Α			В			D				
Queue Length 50th (ft)	19	162			188			221	206			
Queue Length 95th (ft)	m25	m170			201			285	#342			
Internal Link Dist (ft)		282			641			149			621	
Turn Bay Length (ft)	100											
Base Capacity (vph)	365	3578			3140			769	384			
Starvation Cap Reductn	0	683			0			0	0			
Spillback Cap Reductn	0	326			0			0	3			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.25	0.73			0.31			0.67	0.79			

Intersection Summary

Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

MS Synchro 9 Report Page 35

40: Trinity St & W. 15th St

2024 Background Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.78

Intersection LOS: B

Intersection Signal Delay: 18.6 Intersection Capacity Utilization 77.4% Analysis Period (min) 15 ICU Level of Service D

_____ø₂ (₽)

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 40: Trinity St & W. 15th St

MS Synchro 9 Report

TIA for Texas Capitol Complex Master Plan 2018 Update

11: Colorado St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	6	106	14	0	65	202	10	0	15	156	262
Future Vol, veh/h	0	6	106	14	0	65	202	10	0	15	156	262
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	8	136	18	0	83	259	13	0	19	200	336
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		13.7				21.9				39.7		
HCM LOS		В				С				E		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	3%	5%	23%	12%	
Vol Thru, %	36%	84%	73%	61%	
Vol Right, %	61%	11%	4%	28%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	433	126	277	152	
LT Vol	15	6	65	18	
Through Vol	156	106	202	92	
RT Vol	262	14	10	42	
Lane Flow Rate	555	162	355	195	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.897	0.325	0.658	0.373	
Departure Headway (Hd)	5.814	7.245	6.675	6.883	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	616	499	536	526	
Service Time	3.897	5.258	4.774	4.883	
HCM Lane V/C Ratio	0.901	0.325	0.662	0.371	
HCM Control Delay	39.7	13.7	21.9	13.9	
HCM Lane LOS	E	В	С	В	
HCM 95th-tile Q	10.9	1.4	4.8	1.7	

Internation				
Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	18	92	42
Future Vol, veh/h	0	18	92	42
Peak Hour Factor	0.78	0.78	0.78	0.78
			0.76	0.76
Heavy Vehicles, %	2	2		
Mvmt Flow	0	23	118	54
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		13.9		
HCM LOS		В		

2. N. Ooligicss Ave & W. Tolli of	
IA for Texas Capitol Complex Master Plan 2018 Upda	te

Intersection			
Intersection Delay, s/veh	12		
Intersection LOS	В		

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ર્ન				f)				↑	
Traffic Vol, veh/h	0	0	389	0	0	0	338	0	0	0	0	0
Future Vol, veh/h	0	0	389	0	0	0	338	0	0	0	0	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	452	0	0	0	393	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach			EB				WB				NB	
Opposing Approach			WB				EB				SB	
Opposing Lanes			1				1				1	
Conflicting Approach Left			SB				NB				EB	
Conflicting Lanes Left			1				1				1	
Conflicting Approach Right			NB				SB				WB	
Conflicting Lanes Right			1				1				1	
HCM Control Delay			12.6				11.5				0	
HCM LOS			В				В				-	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	0%	
Vol Right, %	0%	0%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	389	338	13	
LT Vol	0	0	0	0	
Through Vol	0	389	338	0	
RT Vol	0	0	0	13	
Lane Flow Rate	0	452	393	15	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0.549	0.483	0.021	
Departure Headway (Hd)	5.758	4.368	4.423	5.113	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	828	817	698	
Service Time	3.807	2.382	2.437	3.159	
HCM Lane V/C Ratio	0	0.546	0.481	0.021	
HCM Control Delay	8.8	12.6	11.5	8.3	
HCM Lane LOS	N	В	В	Α	
HCM 95th-tile Q	0	3.4	2.7	0.1	

MS Synchro 9 Report Page 3

12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations				7
Traffic Vol, veh/h	0	0	0	13
Future Vol, veh/h	0	0	0	13
Peak Hour Factor	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	0	15
Number of Lanes	0	0	0	1
Approach				SB
Opposing Approach				NB
Opposing Lanes				1
Conflicting Approach Left				WB
Conflicting Lanes Left				1
Conflicting Approach Right				EB
Conflicting Lanes Right				1
HCM Control Delay				8.3
HCM LOS				Α

· -	Daongrouna
	Timing Plan: PM

Intersection	
Intersection Delay, s/veh	44.8
Intersection LOS	E

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	40	383	26	0	11	65	25	0	191	167	0
Future Vol, veh/h	0	40	383	26	0	11	65	25	0	191	167	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	47	445	30	0	13	76	29	0	222	194	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		68.6				14.5				39.9		
HCM LOS		F				В				Е		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	53%	9%	11%	36%
Vol Thru, %	47%	85%	64%	21%
Vol Right, %	0%	6%	25%	43%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	358	449	101	273
LT Vol	191	40	11	97
Through Vol	167	383	65	58
RT Vol	0	26	25	118
Lane Flow Rate	416	522	117	317
Geometry Grp	1	1	1	1
Degree of Util (X)	0.851	1.009	0.27	0.651
Departure Headway (Hd)	7.361	6.957	8.402	7.379
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	491	522	430	486
Service Time	5.439	5.024	6.402	5.465
HCM Lane V/C Ratio	0.847	1	0.272	0.652
HCM Control Delay	39.9	68.6	14.5	23.3
HCM Lane LOS	E	F	В	С
HCM 95th-tile O	8.7	14.2	1.1	4.6

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	97	58	118
Future Vol, veh/h	0	97	58	118
Peak Hour Factor	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	113	67	137
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		23.3		
HCM LOS		С		

14: Brazos St & W. 18th St

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection	
Intersection Delay, s/veh	25.9
Intersection LOS	D

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ĵ.				ર્ન					
Traffic Vol, veh/h	0	0	203	306	0	37	54	0	0	0	0	0
Future Vol, veh/h	0	0	203	306	0	37	54	0	0	0	0	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	214	322	0	39	57	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	0	0
Approach			EB			WB						
Opposing Approach			WB			EB						
Opposing Lanes			1			1						
Conflicting Approach Left			SB									
Conflicting Lanes Left			3			0						
Conflicting Approach Right						SB						
Conflicting Lanes Right			0			3						
HCM Control Delay			39.6			11.9						
HCM LOS			Е			В						

Lane	EBLn1	WBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	0%	41%	0%	0%	0%
Vol Thru, %	40%	59%	100%	100%	0%
Vol Right, %	60%	0%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	509	91	285	285	23
LT Vol	0	37	0	0	0
Through Vol	203	54	285	285	0
RT Vol	306	0	0	0	23
Lane Flow Rate	536	96	299	299	24
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.893	0.195	0.54	0.54	0.027
Departure Headway (Hd)	6.002	7.328	6.494	6.494	4.019
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	600	488	554	554	884
Service Time	3.757	5.105	4.251	4.251	1.775
HCM Lane V/C Ratio	0.893	0.197	0.54	0.54	0.027
HCM Control Delay	39.6	11.9	16.7	16.7	6.9
HCM Lane LOS	E	В	С	С	Α
HCM 95th-tile Q	10.7	0.7	3.2	3.2	0.1

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
intersection 200				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4₽	7
Traffic Vol, veh/h	0	0	569	23
Future Vol, veh/h	0	0	569	23
Peak Hour Factor	0.95	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	0	599	24
Number of Lanes	0	0	2	1
Number of Edites	· ·	· ·	-	
Approach			SB	
Opposing Approach				
Opposing Lanes			0	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			16.3	
HCM LOS			C	
I ICIVI EUS			C	

Intersection			
Intersection Delay, s/veh	13.3	 	
Intersection LOS	В		

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	80	36	15	0	0	174	0	0	15	302	0
Future Vol, veh/h	0	80	36	15	0	0	174	0	0	15	302	0
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	98	44	18	0	0	212	0	0	18	368	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB					WB			NB		
Opposing Approach		WB					EB			SB		
Opposing Lanes		1					1			1		
Conflicting Approach Left		SB					NB			EB		
Conflicting Lanes Left		1					1			1		
Conflicting Approach Right		NB					SB			WB		
Conflicting Lanes Right		1					1			1		
HCM Control Delay		11.4					12.1			15.9		
HCM LOS		В					В			С		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	5%	61%	0%	0%	
Vol Thru, %	95%	27%	100%	51%	
Vol Right, %	0%	11%	0%	49%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	317	131	174	182	
LT Vol	15	80	0	0	
Through Vol	302	36	174	93	
RT Vol	0	15	0	89	
Lane Flow Rate	387	160	212	222	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.583	0.269	0.348	0.333	
Departure Headway (Hd)	5.428	6.069	5.907	5.407	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	661	588	605	661	
Service Time	3.486	4.144	3.978	3.475	
HCM Lane V/C Ratio	0.585	0.272	0.35	0.336	
HCM Control Delay	15.9	11.4	12.1	11.2	
HCM Lane LOS	С	В	В	В	
HCM 95th-tile Q	3.8	1.1	1.6	1.5	

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
	SDU	SDL		SDK
Lane Configurations			4	
Traffic Vol, veh/h	0	0	93	89
Future Vol, veh/h	0	0	93	89
Peak Hour Factor	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	0	113	109
Number of Lanes	0	0	1	0
Approach			SB	
Opposing Approach			NB	
Opposing Lanes			1	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			11.2	
HCM LOS			11.2 B	

20: Colorado St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

24: E. 17th St & Brazos St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background Timing Plan: PM

Intersection	
Intersection Delay, s/veh	8.7
Intersection LOS	Α

Movement	EBU	EBL	EBT	WBU	WBT	WBR	SBU	SBL	SBR
Lane Configurations			ર્ન		4			Y	
Traffic Vol, veh/h	0	0	193	0	40	52	0	97	0
Future Vol, veh/h	0	0	193	0	40	52	0	97	0
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	238	0	49	64	0	120	0
Number of Lanes	0	0	1	0	1	0	0	1	0
Approach			EB		WB			SB	
Opposing Approach			WB		EB				
Opposing Lanes			1		1			0	
Conflicting Approach Left			SB					WB	
Conflicting Lanes Left			1		0			1	
Conflicting Approach Right					SB			EB	
Conflicting Lanes Right			0		1			1	
HCM Control Delay			9.1		7.8			8.9	
HCM LOS			Α		А			Α	

Lane	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	100%	
Vol Thru, %	100%	43%	0%	
Vol Right, %	0%	57%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	193	92	97	
LT Vol	0	0	97	
Through Vol	193	40	0	
RT Vol	0	52	0	
Lane Flow Rate	238	114	120	
Geometry Grp	1	1	1	
Degree of Util (X)	0.288	0.131	0.163	
Departure Headway (Hd)	4.357	4.155	4.904	
Convergence, Y/N	Yes	Yes	Yes	
Сар	827	864	733	
Service Time	2.374	2.174	2.928	
HCM Lane V/C Ratio	0.288	0.132	0.164	
HCM Control Delay	9.1	7.8	8.9	
HCM Lane LOS	A	Α	Α	
HCM 95th-tile Q	1.2	0.5	0.6	

MS Synchro 9 Report Page 11

Intersection Int Delay, s/veh 1	1.8						
,		EDD	WDI	WDT	NDI	NDD	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
ane Configurations	↑ }		ች	^	Y		
raffic Vol, veh/h	672	40	44	1365	13	173	
uture Vol, veh/h	672	40	44	1365	13	173	
Conflicting Peds, #/hr	0	8	8	0	0	11	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None		None	
Storage Length	-	-	40	-	0	-	
/eh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	94	94	94	94	94	94	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	715	43	47	1452	14	184	
Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	765	0	1564	398	
Stage 1		-	-	-	744	-	
Stage 2	-	-	-	-	820	-	
Critical Hdwy		-	4.14	-	6.84	6.94	
Critical Hdwy Stg 1		-	-	-	5.84	-	
Critical Hdwy Stg 2		-			5.84	-	
ollow-up Hdwy		-	2.22		3.52	3.32	
ot Cap-1 Maneuver		-	844	-	102	601	
Stage 1		-	-		431	-	
Stage 2		-	-	-	393		
Platoon blocked, %				-	373		
Mov Cap-1 Maneuver			835	-	96	590	
Mov Cap-2 Maneuver			-		96	-	
Stage 1			-	-	428	-	
Stage 2			-		371	-	
Stage 2					371		
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.3		20.1		
HCM LOS	· ·		0.0		C		
10141 200							
Minor Lane/Major Mvmt	NBLn1 EBT	EBR WBL	WBT				
Capacity (veh/h)	434 -	- 835					
HCM Lane V/C Ratio	0.456 -	- 0.056					
HCM Control Delay (s)	20.1	- 9.6					
HCM Lane LOS	20.1 -	- 9.C					
ICM 95th %tile Q(veh)	2.3 -	- 0.2					
Civi 70til 76tile Q(ven)	2.3 -	- 0.2					

Intersection												
Int Delay, s/veh	42.4											
Movement	EBL	EBT	EBR	WB		WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations			7		ની						414	
Traffic Vol, veh/h	0	21	12	20	4 97	0	0	0	0	37	1044	2
Future Vol, veh/h	0	21	12	20		0	0	0	0	37	1044	2
Conflicting Peds, #/hr	0	0	0	5		0	0	0	0	0	0	4
Sign Control	Stop	Stop	Stop	Sto	p Stop	Stop	Stop	Stop	Stop	Free	Free	Fre
RT Channelized		-	None			None	-	-	None	-	-	Non
Storage Length	-	-	0			-	-	-	-	-	-	
Veh in Median Storage, #	ŧ -	0	-		- 0	-	-	-	-	-	0	
Grade, %	-	0	-		- 0	-	-	0	-	-	0	
Peak Hour Factor	97	97	97	9	7 97	97	97	97	97	97	97	9
Heavy Vehicles, %	2	2	2		2 2	2	2	2	2	2	2	
Mvmt Flow	0	22	12	21	0 100	0	0	0	0	38	1076	2
Major/Minor	Minor2			Minor	1					Major2		
Conflicting Flow All	141111012	1206	648	68						0	0	
		1206	040		0 0					-	-	
Stage 1 Stage 2		1206		68								
Critical Hdwy		6.54	6.94	7.5						4.14	-	
Critical Hdwy Stg 1		5.54	0.94	7.0	4 0.34					4.14		
Critical Hdwy Stg 2		5.54		6.5						-		
Follow-up Hdwy		4.02	3.32	3.5						2.22		
Pot Cap-1 Maneuver	0	182	413	3.3		0				2.22		
Stage 1	0	255	413		- 1/9	0				-		
Stage 2	0	200		40		0						
Platoon blocked, %	U		-	40	/ 201	U				-		
Mov Cap-1 Maneuver		175	396	29	5 172	_						
Mov Cap-1 Maneuver		175	390	29						-		
		245		29	0 1/2							
Stage 1			-	2.5						-	-	
Stage 2	-	-	-	35	9 241	-				-		
Approach	EB			W	В					SB		
HCM Control Delay, s	23.4			200.	2							
HCM LOS	С				F							
Minor Lane/Major Mvmt	EBLn1	ERI n2\	MRI n1	SBL SB	T SBR							
Capacity (veh/h)	175	396	240	- JDL JD	JUIN							
HCM Lane V/C Ratio	0.124			-								
HCM Control Delay (s)	28.5	14.4										
HCM Control Delay (s) HCM Lane LOS	28.5 D	14.4 B	200.2 F	-								
				-								
HCM 95th %tile Q(veh)	0.4	0.1	16	-								

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL				_												, s/veh 59.8
Lane Configurations	RT	SRT	SBT		SRI	NRR	NRT	RI	N	WRR	WRT	WRI	FRR	FRT	FRI	
Traffic Vol, veh/h Traffi	01	JD 1	301	_	JDL	NDIX				WDIC		WDL	LDIX		LUL	
Future Vol, veh/h 11 54 0 0 172 75 66 1154 78 0 Conflicting Peds, #hr 0 0 0 0 0 121 25 0 0 0 0 RT Channelized Storage Length None -	0	0	0		0	78				75		0	0		11	
Conflicting Peds, #hr 0 0 0 0 0 0 0 21 25 0 0 0 0 Sign Control Stop Stop Stop Stop Stop Free Free Free Free Free Free Free Fre	0				-											
Sign Control Stop Stop Stop Stop Stop Stop Stop Free Commodition 4 2 2 2 2 2 2 2	0	_											-			
RT Channelized			Free			-	_				-					
Storage Length	-													-		
Veh in Median Storage, #	-		-		-			0							-	
Grade, % - 0 0 - 0 - 0 - 0 - 0 - 95 Peak Hour Factor 95 95 95 95 95 95 95 95 95 95 95 95 95 Meavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	-	-		_	-	0	-		-	0	-	-	0	-	
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2	0	0	0		-		0	-		-	0	-	-	0	-	
Major/Minor Minor2 Minor1 Major1 Major1 Major1 Major1 Major1 Major1 Major1 Major1 Major2 Minor3 Major3 Major4 Major	95	95	95		95	95	95	95		95	95	95	95	95	95	ur Factor
Major/Minor Minor2 Minor1 Major1 Major1 Major1 Major1 Major1 Major1 Major1 Major1 Major3 Minor4 Major4 Major	2	2	2		2	2	2	2		2	2	2	2	2	2	ehicles, %
Conflicting Flow All 761 1461 -	0	0	0		0	82	1215	69		79	181	0	0	57	12	
Conflicting Flow All 761 1461 - 1420 669 25 0 0 Stage 1 25 25 - 1395																
Conflicting Flow All 761 1461 - 1420 669 25 0 0 Stage 1 25 25 - 1395								r1	Maio			Minor1			Minor2	nor
Stage 1	_			_		0	0			669	1420		-	1461		
Stage 2																5
Critical Hdwy 6.44 6.54 - 6.54 7.14 5.34 - Critical Hdwy Stg 1 - - - 5.54 - - - Critical Hdwy Stg 2 6.74 5.54 - - - - Follow-up Hdwy 3.82 4.02 - - 4.02 3.92 3.12 - Pot Cap-1 Maneuver 352 128 0 0 - - - - Stage 1 - 0 0 207 - - - - Stage 2 342 197 0 0 - - - - Platoon blocked, % Mov Cap-1 Maneuver - 117 - - 124 343 1124 - - Mov Cap-1 Maneuver - 117 - - 124 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
Critical Hdwy Stg 1 5.54						-		34	5.	7.14	6.54	-	-	6.54	6.44	
Follow-up Hidwy 3.82 4.02 - 4.02 3.92 3.12 - Pot Cap-1 Maneuver 352 128 0 0 - 135 343 1124 - Stage 1 - 0 0 0 207 Stage 2 342 197 0 0 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver - 117 124 343 1124 Stage 1 - 117 124 Stage 1 Stage 1 Stage 2 16 185 194 Stage 2 16 185 194 Stage 2 16 185 194							-	-			5.54	-	-	-	-	
Pot Cap-1 Maneuver						-	-	-		-	-	-	-	5.54	6.74	dwy Stg 2
Stage 1						-	-	12	3.	3.92	4.02	-	-	4.02	3.82	Hdwy
Stage 2 342 197 0 0 0 - - - - Platoon blocked, %						-	-	24	11	343	~ 135	0	0	128	352	1 Maneuver
Platoon blocked, %						-	-	-		-	207	0	0	-	-	ige 1
Mov Cap-1 Maneuver - 117 124 343 1124 Mov Cap-2 Maneuver - 117 124 Stage 1 194 Stage 2 16 185						-	-	-		-	-	0	0	197	342	ige 2
Mov Cap-2 Maneuver - 117 124 Stage 1 194 Stage 2 16 185 Approach EB WB NB HCM Control Delay, s \$ 387.6 0.4 HCM LOS - F F Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 Capacity (veh/h) 1124 154 HCM Lane V/C Ratio 0.062 1.688 HCM Control Delay (s) 8.4 - \$ 387.6 HCM Lane LOS A F						-	-									
Stage 1						-	-	24	11	343		-	-		-	
Stage 2						-	-	-		-		-	-	117	-	
Approach EB WB NB HCM Control Delay, s HCM LOS \$ 387.6 0.4 Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 Capacity (veh/h) 1124 - - 154 HCM Lane V/C Ratio 0.062 - - 1.688 HCM Control Delay (s) 8.4 - - \$ 387.6 HCM Lane LOS A - - F						-	-	-		-	194	-	-	-		
HCM Control Delay, s \$ 387.6 0.4 HCM LOS - F Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 Capacity (veh/h) 1124 154 HCM Lane V/C Ratio 0.062 1.688 HCM Control Delay (s) 8.4 \$ 387.6 HCM Lane LOS A F						-	-	-		-	-	-	-	185	16	ige 2
HCM Control Delay, s \$ 387.6 0.4 HCM LOS - F Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 Capacity (veh/h) 1124 154 HCM Lane V/C Ratio 0.062 1.688 HCM Control Delay (s) 8.4 \$ 387.6 HCM Lane LOS A F																
HCM LOS								ΝB				WB			EB	1
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 Capacity (veh/h) 1124 - - 154 HCM Lane V/C Ratio 0.062 - - 1.688 HCM Control Delay (s) 8.4 - - \$ 387.6 HCM Lane LOS A - - F				Т).4	(\$ 387.6				ntrol Delay, s
Capacity (veh/h) 1124 - - 154 HCM Lane V/C Ratio 0.062 - - 1.688 HCM Control Delay (s) 8.4 - - \$ 387.6 HCM Lane LOS A - - F															-	
Capacity (veh/h) 1124 - - 154 HCM Lane V/C Ratio 0.062 - - 1.688 HCM Control Delay (s) 8.4 - - \$ 387.6 HCM Lane LOS A - - F																
Capacity (veh/h) 1124 - - 154 HCM Lane V/C Ratio 0.062 - - 1.688 HCM Control Delay (s) 8.4 - - \$ 387.6 HCM Lane LOS A - - F				i								1WBLn1	NBR EBI	NBT	NBI	ne/Maior Mvmt
HCM Lane V/C Ratio 0.062 1.688 HCM Control Delay (s) 8.4 \$ 387.6 HCM Lane LOS A - F													-			
HCM Control Delay (s) 8.4 - - - \$ 387.6 HCM Lane LOS A - - F																
HCM Lane LOS A F													-			
FIGUR 7501 7501 COURT CLVCII U.Z " " 10.5												- 18.5		-	0.2	
Notes																

Intersection									
Int Delay, s/veh	5								
Movement	EBL	EBT				WBT	WBR	SBL	SBR
Lane Configurations		ર્સ				ĵ.		¥	
Traffic Vol, veh/h	24	394				354	20	97	116
Future Vol, veh/h	24	394				354	20	97	116
Conflicting Peds, #/hr	0	0				0	0	0	0
Sign Control	Free	Free				Free	Free	Stop	Stop
RT Channelized		None				-	None	-	None
Storage Length		-				-	-	0	-
Veh in Median Storage, #	-	0				0	-	0	-
Grade, %	-	0				0	-	0	-
Peak Hour Factor	92	92				92	92	92	92
Heavy Vehicles, %	2	2				2	2	2	2
Mvmt Flow	26	428				385	22	105	126
Major/Minor	Major1				M	lajor2		Minor2	
Conflicting Flow All	407	0				-	0	876	396
Stage 1		-					-	396	
Stage 2								480	
Critical Hdwy	4.12					-		6.42	6.22
Critical Hdwy Stg 1	-					-	-	5.42	-
Critical Hdwy Stg 2	-	-				-	-	5.42	-
Follow-up Hdwy	2.218	-				-	-	3.518	3.318
Pot Cap-1 Maneuver	1152	-				-	-	319	653
Stage 1	-	-				-		680	
Stage 2	-					-		622	-
Platoon blocked, %		-				-	-		
Mov Cap-1 Maneuver	1152	-				-	-	309	653
Mov Cap-2 Maneuver	-	-				-	-	309	-
Stage 1	-	-				-	-	680	
Stage 2	-	-				-	-	603	-
Approach	EB					WB		SB	
HCM Control Delay, s	0.5					0		22.5	
HCM LOS								C	
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR S	SRI n1				
Capacity (veh/h)	1152	LDI		.voit	433				
HCM Lane V/C Ratio	0.023		-		0.535				
HCM Control Delay (s)	8.2	0			22.5				
HCM Lane LOS	0.2 A	A			22.5 C				
HCM 95th %tile Q(veh)	0.1	^			3.1				
HOW FORT FORTE (VEH)	U. I				J. I				

MS Synchro 9 Report Page 4

Intersection

MS

Intersection												
Int Delay, s/veh 23	.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		લી			ĥ		ሻ	^ ^				
Traffic Vol, veh/h	288	Ö	0	0		0	176	605	0	0	0	
Future Vol, veh/h	288	0	0	0	0	0	176	605	0	0	0	
Conflicting Peds, #/hr	0	0	18	0	0	0	21	0	0	0	0	
Sign Control	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	Stop	Stop	Sto
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	Nor
Storage Length	-	-	-	-	-	-	115	-	-	-	-	
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	-	
Grade, %	-	0	-		0	-	-	0	-	-	0	
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	8
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	339	0	0	0	0	0	207	712	0	0	0	
Major/Minor	Minor2			Major2			Major1					
Conflicting Flow All	721	1148	-	-	-	0	22	0	-			
Stage 1	22	22	-		-	-	-	-	-			
Stage 2	699	1126	-	-	-	-	-	-	-			
Critical Hdwy	6.08	6.53	-	-	-	-	4.13	-	-			
Critical Hdwy Stg 1	5.43	5.53	-	-	-	-	-	-	-			
Critical Hdwy Stg 2	6.03	5.53	-		-	-	-	-	-			
Follow-up Hdwy	3.669	4.019	-	-	-	-	2.219	-	-			
Pot Cap-1 Maneuver	410	198	0	0	-	-	1593	-	0			
Stage 1	960	877	0	0	-	-	-	-	0			
Stage 2	425	279	0	0	-	-	-	-	0			
Platoon blocked, %					-	-		-				
Mov Cap-1 Maneuver	343	0	-	-	-	-	1593	-	-			
Mov Cap-2 Maneuver	343	0	-	-	-	-	-	-	-			
Stage 1	941	0	-	-	-	-	-	-	-			
Stage 2	362	0	-		-	-		-	-			
Approach	EB			WB			NB					
HCM Control Delay, s	81.1			0			1.7					
HCM LOS	F											
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	WBT WBR								
Capacity (veh/h)	1593		343									
HCM Lane V/C Ratio	0.13		0.988									
HCM Control Delay (s)	7.6		81.1									
HCM Lane LOS	Α.		F									

Int Delay, s/veh	9.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	4	
Traffic Vol, veh/h	242	145	30	202	53	50
Future Vol. veh/h	242	145	30	202	53	50
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None		None
Storage Length	0	-		-		-
Veh in Median Storage,		-	-	0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	263	158	33	220	58	54
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	370	85	112	0	-	0
Stage 1	85	-		-		-
Stage 2	285	-	-	-		-
Critical Hdwy	6.42	6.22	4.12	-		-
Critical Hdwy Stg 1	5.42	-	-	-		-
Critical Hdwy Stg 2	5.42	-	-	-		-
Follow-up Hdwy	3.518	3.318	2.218	-		-
Pot Cap-1 Maneuver	630	974	1478	-		
Stage 1	938	-	-	-		-
Stage 2	763	-	-	-		
Platoon blocked, %				-		
Mov Cap-1 Maneuver	614	974	1478	-		
Mov Cap-2 Maneuver	614	-				
Stage 1	938	-				
Stage 2	744	-				
g						
Approach	EB		NB		SB	
HCM Control Delay, s	17		1		0	
HCM LOS	C					
	_					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1478	- 713				
HCM Lane V/C Ratio	0.022	- 0.59				
HCM Control Delay (s)	7.5	0 17				
HCM Lane LOS	A	A C				
HCM 95th %tile Q(veh)	0.1	- 3.9				
	0.1	0.7				

Int Delay, s/veh 8	30.3												
Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		↑	7			4						414	ī
Traffic Vol, veh/h	0	148	161		37	44	0	0	0	0	108	1052	2
Future Vol. veh/h	0	148	161		37	44	0	0	0	0	108	1052	2
Conflicting Peds, #/hr	0	0	19		0	0	0	0	0	0	97	0	
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	-	-	None		-	-	None	-	-	None	-	-	Non
Storage Length		-	40				-			-			5
Veh in Median Storage, #		0	-		-	0	-	-	-	-	-	0	
Grade, %		0	-			0	-		0	-		0	
Peak Hour Factor	85	85	85		85	85	85	85	85	85	85	85	8
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	Ü
Mymt Flow	0	174	189		44	52	0	0	0	0	127	1238	2
	Ū	.,,	107		•	02	J	Ū		Ü	127	1200	_
Major/Minor	Minor2			M	inor1						Major2		
Conflicting Flow All		1589	638		1076	1589					97	0	
Stage 1		1492	_		97	97	-				-	_	
Stage 2		97			979	1492							
Critical Hdwy		6.54	6.94		7.54	6.54					4.14	-	
Critical Hdwy Stg 1		5.54	-		-	- 0.0	-						
Critical Hdwy Stg 2		-	-		6.54	5.54	-						
Follow-up Hdwy		4.02	3.32		3.52	4.02	-				2.22		
Pot Cap-1 Maneuver	0		419		174	107	0				1494		
Stage 1	0	185	- 117			-	0				1171		
Stage 2	0	-			268	185	0						
Platoon blocked. %	U				200	100	U						
Mov Cap-1 Maneuver		~ 69	419			69					1494		
Mov Cap-2 Maneuver		~ 69	- 117			69					1171		
Stage 1		~ 132	_			-	_						
Stage 2		- 132				132							
Stage 2						132							
Approach	EB				WB						SB		
HCM Control Delay, s	\$ 403.6										1.2		
HCM LOS	F				-								
Minor Lane/Major Mvmt		EBLn2V	VBLn1	SBL	SBT	SBR							
Capacity (veh/h)	69	419	-	1494	-	-							
HCM Lane V/C Ratio		0.452	-	0.085	-	-							
HCM Control Delay (s)	\$ 820.4	20.5	-	7.6	0.6	-							
HCM Lane LOS	F	С	-	Α	Α	-							
HCM 95th %tile Q(veh)	17	2.3	-	0.3	-	-							

	.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T)	LDIX	IVUL	414	351	JDIK
Traffic Vol. veh/h	231	0	20	4 TT 551	0	0
Future Vol. veh/h	231	0	20	551	0	0
	231	0	0	0	0	0
Conflicting Peds, #/hr	-	·	-	_	-	
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		
Storage Length	0	-	-	-		-
Veh in Median Storage, #	0	-		0	-	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	278	0	24	664	0	0
Major/Minor	Minor2		Major1			
Conflicting Flow All	314		0	0		
Stage 1	0			-		
Stage 2	314					
Critical Hdwy	5.74		5.34			
Critical Hdwy Stg 1	3.74	-	3.34			
Critical Hdwy Stg 2	6.04	-				
Follow-up Hdwy	3.82	-	3.12			
			3.12			
Pot Cap-1 Maneuver	672	0				
Stage 1	- (54	0	-	-		
Stage 2	654	0		-		
Platoon blocked, %				-		
Mov Cap-1 Maneuver	672	-	-	-		
Mov Cap-2 Maneuver	672	-	-	-		
Stage 1	-	-	-	-		
Stage 2	654	-	-	-		
Approach	EB		NB			
HCM Control Delay, s	14.1					
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1				
Capacity (veh/h)	NDL -	- 672				
HCM Lane V/C Ratio		- 0.414				
HCM Control Delay (s)	-					
HCM Lane LOS	-	- B				
HCM 95th %tile Q(veh)	-	- 2				

Intersection															
Int Delay, s/veh	70.7														
Movement		EBL	EBT	EBR		WBL	WBT	WBR		NBL	NBT	NBR	SB	L SBT	SB
Lane Configurations			- 1>				ની							41₽	
Traffic Vol, veh/h		0	21	12		126	97	0		0	0	0	4	8 1289	2
Future Vol, veh/h		0	21	12		126	97	0		0	0	0	4	8 1289	2
Conflicting Peds, #/hr		0	0	0		24	0	0		0	0	0		0 0	4
Sign Control		Stop	Stop	Stop		Stop	Stop	Stop		Free	Free	Free	Fre	e Free	Fre
RT Channelized		-	-	None		-	-	None		-	-	None			Non
Storage Length		-	-	-		-		-				-			
Veh in Median Storage,	#	-	0	-		-	0	-		-	-	-		- 0	
Grade, %			0	-			0	-			0	-		- 0	
Peak Hour Factor		87	87	87		87	87	87		87	87	87	8	7 87	8
Heavy Vehicles, %		2	2	2		2	2	2		2	2	2	-	2 2	
Mymt Flow		0	24	14		145	111	0		0	0	0	5		
WWW. Con						110								0 1102	
Major/Minor	М	inor2			N	/linor1							Major	2	
Conflicting Flow All		-	1635	808		887	1635	-						0 0	(
Stage 1		-	1635	-		0	0	-							
Stage 2			0	-		887	1635	-							
Critical Hdwy		-	6.54	6.94		7.54	6.54	-					4.1	4 -	
Critical Hdwy Stg 1			5.54	-		-	-								
Critical Hdwy Stg 2		-	-	-		6.54	5.54								
Follow-up Hdwy		-	4.02	3.32		3.52	4.02						2.2	2 -	
Pot Cap-1 Maneuver		0	100	324			~ 100	0							
Stage 1		0	157	-		-	-	0							
Stage 2		0	-			305	157	0							
Platoon blocked. %		U				505	107	U							
Mov Cap-1 Maneuver			96	311		184	~ 96								
Mov Cap-1 Maneuver			96	311		184	~ 96								
Stage 1			151			-	- 70								
			101			245	151								
Stage 2		-	-	-		240	131								
Approach		EB				WB							S	3	
HCM Control Delay, s		44.6			\$	506.4									
HCM LOS		E			Ψ	500.4 F									
TIOM EOS															
Minor Lane/Major Mvmt	El	BLn1V	/BLn1	SBL	SBT	SBR									
Capacity (veh/h)		128	132		-	-									
HCM Lane V/C Ratio	(0.296	1.942			-									
HCM Control Delay (s)			506.4			-									
HCM Lane LOS		E	F												
HCM 95th %tile Q(veh)		1.1	20.3		-										
Notes															
	oitu	¢. Da	lov ove	oodo 20)Oc	Com	nutation	a Not D	fined	*. AII	major	rolumo i	in plataan		
~: Volume exceeds capa	icity	\$: DE	ady exc	eeds 30	105	r. Culli	putation	n Not D	anneu	: All	major v	volume	in platoon		

Intersection													
Int Delay, s/veh	34.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	N	IBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4				4			4	
Traffic Vol, veh/h	38	71	53	37	45	9		56	205	42	10	388	45
Future Vol, veh/h	38	71	53	37	45	9		56	205	42	10	388	45
Conflicting Peds, #/hr	0	0	0	0	0	15		88	0	0	0	0	88
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Fr	ree	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None		-	-	None	-	-	None
Storage Length	-	-	-	-	-	-		-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-		-	0	-	-	0	-
Grade, %	-	0	-	-	0	-		-	0	-	-	0	-
Peak Hour Factor	78	78	78	78	78	78		78	78	78	78	78	78
Heavy Vehicles, %	2	2	2	2	2	2		2	2	2	2	2	2
Mvmt Flow	49	91	68	47	58	12		72	263	54	13	497	58
Major/Minor	Minor2			Minor1			Majo	or1			Major2		
Conflicting Flow All	1123	1100	614	1064	1102	305	6	543	0	0	317	0	0
Stage 1	640	640	-	433	433	-		-	-	-	-	-	-
Stage 2	483	460	-	631	669	-		-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.	.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-		-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.2	218	-	-	2.218	-	-
Pot Cap-1 Maneuver	183	212	492	201	212	735	9	942	-	-	1243	-	-
Stage 1	464	470	-	601	582	-		-	-	-	-	-	-
Stage 2	565	566	-	469	456	-		-	-	-	-	-	-
Platoon blocked, %									-	-		-	-
Mov Cap-1 Maneuver	112	174	451	93	174	725	9	942	-	-	1225	-	-
Mov Cap-2 Maneuver	112	174	-	93	174	-		-	-	-		-	-
Stage 1	386	424	-	545	528	-		-	-	-	-	-	-
Stage 2	443	513	-	308	412	-		-	-	-			-
Approach	EB			WB				NB			SB		
HCM Control Delay, s	150.3			105.5				1.7			0.2		
HCM LOS	F			F									
Minor Lane/Major Mvmt	NBL	NBT	NBR I	EBLn1WBLn1	SBL	SBT	SBR						
Capacity (veh/h)	942	-	-	187 136	1225	-	-						
HCM Lane V/C Ratio	0.076	-	-	1.111 0.858	0.01	-	-						
HCM Control Delay (s)	9.1	0	-	150.3 105.5	8	0	-						
HCM Lane LOS	Α	Α	-	F F	Α	Α	-						
HCM 95th %tile Q(veh)	0.2	-	-	10.2 5.5	0	-	-						

HCM 95th %tile Q(veh)

2024 Background Timing Plan: PM

Int Delay, s/veh	10											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations	LDL	<u> </u>	LDIX	WOL	<u>₩</u>	WDIX	IVDL	<u> </u>	IVDIX	JDL	<u> </u>	301
Traffic Vol, veh/h	0	127	0	0	155	0	0	0	0	0	0	
Future Vol. veh/h	0	127	0	0	155	0	0	0	0	0	0	
Conflicting Peds, #/hr	0	0	0	59	0	25	21	0	0	0	0	2
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	Non
Storage Length			-	-		-	-		-			
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-		0	
Grade, %		0	-		0	-	-	0	-		0	
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	8
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	157	0	0	191	0	0	0	0	0	0	(
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	-	1	-	-	1	-	-	0	-	-	-	
Stage 1		1	-	-	0	-	-	-	-		-	
Stage 2	-	0	-	-	1	-	-	-	-		-	
Critical Hdwy	-	6.52	-	-	6.52	-	-	-	-	-	-	
Critical Hdwy Stg 1	-	5.52	-	-	5.52	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	5.52	-	-	5.52	-	-	-	-		-	
Follow-up Hdwy	-	4.018	-	-	4.018	-	-	-	-	-	-	
Pot Cap-1 Maneuver	0	895	0	0	895	0	0	-	0	0	-	
Stage 1	0	895	0	0	-	0	0	-	0	0	-	
Stage 2	0	-	0	0	895	0	0	-	0	0	-	
Platoon blocked, %								-			-	
Mov Cap-1 Maneuver		895	-	-	895	-	-	-	-		-	
Mov Cap-2 Maneuver	-	895	-	-	895	-	-	-	-	-	-	
Stage 1	-	895	-	-	-	-	-	-	-		-	
Stage 2	-	-	-		895	-	-	-	-	-	-	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.9			10.1			0			0		
HCM LOS	А			В								
Minor Lano/Major Mymt	NDT	EBLn1\	MDI n1	SBT								
Minor Lane/Major Mvmt Capacity (veh/h)	NB1	895	895	281								
HCM Lane V/C Ratio			0.214									
	-	9.9	10.1									
HCM Control Delay (s) HCM Lane LOS	-	9.9 A	10.1 B	-								
LOS FAILS FOS	-	А	В	-								

Int Delay, s/veh 2	2.9							
Movement		EBT	EBR		WBL	WBT	NBL	NBF
Lane Configurations		1	EDR		WDL	सी	NDL ₩	NDK
Traffic Vol, veh/h		82	0		15	67	'T' 43	0
Future Vol, veh/h		82	0		15	67	43	0
		02	0		15	0	43	0
Conflicting Peds, #/hr		-	-			-	-	-
Sign Control	ŀ	ree	Free		Free	Free	Stop	Stop
RT Channelized		-	None		-	None	-	None
Storage Length		-	-		-	-	0	
Veh in Median Storage, #		0	-		-	0	0	-
Grade, %		0	-		-	0	0	-
Peak Hour Factor		58	58		58	58	58	58
Heavy Vehicles, %		2	2		2	2	2	2
Mvmt Flow		141	0		26	116	74	0
Major/Minor	Ma	jor1		ı	Major2		Minor1	
Conflicting Flow All		0	0		142	0	309	142
Stage 1		-	-		-	-	142	-
Stage 2		-	-		-	-	167	-
Critical Hdwy		-	-		4.12	-	6.42	6.22
Critical Hdwy Stg 1		-	-		-	-	5.42	-
Critical Hdwy Stg 2		-	-		-	-	5.42	
Follow-up Hdwy		-	-		2.218	-	3.518	3.318
Pot Cap-1 Maneuver		-	-		1441	-	683	906
Stage 1		-	-		-	-	885	-
Stage 2		-			-	-	863	
Platoon blocked, %		-	-			-		
Mov Cap-1 Maneuver		-	-		1441	-	669	905
Mov Cap-2 Maneuver		-	-		-	-	669	-
Stage 1		-	-		-		884	
Stage 2		-			-	-	847	
, , ,								
Approach		EB			WB		NB	
HCM Control Delay, s		0			1.4		11.1	
HCM LOS							В	
Minor Lane/Major Mvmt	NBLn1 E	EBT	EBR	WBL	WBT			
Capacity (veh/h)	669	-	-	1441	-			
HCM Lane V/C Ratio	0.111	-		0.018	-			
HCM Control Delay (s)	11.1	-		7.5	0			
HCM Lane LOS	В	-		Α	Α			
HCM 95th %tile Q(veh)	0.4			0.1				

31: Brazos St & E. 16th St

TIA for Texas Capitol Complex Master Plan 2018 Update

Int Delay, s/veh	0.9						
Movement	EBL	EE	IR I	VBL	NBT	SBT	SBR
Lane Configurations			7			^	7
Traffic Vol, veh/h	0		53	0	0	1298	53
Future Vol, veh/h	0		53	0	0	1298	53
Conflicting Peds, #/hr	0		0	0	0	0	15
Sign Control	Stop	St	op F	ree	Free	Free	Free
RT Channelized	-	No	ne	-	None		None
Storage Length			0	-	-		50
Veh in Median Storage, #	0			-	-	0	-
Grade, %	0			-	0	0	-
Peak Hour Factor	89		39	89	89	89	89
Heavy Vehicles, %	2		2	2	2	2	2
Mvmt Flow	0		71	0	0	1458	60
Major/Minor	Minor2					Major2	
Conflicting Flow All	-	7.	14			.viajoiz	0
Stage 1			-				-
Stage 2							
Critical Hdwy		7.	14				
Critical Hdwy Stg 1		,.					
Critical Hdwy Stg 2	_						
Follow-up Hdwy		3.					
Pot Cap-1 Maneuver	0)6				
Stage 1	0		-				
Stage 2	0						
Platoon blocked. %							
Mov Cap-1 Maneuver		30)2				
Mov Cap-2 Maneuver			-				
Stage 1							
Stage 2							
olago L							
Approach	EB					SB	
HCM Control Delay, s	20.5					0	
HCM LOS	20.5 C					U	
TIOW EUG	C						
Minor Lano/Major Mymt	EBLn1	SBT SE	D.				
Minor Lane/Major Mvmt Capacity (veh/h)	302	3D1 3E					
HCM Lane V/C Ratio	0.234						
	20.5	-	-				
HCM Control Delay (s)	20.5 C	-	-				
HCM Lane LOS		-	-				
HCM 95th %tile Q(veh)	0.9	-	-				

Intersection	3.5						
Int Delay, s/veh	3.5						
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Lane Configurations	¥			4			ની
Traffic Vol, veh/h	89	95		89	16	21	517
Future Vol, veh/h	89	95		89	16	21	517
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized	-	None		-	None	-	None
Storage Length	0	-		-	-	-	-
Veh in Median Storage, #	0	-		0	-	-	0
Grade, %	0	-		0	-	-	0
Peak Hour Factor	92	92		92	92	92	92
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	97	103		97	17	23	562
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	713	105		0	0	114	0
Stage 1	105	-		-	-	-	-
Stage 2	608	-		-	-	-	
Critical Hdwy	6.42	6.22			-	4.12	-
Critical Hdwy Stg 1	5.42						-
Critical Hdwy Stg 2	5.42				-		-
Follow-up Hdwy	3.518	3.318		-		2.218	-
Pot Cap-1 Maneuver	398	949			-	1475	-
Stage 1	919	-				-	-
Stage 2	543				-		-
Platoon blocked, %				-			-
Mov Cap-1 Maneuver	389	949			-	1475	-
Mov Cap-2 Maneuver	389			-	-		-
Stage 1	919			-		-	
Stage 2	531	-		-	-	-	-
-							
Approach	WB			NB		SB	
HCM Control Delay, s	15			0		0.3	
HCM LOS	C					0.0	
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	-	- 559	1475				
HCM Lane V/C Ratio		- 0.358					
HCM Control Delay (s)		- 15	7.5	0			
HCM Lane LOS		- C	A	A			
HCM 95th %tile Q(veh)		- 1.6	0	-			
2111		1.0					

EBR

79

79

0

Stop

None

92

2

86

509

6.22

3.318

564

564

NBL NBT EBLn1 SBT SBR

- 458

0 17.5

A C

- 1.7

- 0.375

NBL NBT

15 168

15

0 0

92 92

2 2

Major1

518 0

4.12

2.218

1048

1048

0.7

Free Free

- None

- 0

16 183

0

વ 168

3.5

EBL

¥

79

79

Stop

0

0

92

86

Minor2

724

509

215

6.42

5.42

5.42

393

604

821

386

386

604

807

EB 17.5

1048

0.016

8.5

Α

3.518

Intersection
Int Delay, s/veh

Movement

Lane Configurations

Conflicting Peds, #/hr

Veh in Median Storage, #

Traffic Vol, veh/h

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1

Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Approach HCM Control Delay, s

Minor Lane/Major Mvmt

Capacity (veh/h) HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

HCM Lane LOS

MS

HCM LOS

Follow-up Hdwy

Grade, %

Mymt Flow

Major/Minor

Critical Hdwy

SBT SBR

₽

460

460 17

0 0

0

92 92

2 2

500 18

Major2

Free Free

- None

0

2024 Background

Timing Plan: PM

Intersection
Int Delay, s/veh 4.9
Movement EBT EBR WBL WBT NBL NBR
Lane Configurations
Traffic Vol, veh/h 105 21 16 131 121 63
Future Vol. veh/h 105 21 16 131 121 63
Conflicting Peds, #/hr 0 0 0 0 0 0
Sign Control Free Free Free Stop Stop
RT Channelized - None - None - None
Storage Length 0 -
Veh in Median Storage, # 0 0 0 -
Grade, % 0 0 0 -
Peak Hour Factor 92 92 92 92 92 92
Heavy Vehicles, % 2 2 2 2 2 2 2
Mymt Flow 114 23 17 142 132 68
WWITH TIOW 114 Z3 17 14Z 13Z 06
Major/Minor Major1 Major2 Minor1
Conflicting Flow All 0 0 137 0 303 126
Stage 1 126 -
Stage 2 177 -
Critical Hdwy 4.12 - 6.42 6.22
Critical Hdwy Stg 1 5.42 -
Critical Hdwy Stg 2 5.42 -
Follow-up Hdwy 2.218 - 3.518 3.318
Pot Cap-1 Maneuver 1447 - 689 924
Stage 1 900 -
Stage 2 854 -
Platoon blocked, %
Mov Cap-1 Maneuver 1447 - 680 924
Mov Cap-2 Maneuver 680 -
Stage 1 900 -
Stage 2 843 -
Approach EB WB NB
HCM Control Delay, s 0 0.8 11.6
HCM LOS B
- · · · ·
Minor Lang/Major Mymt NRI n1 FRT FRP WRI WRT
Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT Capacity (yold) 749 1447
Capacity (veh/h) 748 1447 -
Capacity (veh/h) 748 - 1447 - HCM Lane V/C Ratio 0.267 - 0.012 -
Capacity (veh/h) 748 - 1447 - HCM Lane V/C Ratio 0.267 - 0.012 - HCM Control Delay (s) 11.6 - 7.5 0
Capacity (veh/h) 748 - 1447 - HCM Lane V/C Ratio 0.267 - 0.012 -

Synchro 9 Report
Page 15

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	\rightarrow	•	←	*	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑			^	7				ሻ	^	7
Traffic Volume (vph)	68	837	500	0	580	339	0	0	0	294	769	134
Future Volume (vph)	68	837	500	0	580	339	0	0	0	294	769	134
Confl. Peds. (#/hr)	28		19	19		28				29		19
Confl. Bikes (#/hr)			1			1						13
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	72	890	532	0	617	361	0	0	0	313	818	143
Shared Lane Traffic (%)												
Lane Group Flow (vph)	72	1422	0	0	617	361	0	0	0	313	818	143
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases						6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase												
Minimum Initial (s)	2.0	15.0			15.0	10.0				10.0	5.0	5.0
Minimum Split (s)	7.0	27.0			34.0	15.0				15.0	32.0	32.0
Total Split (s)	18.0	75.0			57.0	45.0				45.0	45.0	45.0
Total Split (%)	15.0%	62.5%			47.5%	37.5%				37.5%	37.5%	37.5%
Yellow Time (s)	4.0	4.0			4.0	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag				Lead							
Lead-Lag Optimize?	Yes	C M			Yes	Mana				Mana	Man	Man
Recall Mode	None 11.6	C-Max			C-Max 55.6	None 95.6				None 40.0	Max	Max
Act Effct Green (s)	0.10	70.0 0.58			0.46	0.80				0.33	40.0 0.33	40.0 0.33
Actuated g/C Ratio v/c Ratio	0.10	0.56			0.46	0.80				0.53	0.55	0.33
Control Delay	58.1	20.7			26.7	1.6				36.4	38.4	13.5
Queue Delay	0.0	0.0			0.0	0.1				0.0	0.0	0.0
Total Delay	58.1	20.7			26.7	1.6				36.4	38.4	13.5
LOS	50.1 E	20.7 C			20.7 C	1.0 A				30.4 D	30.4 D	13.3 B
Approach Delay		22.5			17.4	Α.				D	35.1	D
Approach LOS		22.5 C			17.4 B						33.1 D	
Queue Length 50th (ft)	53	392			181	12				195	287	30
Queue Length 95th (ft)	101	481			274	38				287	360	80
Internal Link Dist (ft)	101	228			45	30		159		201	210	00
Turn Bay Length (ft)	160	220			73			137		130	210	120
Base Capacity (vph)	191	1931			1639	1278				590	1179	562
Starvation Cap Reductn	0	0			0	135				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.38	0.74			0.38	0.32				0.53	0.69	0.25
	2.50				2.20					2.20	/	

Intersection Summary

Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 75

MS Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.74 Intersection Signal Delay: 25.5 Intersection Capacity Utilization 70.7% Analysis Period (min) 15 Intersection LOS: C ICU Level of Service C

Splits and Phases: 1: Martin Luther King Jr. Blvd & Guadalupe St

MS Synchro 9 Report

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

	-	•	•	•	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			^	ሻሻ	7
Traffic Volume (vph)	1131	0	0	744	387	227
Future Volume (vph)	1131	0	0	744	387	227
Confl. Peds. (#/hr)						11
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	1315	0	0	865	450	264
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1315	0	0	865	450	264
Turn Type	NA			NA	Prot	Perm
Protected Phases	2			6	8	. 0
Permitted Phases				- 0	U	3
Detector Phase	2			6	8	3
Switch Phase				U	U	3
Minimum Initial (s)	10.0			10.0	5.0	5.0
	30.0			15.0	10.0	29.0
Minimum Split (s)					33.0	33.0
Total Split (s)	87.0			87.0		
Total Split (%)	72.5%			72.5%	27.5%	27.5%
Yellow Time (s)	4.0			4.0	4.0	4.0
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	5.0			5.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max			C-Max	Max	Max
Act Effct Green (s)	82.0			82.0	28.0	28.0
Actuated g/C Ratio	0.68			0.68	0.23	0.23
v/c Ratio	0.54			0.36	0.56	0.62
Control Delay	8.2			5.7	58.2	49.9
Queue Delay	0.5			0.0	0.0	0.0
Total Delay	8.7			5.7	58.2	49.9
LOS	A			A	E	D
Approach Delay	8.7			5.7	55.1	
Approach LOS	A			A	E	
Queue Length 50th (ft)	159			61	187	139
Queue Length 95th (ft)	170			69	208	176
Internal Link Dist (ft)	272			277	337	170
Turn Bay Length (ft)	212			211	331	
Base Capacity (vph)	2418			2418	801	423
	604			2418	0	423
Starvation Cap Reductn	0			0	0	0
Spillback Cap Reductn	0			-	0	0
Storage Cap Reductn				0	-	_
Reduced v/c Ratio	0.72			0.36	0.56	0.62
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12	0					
Offset: 0 (0%), Referenced		FBT and	6:WBT. :	Start of G	ireen	
Natural Cycle: 60	to phase 2.	LDT and	0.11.0.7	otart or o		
Control Type: Actuated-Co	ordinated					
Control Type. Actuated-Co	ordinated					

MS Synchro 9 Report Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Maximum v/c Ratio: 0.62
Intersection Signal Delay: 19.3
Intersection Capacity Utilization 59.6%
Analysis Period (min) 15
Intersection LOS: B
ICU Level of Service B

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

→Ø2 (R)	r [®] Ø3	
87 s	33 s	
Ø6 (R)	↑ Ø8	
87 s	33 s	

MS Synchro 9 Report

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	-	•	•	•	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ ↑		ሻ	^		
Traffic Volume (vph)	1158	0	9	1176	0	0
Future Volume (vph)	1158	0	9	1176	0	0
Confl. Peds. (#/hr)	1100	6	6	1170	1	
Confl. Bikes (#/hr)		1	0			
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	1301	0.07	10	1321	0.07	0.07
Shared Lane Traffic (%)	1301	J	10	1321	U	U
Lane Group Flow (vph)	1301	0	10	1321	0	0
Turn Type	NA	U	pm+pt	NA	U	U
Protected Phases	2		риттрі 1	6		
Permitted Phases	2		6	U		
Detector Phases	2		1	6		
Switch Phase	2		- 1	0		
Minimum Initial (s)	15.0		1.0	5.0		
			5.5			
Minimum Split (s)	34.0			29.0		
Total Split (s)	108.0		12.0	120.0		
Total Split (%)	90.0%			100.0%		
Yellow Time (s)	4.0		3.5	4.0		
All-Red Time (s)	1.0		1.0	1.0		
Lost Time Adjust (s)	0.0		0.0	0.0		
Total Lost Time (s)	5.0		4.5	5.0		
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		
Act Effct Green (s)	116.6		119.1	120.0		
Actuated g/C Ratio	0.97		0.99	1.00		
v/c Ratio	0.38		0.02	0.37		
Control Delay	0.5		0.1	0.2		
Queue Delay	0.0		0.0	0.0		
Total Delay	0.5		0.1	0.2		
LOS	Α		Α	Α		
Approach Delay	0.5			0.2		
Approach LOS	А			А		
Queue Length 50th (ft)	0		0	0		
Queue Length 95th (ft)	46		m0	0		
Internal Link Dist (ft)	366			377	331	
Turn Bay Length (ft)			115			
Base Capacity (vph)	3439		460	3539		
Starvation Cap Reductn	0		0	0		
Spillback Cap Reductn	0		0	0		
Storage Cap Reductn	0		0	0		
Reduced v/c Ratio	0.38		0.02	0.37		
Intersection Summary						
Cycle Length: 120						
Actuated Cycle Length: 12	0					
Offset: 0 (0%), Referenced		FRT and	I 6·WRTI	Start of C	reen	
Natural Cycle: 40	a to priase 2:1	בטו מווט	O.WDIL	, Jian of C	neen	
ivatural Cycle, 40						

MS Synchro 9 Report
Page 5

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Splits and Phases: 5: N. Congress Ave & Martin Luther King Jr. Blvd

MS Synchro 9 Report

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	\rightarrow	•	—	•	4	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ ↑		ሻ	^	7		4	7		ર્ન	7
Traffic Volume (vph)	143	792	231	293	1168	141	20	0	39	43	i	11
Future Volume (vph)	143	792	231	293	1168	141	20	0	39	43	1	11
Confl. Peds. (#/hr)	18		9	9		18	24		8	8		24
Confl. Bikes (#/hr)			3			3						1
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	170	943	275	349	1390	168	24	0	46	51	1	13
Shared Lane Traffic (%)												
Lane Group Flow (vph)	170	1218	0	349	1390	168	0	24	46	0	52	13
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	1.0	10.0		1.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	5.5	22.0		5.5	28.0	28.0	22.0	22.0	22.0	28.0	28.0	28.0
Total Split (s)	20.0	70.0		20.0	70.0	70.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	16.7%	58.3%		16.7%	58.3%	58.3%	25.0%	25.0%	25.0%	25.0%	25.0%	25.0%
Yellow Time (s)	3.5	4.0		3.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	4.5	5.0		4.5	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	76.3	65.1		84.3	69.8	69.8		25.0	25.0		25.0	25.0
Actuated g/C Ratio	0.64	0.54		0.70	0.58	0.58		0.21	0.21		0.21	0.21
v/c Ratio	0.61	0.66		0.95	0.68	0.19		0.09	0.13		0.18	0.04
Control Delay	24.9	16.8		62.3	13.4	5.0		39.5	7.6		41.2	0.2
Queue Delay	0.0	0.5		0.0	0.7	0.0		0.0	0.0		0.0	0.0
Total Delay	24.9	17.3		62.3	14.2	5.0		39.5	7.6		41.2	0.2
LOS	С	В		Е	В	А		D	Α		D	Α
Approach Delay		18.2			22.2			18.6			33.0	
Approach LOS		В		450	C	10		В			C	
Queue Length 50th (ft)	53	240		158	237	13		15	0		33	0
Queue Length 95th (ft)	104	216		#297	251	22		37	20		65	0
Internal Link Dist (ft)	1/0	377		100	273	100		135	100		212	
Turn Bay Length (ft)	160	1055		100	2050	100 889		270	100		202	2/0
Base Capacity (vph)	350	1855		369	2058 330			270	367		283	360
Starvation Cap Reductn	0	242		0		0		0	0		0	0
Spillback Cap Reductn	0	4		0	0	0		0	0		0	0
Storage Cap Reductn	-	0.74		-	0	0.10		-	0 12		-	0.04
Reduced v/c Ratio	0.49	0.76		0.95	0.80	0.19		0.09	0.13		0.18	0.04

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 90

MS Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd

2024 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.95
Intersection Signal Delay: 20.7 Intersection Capacity Utilization 78.1% ICU
Analysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles. Intersection LOS: C ICU Level of Service D

Splits and Phases: 6: Brazos St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

	•	\rightarrow	•	•	←	•	1	Ť	~	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† 1>		*	^					ሻ	^	7
Traffic Volume (vph)	0	769	172	685	1591	0	0	0	0	37	52	56
Future Volume (vph)	0	769	172	685	1591	0	0	0	0	37	52	56
Confl. Peds. (#/hr)			54	54						8		49
Confl. Bikes (#/hr)			2									29
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	827	185	737	1711	0	0	0	0	40	56	60
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1012	0	737	1711	0	0	0	0	40	56	60
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		19	6						4	
Permitted Phases				6						4		4
Detector Phase		2		19	6					4	4	4
Switch Phase												
Minimum Initial (s)		5.0			10.0					10.0	10.0	10.0
Minimum Split (s)		30.0			30.0					28.0	28.0	28.0
Total Split (s)		62.0			92.0					28.0	28.0	28.0
Total Split (%)		51.7%			76.7%					23.3%	23.3%	23.3%
Yellow Time (s)		4.0			4.0					4.0	4.0	4.0
All-Red Time (s)		1.0			1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0					0.0	0.0	0.0
Total Lost Time (s)		5.0			5.0					5.0	5.0	5.0
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Max
Act Effct Green (s)		57.0		87.5	87.0					23.0	23.0	23.0
Actuated g/C Ratio		0.48		0.73	0.72					0.19	0.19	0.19
v/c Ratio		0.62		1.51	0.67					0.12	0.08	0.17
Control Delay		14.2		256.2	5.5					41.4	40.3	2.2
Queue Delay		0.5		1.3	1.6					0.0	0.0	0.1
Total Delay		14.7		257.5	7.2					41.4	40.3	2.4
LOS		В		F	Α					D	D	Α
Approach Delay		14.7			82.6						26.0	
Approach LOS		В			F						С	
Queue Length 50th (ft)		106		~512	134					26	18	0
Queue Length 95th (ft)		117		m#366	m117					58	37	8
Internal Link Dist (ft)		273			321			343			244	
Turn Bay Length (ft)				120						100		100
Base Capacity (vph)		1625		488	2565					334	678	353
Starvation Cap Reductn		242		65	632					0	0	0
Spillback Cap Reductn		0		0	167					0	0	47
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.73		1.74	0.89					0.12	0.08	0.20
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120 Offset: 0 (0%) Referenced to		EDT	/ MDT:	CL 1	0							
LITTERT: ILLIUM L. Dotoroncod t	n nhaca ').	⊢RI and										

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 130

Synchro 9 Report Page 9 MS

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Lane Configurations Traffic Volume (vph) Future Volume (vph) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Spit (s) Total Spit (%) Total Spit (%) Total Spit (%) Total Spit (%) Total Lost Time (s) Lead Lead-Lag Optimize? Recall Mode Aught (S) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay Los Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn	Lane Group	Ø1	Ø9
Traffic Volume (vph) Future Volume (vph) Future Volume (vph) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Switch Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Total Lost Time (s) Lead Lead Lead Lead Lead Lead Lead Lead	Lane Configurations		
Future Volume (vph) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Furn Type Protected Phases Detector Phase Switch Phase Winimum Initial (s) I.0 5.0 Winimum Split (s) Total Split (s) Total Split (s) Total Split (s) I.0 1.0 Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio Vol Ratio Control Delay Queue Delay Total Delay Coueue Length 50th (ft) Queue Length 50th (ft) Queue Length 50th (ft) Queue Length 50th (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn			
Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Adj. Flow (yph) Shared Lane Traffic (%) Lane Group Flow (yph) Turn Type Protected Phases Detector Phase Winimum Initial (s) Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (%) 13% Yellow Time (s) Lead (Lag Lead Lead Lead Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay Queue Length 50th (ft) Queue Length 50th (ft) Queue Length 50th (ft) Queue Length 50th (ft) Turn Bay Length (it) Base Capacity (vph) Starvation Cap Reductn Storage Cap Reductn			
Peak Hour Factor Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) 13% 13% 13% 13% 13% 13% 13% 1	Confl. Peds. (#/hr)		
Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Total Split (%) 15.0 Total Split (%) 13% 13% Yellow Time (s) Lost Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 50th (ft) Queue Length 50th (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced V/c Ratio	Confl. Bikes (#/hr)		
Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases 1 9 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 5.0 Minimum Split (s) 5.5 9.5 Total Split (%) 15.0 15.0 Total Split (%) 13% 13% Yellow Time (s) 1.0 1.0 1.0 Lost Time (s) 1.0 1.0 Lost Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay Los Approach Los Queue Length 50th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Peak Hour Factor		
Lane Group Flow (vph) Turn Type Protected Phases 1 9 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 5.0 Minimum Split (s) 5.5 9.5 Total Split (s) 15.0 15.0 Total Split (%) 13% 13% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effet Green (s) Actuated g/C Ratio Vic Ratio Control Delay Queue Delay Total Delay Los Approach LoS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn	Adj. Flow (vph)		
Turn Type Protected Phases 1 9 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 5.0 Minimum Split (s) 5.5 9.5 Total Split (s) 15.0 15.0 Total Split (s) 13% 13% Yellow Time (s) 1.0 5.0 Actuated glust (s) 1.0 1.0 Lost Time Adjust (s) 1.0 Lost Time Adjust (s) Total Lost Time (s) 1.0 Lost Time (s) Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced V/c Ratio	Shared Lane Traffic (%)		
Protected Phases 1 9 Permitted Phases Detector Phase Switch Phase Switch Phase Minimum Initial (s) 1.0 5.0 Minimum Split (s) 5.5 9.5 Total Split (s) 15.0 15.0 Total Split (%) 13% 13% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 50th (ft) Queue Length 50th (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reducth Storage Cap Reductn Reduced v/c Ratio	Lane Group Flow (vph)		
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 1.0 5.0 Minimum Split (s) 5.5 9.5 Total Split (s) 15.0 15.0 Total Split (s) 13% 13% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Recall Mode None None Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay Los Approach LoS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Storage Cap Reductn Reduced V/c Ratio	Turn Type		
Detector Phase Switch Phase Switch Phase Switch Phase Switch Phase Minimum Initial (s) 1.0 5.0 Minimum Split (s) 5.5 9.5 Total Split (s) 15.0 15.0 15.0 15.0 15.0 13% 13% 13% 13% 13% 13% 13% 13% 13% 13%	Protected Phases	1	9
Switch Phase Minimum Initial (s)	Permitted Phases		
Minimum Initial (s) 1.0 5.0 Minimum Split (s) 5.5 9.5 Total Split (s) 15.0 15.0 Total Split (%) 13% 13% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reducth Reduced v/c Ratio	Detector Phase		
Minimum Split (s) 5.5 9.5 Total Split (s) 15.0 15.0 Total Split (%) 13% 13% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay Los Approach Delay Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (it) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reductn Reduced V/c Ratio	Switch Phase		
Total Split (s) 15.0 15.0 Total Split (s) 13% 13% 13% 13% 13% 13% 13% 13% 13% 13%	Minimum Initial (s)		
Total Split (%) 13% 13% Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 50th (ft) Uneue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvapion Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Minimum Split (s)	5.5	9.5
Yellow Time (s) 3.5 3.5 All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Los Approach Delay Approach Delay Approach LoS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reductn Reduced v/c Ratio	Total Split (s)	15.0	
All-Red Time (s) 1.0 1.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (t) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Total Split (%)		
Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			3.5
Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	All-Red Time (s)	1.0	1.0
Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reducth Reduced v/c Ratio	Lost Time Adjust (s)		
Lead-Lag Optimize? Yes Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio	Total Lost Time (s)		
Recall Mode None None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio		Lead	
Act Effet Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 55th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reductn Reduced v/c Ratio		Yes	
Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio		None	None
v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Control Delay Queue Delay Total Delay LOS Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reducth Spillback Cap Reducth Storage Cap Reductn Reduced v/c Ratio			
Queue Delay Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Total Delay LOS Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
LOS Approach Delay Approach LOS Oueue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Approach Delay Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Approach LOS Queue Length 50th (ft) Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Oueue Length 50th (ft) Oueue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Queue Length 95th (ft) Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Internal Link Dist (ft) Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Turn Bay Length (ft) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio			
Storage Cap Reductn Reduced v/c Ratio			
Reduced v/c Ratio			
Intersection Summary	Reduced v/c Ratio		
	Intersection Summary		

Synchro 9 Report Page 10 MS

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd ÿ9 ₩<u>Ø2 (R)</u> ₩ Ø6 (R)

MS Synchro 9 Report Page 11

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

	۶	→	•	•	←	•	1	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^			∱ β		7	ર્ન	7			
Traffic Volume (vph)	155	577	0	0	2198	60	68	86	126	0	0	0
Future Volume (vph)	155	577	0	0	2198	60	68	86	126	0	0	0
Confl. Peds. (#/hr)			36			60	35		28			
Confl. Bikes (#/hr)						4			4			
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	174	648	0	0	2470	67	76	97	142	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	174	648	0	0	2537	0	68	105	142	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	26.0			5.5		26.0	26.0	26.0			
Total Split (s)	15.0	94.0			79.0		26.0	26.0	26.0			
Total Split (%)	12.5%	78.3%			65.8%		21.7%	21.7%	21.7%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	89.5	89.0			75.0		21.0	21.0	21.0			
Actuated g/C Ratio	0.75	0.74			0.62		0.18	0.18	0.18			
v/c Ratio	0.83	0.25			1.15		0.25	0.34	0.38			
Control Delay	76.6	1.0			87.1		41.2	42.5	8.4			
Queue Delay	0.0	0.1			0.5		3.1	0.0	0.0			
Total Delay	76.6	1.1			87.6		44.3	42.5	8.4			
LOS	E	Α			F		D	D	Α			
Approach Delay		17.1			87.6			27.5				
Approach LOS		В			F			С				
Queue Length 50th (ft)	101	14			~1197		46	73	5			
Queue Length 95th (ft)	#202	16			m127		m66	m100	m24			
Internal Link Dist (ft)		321			675			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	217	2624			2201		276	306	376			
Starvation Cap Reductn	0	912			0		0	0	0			
Spillback Cap Reductn	0	0			408		138	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.80	0.38			1.41		0.49	0.34	0.38			
Intersection Summary												

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 150

MS Synchro 9 Report Page 12

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.15 Intersection Signal Delay: 66.7 Intersection Capacity Utilization 100.5% Intersection LOS: E ICU Level of Service G Analysis Period (min) 15 Analysis Petiod (IIII) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Wolume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd

MS Synchro 9 Report Page 13

18: Guadalupe St & E. 17th St

2024 Background + Site Timing Plan: AM TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	•	•	•	•	4	†	~	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1	7		ર્ન						414	
Traffic Volume (vph)	0	14	48	52	10	0	0	0	0	201	1246	18
Future Volume (vph)	0	14	48	52	10	0	0	0	0	201	1246	18
Confl. Peds. (#/hr)			18							45		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)		0										
Adj. Flow (vph)	0	15	52	57	11	0	0	0	0	218	1354	20
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	15	52	0	68	0	0	0	0	0	1592	0
Turn Type		NA	Perm	Perm	NA					Perm	NA	
Protected Phases		4 12			4 12						2 10	
Permitted Phases			4 12	4 12						2 10		
Detector Phase		4 12	4 12	4 12	4 12					2 10	2 10	
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
ost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		21.8	21.8		21.8						82.9	
Actuated g/C Ratio		0.18	0.18		0.18						0.69	
v/c Ratio		0.05	0.16		0.27						0.67	
Control Delay		20.7	4.1		24.4						9.1	
Queue Delay		0.0	0.0		0.0						0.0	
Total Delay		20.7	4.1		24.4						9.1	
LOS		C C	Α.		C C						A	
Approach Delay		7.8	А		24.4						9.1	
Approach LOS		Α.			C						A	
Queue Length 50th (ft)		5	0		33						228	
Queue Length 95th (ft)		16	13		51						276	
Internal Link Dist (ft)		177	13		244			271			262	
Turn Bay Length (ft)		177			244			2/1			202	
Base Capacity (vph)		754	714		628						2371	
Starvation Cap Reductn		0	0		020						0	
Spillback Cap Reductn		0	0		0						0	
Storage Cap Reductn		0	0		0						0	
Reduced v/c Ratio		0.02	0.07		0.11						0.67	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced to		CDTI CI										

MS Synchro 9 Report Page 14

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations			-	
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	23.0	23.0	22.5	22.5
Total Split (s)	26.0	43.0	28.0	23.0
Total Split (%)	22%	36%	23%	19%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	2.0	2.0	1.0	1.0
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				

Synchro 9 Report Page 15 MS

18: Guadalupe St & E. 17th St

2024 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay: 9.7 Intersection Capacity Utilization 81.6% Analysis Period (min) 15

Intersection LOS: A ICU Level of Service D

Splits and Phases: 18: Guadalupe St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	_	-	•	₹	-	_	7			*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		ર્ન			ĵ»			414	7			
Traffic Volume (vph)	4	194	0	0	28	32	90	819	132	0	0	
Future Volume (vph)	4	194	0	0	28	32	90	819	132	0	0	
Confl. Peds. (#/hr)	31								34			
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.8
Parking (#/hr)		0										
Adj. Flow (vph)	5	234	0	0	34	39	108	987	159	0	0	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	239	0	0	73	0	0	1095	159	0	0	
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		29.5			29.5			66.5	66.5			
Actuated g/C Ratio		0.25			0.25			0.55	0.55			
v/c Ratio		0.58			0.16			0.39	0.19			
Control Delay		29.0			10.3			10.5	5.6			
Queue Delay		0.0			0.0			0.0	0.0			
Total Delay		29.0			10.3			10.5	5.6			
LOS		С			В			В	Α			
Approach Delay		29.0			10.3			9.9				
Approach LOS		С			В			Α				
Queue Length 50th (ft)		89			13			141	36			
Queue Length 95th (ft)		131			29			95	32			
Internal Link Dist (ft)		244			319			272	32		254	
Turn Bay Length (ft)		211			317			212	100		201	
Base Capacity (vph)		597			644			2931	851			
Starvation Cap Reductn		0			0			294	0.51			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.40			0.11			0.42	0.19			
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced t		NBTL, Sta	art of Gre	en								
Natural Cycle: 100	. , 2	, 510										

MS Synchro 9 Report Page 17

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background + Site Timing Plan: AM

MS Synchro 9 Report Page 18

19: Lavaca St & E. 17th St

2024 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.58

Intersection Signal Delay: 12.8

Intersection Capacity Utilization 41.1%

Analysis Period (min) 15

Splits and Phases: 19: Lavaca St & E. 17th St

<u>≠</u> _{Ø4}	Ø2 (R)	≠ _{Ø12}	1 ø10	
29 c	38 c	26 g	27 s	

MS Synchro 9 Report Page 19

28: Lavaca St & E. 16th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

•	-	•	•	←	•	1	†	1	-	↓	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
	ની			1>			416	7			
4	187	0	0	29	40	90	985	135	0	0	(
4	187	0	0	29	40	90	985	135	0	0	C
					11	60					
					2						
0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
				0							
5	223	0	0	35	48	107	1173	161	0	0	0
0	228	0	0	83	0	0	1280	161	0	0	0
4 12						2 10	2.10	2 10			
	4 12			4 12			2 10				
1 12	1 12			1 12		2 10	2 10	2 10			
	2/10			2/10			71 1	71 1			
								А			
	_							1			
								mii		272	
	233			60			281	100		212	
	/04			F0/			2050				
	0.33			0.14			0.58	0.17			
	4 4 0.84	EBL EBT 4 187 4 187 0.84 0.84 5 223 0 228 Perm NA 4 12 4 12	EBL EBT EBR 4 187 0 4 187 0 0.84 0.84 0.84 5 223 0 0 228 0 Perm NA 412 4 12 4 12 4 12 4 12 4 12 4 12 24.9 0.21 0.59 28.8 0.0 28.8 C 28.8 C 28.8 C 28.8 C 694 0 0 0 0	EBL EBT EBR WBL 4 187 0 0 4 187 0 0 0.84 0.84 0.84 0.84 5 223 0 0 0 228 0 0 Perm NA 412 4 12 4 12 4 12 4 12 4 12 2 4 19 0.21 0.59 28.8 0.0 28.8 C 28.8 C 28.8 C 28.8 C 28.8 G 0.0 28.8 C 28.8 C 20.0 694 0 0 0 0	EBL EBT EBR WBL WBT 4 187 0 0 29 4 187 0 0 29 4 187 0 0 29 0.84 0.84 0.84 0.84 0.84 0 5 223 0 0 35 0 228 0 0 83 Perm NA NA 412 412 412 4 12 4 12 4 12 4 12 4 12 6 160 C B B 28.8 16.0 C B B	EBL EBT EBR WBL WBT WBR 4 187 0 0 29 40 4 187 0 0 29 40 111 2 0.84 0.84 0.84 0.84 0.84 0.84 0 228 0 0 83 0 Perm NA NA NA 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 6 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL EBT EBR WBL WBT WBR NBL 4 187 0 0 29 40 90 4 187 0 0 29 40 90 11 60 2 20 0.84 0.84 0.84 0.84 0.84 0.84 0.84 5 223 0 0 35 48 107 0 228 0 0 83 0 0 Perm NA NA Perm 412 412 210 4 12 4 12 4 12 2 10 4 12 4 12 2 10 2 10 2 24.9 0.21 0.21 0.59 0.25 28.8 16.0 0 0 0 0 28.8 16.0 C B 38 6 25 123 m42 233 60 694 586 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL EBT EBR WBL WBT WBR NBL NBT 4 187 0 0 29 40 90 985 4 187 0 0 29 40 90 985 11 60 2 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84	BBL BBT BBR WBL WBT WBR NBL NBT NBR	FBL FBR FBR	EBL EBR WBL WBT WBR NBL NBT NBR SBL SBT 4 187 0 0 29 40 90 985 135 0 0 4 187 0 0 29 40 90 985 135 0 0 111 60 2 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

MS Synchro 9 Report
Page 20

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background + Site Timing Plan: AM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type			40	40
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	28.0	32.0	21.0	20.0
Total Split (s)	42.0	32.0	21.0	25.0
Total Split (%)	35%	27%	18%	21%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
	C-IVIAX	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

Synchro 9 Report Page 21 MS

28: Lavaca St & E. 16th St

2024 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 105 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.59

Intersection Signal Delay: 7.9 Intersection Capacity Utilization 46.2% ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: A ICU Level of Service A

Splits and Phases: 28: Lavaca St & E. 16th St <u>≠</u> Ø4 **√**Ø2 (R) <u>≠</u>

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	•	•	1	Ī	~	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ተተ _ጉ		ሻ	ተተተ						416	ī
Traffic Volume (vph)	0	1883	330	207	1002	0	0	0	0	105	699	8
Future Volume (vph)	0	1883	330	207	1002	0	0	0	0	105	699	8
Confl. Peds. (#/hr)			32	32						30		3
Confl. Bikes (#/hr)						1						2
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.9
Adj. Flow (vph)	0	1921	337	211	1022	0	0	0	0	107	713	8
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	2258	0	211	1022	0	0	0	0	0	820	8
Turn Type		NA		pm+pt	NA					Perm	NA	Perr
Protected Phases		2		13	6						4	
Permitted Phases				6						4		
Detector Phase		2		13	6					4	4	
Switch Phase												
Minimum Initial (s)		10.0			5.0					5.0	5.0	5.
Minimum Split (s)		25.0			25.0					32.0	32.0	32.
Total Split (s)		56.0			84.0					36.0	36.0	36.
Total Split (%)		46.7%			70.0%					30.0%	30.0%	30.09
Yellow Time (s)		4.0			4.0					4.0	4.0	4.
All-Red Time (s)		1.0			1.0					1.0	1.0	1.
Lost Time Adjust (s)		0.0			0.0						0.0	0.
Total Lost Time (s)		5.0			5.0						5.0	5.
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Ma
Act Effct Green (s)		51.2		79.0	79.0						31.0	31.
Actuated g/C Ratio		0.43		0.66	0.66						0.26	0.2
v/c Ratio		1.07		0.65	0.31						0.63	0.1
Control Delay		73.0		39.7	3.5						35.6	5.
Queue Delay		11.0		16.5	0.1						0.4	0.
Total Delay		84.0		56.2	3.6						36.0	5.
LOS		F		E	Α						D	
Approach Delay		84.0			12.6						33.1	
Approach LOS		F			В						С	
Queue Length 50th (ft)		~704		111	35						190	
Queue Length 95th (ft)		#800		185	40						226	m1
Internal Link Dist (ft)		262			240			197			285	
Turn Bay Length (ft)				50								10
Base Capacity (vph)		2119		327	3347						1298	45
Starvation Cap Reductn		0		100	927						0	
Spillback Cap Reductn		51		0	0						144	
Storage Cap Reductn		0		0	0						0	
Reduced v/c Ratio		1.09		0.93	0.42						0.71	0.1
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 0 (0%), Referenced to	o phase 2	:EBT and	6:WBTL	Start of	Green							

Synchro 9 Report Page 23 MS

34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Lane Group	Ø1	Ø3
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases	'	3
Detector Phase		
Switch Phase		
Minimum Initial (s)	8.0	5.0
Minimum Split (s)	13.0	10.0
	14.0	14.0
Total Split (s)	14.0	14.0
Total Split (%)		4.0
Yellow Time (s)	4.0	
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
INCUUCCU WE RAIIU		
Intersection Summary		

Synchro 9 Report Page 24 MS

34: Guadalupe St & W. 15th St

2024 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.07 Intersection Signal Delay: 53.5 Intersection Capacity Utilization 90.6% Intersection LOS: D ICU Level of Service E Analysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

M Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 34: Guadalupe St & W. 15th St ÿ3 **₽**Ø4 →Ø2 (R) ₹ø6 (R) •

MS Synchro 9 Report Page 25

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

	۶	→	\rightarrow	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^			^			414	7			
Traffic Volume (vph)	338	1574	0	0	1087	132	133	706	198	0	0	0
Future Volume (vph)	338	1574	0	0	1087	132	133	706	198	0	0	0
Confl. Peds. (#/hr)	38					38	17		48			
Confl. Bikes (#/hr)									11			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	360	1674	0	0	1156	140	141	751	211	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	360	1674	0	0	1296	0	0	892	211	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0	33.0			
Total Split (s)	19.0	79.0			60.0		41.0	41.0	41.0			
Total Split (%)	15.8%	65.8%			50.0%		34.2%	34.2%	34.2%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			6.0	6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	74.0	74.0			55.0			35.0	35.0			
Actuated g/C Ratio	0.62	0.62			0.46			0.29	0.29			
v/c Ratio	1.12	0.53			0.57			0.61	0.45			
Control Delay	104.6	2.8			11.7			38.7	27.2			
Queue Delay	0.5	0.5			0.2			0.0	0.0			
Total Delay	105.1	3.3			11.8			38.7	27.2			
LOS	F	Α			В			D	С			
Approach Delay		21.3			11.8			36.5				
Approach LOS		С			В			D				
Queue Length 50th (ft)	~237	49			84			217	91			
Queue Length 95th (ft)	m#213	m46			91			265	167			
Internal Link Dist (ft)		240			335			116			281	
Turn Bay Length (ft)	50											
Base Capacity (vph)	321	3135			2288			1466	469			
Starvation Cap Reductn	13	911			271			0	0			
Spillback Cap Reductn	0	0			0			0	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	1.17	0.75			0.64			0.61	0.45			

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 80

35: Lavaca St & W. 15th St

2024 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.12 Intersection Signal Delay: 22.3 Intersection Capacity Utilization 90.6% Intersection LOS: C ICU Level of Service E Analysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

M Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 35: Lavaca St & W. 15th St

MS Synchro 9 Report Page 27

36: Colorado St & W. 15th St

2024 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	→	•	•	←	•	4	†	~	>	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ĭ	^		ሻ	† †			4			4	7
Traffic Volume (vph)	349	1407	53	73	1131	414	1	22	22	47	19	42
Future Volume (vph)	349	1407	53	73	1131	414	1	22	22	47	19	42
Confl. Peds. (#/hr)	6		83	83		6	4		35	35		4
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	371	1497	56	78	1203	440	1	23	23	50	20	45
Shared Lane Traffic (%)												
Lane Group Flow (vph)	371	1553	0	78	1643	0	0	47	0	0	70	45
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	custom
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		6
Detector Phase	5	2		1	6		4	4		8	8	6
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	15.0
Minimum Split (s)	10.0	22.0		10.0	30.0		32.0	32.0		32.0	32.0	30.0
Total Split (s)	15.0	72.0		15.0	72.0		33.0	33.0		33.0	33.0	72.0
Total Split (%)	12.5%	60.0%		12.5%	60.0%		27.5%	27.5%		27.5%	27.5%	60.0%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	C-Max
Act Effct Green (s)	79.9	71.9		74.2	67.0			28.0			28.0	67.0
Actuated g/C Ratio	0.67	0.60		0.62	0.56			0.23			0.23	0.56
v/c Ratio	1.52	0.52		0.33	0.60			0.11			0.21	0.05
Control Delay	283.5	5.0		10.8	9.0			22.8			39.2	1.6
Queue Delay	0.0	0.1		0.0	0.0			0.0			0.0	0.0
Total Delay	283.5	5.1		10.8	9.0			22.8			39.2	1.6
LOS	F	Α		В	A			С			D	Α
Approach Delay		58.8			9.1			22.8			24.5	
Approach LOS		Е			Α			С			С	
Queue Length 50th (ft)	~321	87		10	219			15			44	0
Queue Length 95th (ft)	#517	101		22	258			47			86	10
Internal Link Dist (ft)		335			362			155			114	
Turn Bay Length (ft)	90			90								100
Base Capacity (vph)	244	3002		274	2755			410			332	896
Starvation Cap Reductn	0	413		0	50			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	1.52	0.60		0.28	0.61			0.11			0.21	0.05
reduced we really	1.02	0.00		0.20	0.01			0.11			0.21	0.00

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

36: Colorado St & W. 15th St

2024 Background + Site Timing Plan: AM

Synchro 9 Report

Page 29

TIA for Texas Capitol Complex Master Plan 2018 Update

Maximum v/c Ratio: 1.52
Intersection Signal Delay: 34.8
Intersection LOS: C
Intersection Capacity Utilization 87.1%
ICU Level of Service E
Analysis Period (min) 15
Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 36: Colorado St & W. 15th St

MS

37: N. Congress Ave & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background + Site Timing Plan: AM

	-	•	•	-	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ተተጉ		ሻ	^ ^		7
Traffic Volume (vph)	1448	28	18	1707	0	1
Future Volume (vph)	1448	28	18	1707	0	1
Confl. Peds. (#/hr)		30	30		13	21
Confl. Bikes (#/hr)						13
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	1478	29	18	1742	0.70	1
Shared Lane Traffic (%)		-/	.0		,	
Lane Group Flow (vph)	1507	0	18	1742	0	1
Turn Type	NA	3	pm+pt	NA	3	Perm
Protected Phases	2		риттрі 1	6		I CITI
Permitted Phases			6	U		4
Detector Phase	2		1	6		4
Switch Phase	2		- 1	U		4
Minimum Initial (s)	5.0		5.0	5.0		5.0
Minimum Split (s)	25.0		10.0	25.0		33.0
Total Split (s)	72.0		15.0	87.0		33.0
Total Split (%)	60.0%		12.5%	72.5%		27.5%
Yellow Time (s)	4.0		4.0	4.0		4.0
All-Red Time (s)	1.0		1.0	1.0		1.0
Lost Time Adjust (s)	0.0		0.0	0.0		0.0
Total Lost Time (s)	5.0		5.0	5.0		5.0
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		Max
Act Effct Green (s)	77.5		82.0	82.0		28.0
Actuated g/C Ratio	0.65		0.68	0.68		0.23
v/c Ratio	0.46		0.08	0.50		0.00
Control Delay	4.5		5.4	7.2		0.0
Queue Delay	0.0		0.0	0.1		0.0
Total Delay	4.5		5.4	7.2		0.0
LOS	A		Α	A		А
Approach Delay	4.5			7.2		
Approach LOS	A			A		
Queue Length 50th (ft)	53		3	194		0
Queue Length 95th (ft)	60		m4	78		0
Internal Link Dist (ft)	362		1117	356	125	- 3
Turn Bay Length (ft)	302		100	550	123	
Base Capacity (vph)	3270		281	3474		482
Starvation Cap Reductn	172		0	377		0
	0		0	2		0
Spillback Cap Reductn			0	0		0
Storage Cap Reductn	0 40		0.06	0.56		
Reduced v/c Ratio	0.49		0.06	0.50		0.00
Intersection Summary						
Cycle Length: 120	^					
Actuated Cycle Length: 120			/ 14/DT:			
Offset: 0 (0%), Referenced	l to phase 2:I	EBT and	6:WBTL,	Start of G	reen	
Natural Cycle: 70						

37: N. Congress Ave & W. 15th St

2024 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.50 Intersection Signal Delay: 6.0 Intersection Capacity Utilization 60.3% Intersection LOS: A ICU Level of Service B Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 37: N. Congress Ave & W. 15th St

MS Synchro 9 Report Page 31

38: Brazos St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

	۶	-	\rightarrow	•	←	•	4	†	~	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ተተ _ጉ		٦	ተ ተጉ			ર્ન	7		4	
Traffic Volume (vph)	80	1174	49	27	1729	115	4	2	8	2	0	4
Future Volume (vph)	80	1174	49	27	1729	115	4	2	8	2	0	4
Confl. Peds. (#/hr)	1		10	10		1	10		4	4		10
Confl. Bikes (#/hr)						1						17
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	82	1210	51	28	1782	119	4	2	8	2	0	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	82	1261	0	28	1901	0	0	6	8	0	6	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4		4	8		
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0	32.0	32.0	32.0	
Total Split (s)	15.0	78.0		10.0	73.0		32.0	32.0	32.0	32.0	32.0	
Total Split (%)	12.5%	65.0%		8.3%	60.8%		26.7%	26.7%	26.7%	26.7%	26.7%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Act Effct Green (s)	103.0	105.0		99.3	100.3			10.0	10.0		10.0	
Actuated g/C Ratio	0.86	0.88		0.83	0.84			0.08	0.08		0.08	
v/c Ratio	0.35	0.29		0.07	0.45			0.05	0.03		0.03	
Control Delay	14.2	3.9		2.0	1.9			51.7	0.2		0.2	
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Delay	14.2	4.0		2.0	1.9			51.7	0.2		0.2	
LOS	В	A		A	Α			D	A		A	
Approach Delay		4.6			1.9			22.3			0.2	
Approach LOS		A			Α			С			A	
Queue Length 50th (ft)	11	102		1	19			4	0		0	
Queue Length 95th (ft)	63	118		m3	152			18	0		0	
Internal Link Dist (ft)	00	356		1110	297			199	Ū		273	
Turn Bay Length (ft)	100	000		40					50		2,0	
Base Capacity (vph)	274	4414		377	4206			346	434		412	
Starvation Cap Reductn	0	988		0	269			0	0		0	
Spillback Cap Reductn	0	0		0	0			0	0		0	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.30	0.37		0.07	0.48			0.02	0.02		0.01	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green
Natural Cycle: 75

38: Brazos St & W. 15th St

2024 Background + Site
Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

TIA for Texas Capitol Complex Master Plan 2018 Update

39: San Jacinto Blvd & W. 15th St

2024 Background + Site Timing Plan: AM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.45 Intersection Signal Delay: 3.1 Intersection Capacity Utilization 65.3% Intersection LOS: A ICU Level of Service C Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 38: Brazos St & W. 15th St ₩ Ø6 (R)

	•	-	•	•	—	•	4	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተኈ		ሻ	ተተተ						ተተቡ	7
Traffic Volume (vph)	0	899	357	164	1848	0	0	0	0	93	182	45
Future Volume (vph)	0	899	357	164	1848	0	0	0	0	93	182	45
Confl. Peds. (#/hr)			23	23						10		8
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	0	908	361	166	1867	0	0	0	0	94	184	45
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1269	0	166	1867	0	0	0	0	0	278	45
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		1	6						4	
Permitted Phases				6						4		4
Detector Phase		2		1	6					4	4	4
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					7.0	7.0	7.0
Minimum Split (s)		28.0		8.0	28.0					32.0	32.0	32.0
Total Split (s)		68.0		20.0	88.0					32.0	32.0	32.0
Total Split (%)		56.7%		16.7%	73.3%					26.7%	26.7%	26.7%
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0						0.0	0.0
Total Lost Time (s)		5.0		5.0	5.0						5.0	5.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					None	None	None
Act Effct Green (s)		84.9		97.8	97.8						12.2	12.2
Actuated g/C Ratio		0.71		0.82	0.82						0.10	0.10
v/c Ratio		0.37		0.45	0.45						0.55	0.21
Control Delay		2.4		8.5	3.9						55.1	7.9
Queue Delay		0.1		0.0	0.4						0.0	0.0
Total Delay		2.5		8.5	4.3						55.1	7.9
LOS		Α		Α	Α						Е	Α
Approach Delay		2.5			4.7						48.6	
Approach LOS		Α			Α						D	
Queue Length 50th (ft)		0		25	111						76	0
Queue Length 95th (ft)		0		m28	m119						104	22
Internal Link Dist (ft)		297			282			125			272	
Turn Bay Length (ft)		=		70								50
Base Capacity (vph)		3433		450	4143						1119	397
Starvation Cap Reductn		903		0	1555						0	0
Spillback Cap Reductn		0		0	0						0	0
Storage Cap Reductn		0		0	0						0	0
Reduced v/c Ratio		0.50		0.37	0.72						0.25	0.11
Intersection Summary												

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated

39: San Jacinto Blvd & W. 15th St

2024 Background + Site
Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Maximum v/c Ratio: 0.55 Intersection Signal Delay: 7.8 Intersection Capacity Utilization 95.5% ICU L

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: A ICU Level of Service F

MS Synchro 9 Report

40: Trinity St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

	•	-	\rightarrow	•	←	*	1	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^ ^			ተተ _ጉ		ሻ	↑	7			
Traffic Volume (vph)	222	821	0	0	1960	649	61	169	12	0	0	C
Future Volume (vph)	222	821	0	0	1960	649	61	169	12	0	0	C
Confl. Peds. (#/hr)	1					1	3		6			
Confl. Bikes (#/hr)									2			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	229	846	0	0	2021	669	63	174	12	0	0	C
Shared Lane Traffic (%)												
Lane Group Flow (vph)	229	846	0	0	2690	0	63	174	12	0	0	C
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	28.0			5.5		28.0	28.0	28.0			
Total Split (s)	20.0	92.0			72.0		28.0	28.0	28.0			
Total Split (%)	16.7%	76.7%			60.0%		23.3%	23.3%	23.3%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5		5.0	5.0	5.0			
Lead/Lag	Lead				Lag				-			
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	87.5	87.0			69.0		23.0	23.0	23.0			
Actuated g/C Ratio	0.73	0.72			0.58		0.19	0.19	0.19			
v/c Ratio	0.85	0.23			0.94		0.19	0.49	0.03			
Control Delay	64.7	3.5			11.7		42.4	48.6	0.2			
Queue Delay	0.0	0.1			0.8		0.0	0.0	0.0			
Total Delay	64.7	3.7			12.5		42.4	48.6	0.2			
LOS	E	A			В		D	D	A			
Approach Delay	_	16.7			12.5			44.7				
Approach LOS		В			В			D				
Queue Length 50th (ft)	123	37			169		41	121	0			
Queue Length 95th (ft)	#231	43			m166		83	194	0			
Internal Link Dist (ft)	"201	282			657		- 00	149			621	
Turn Bay Length (ft)	100				557			,			UL.	
Base Capacity (vph)	289	3686			2855		337	357	344			
Starvation Cap Reductn	0	1570			44		0	0	0			
Spillback Cap Reductn	0	0			0		0	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.79	0.40			0.96		0.19	0.49	0.03			
Liber I'm C	0,	55			0.70		0,	3 ,	0.00			

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 100

Page 35

40: Trinity St & W. 15th St

2024 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.94

Intersection Signal Delay: 15.6 Intersection LOS: B

Intersection Capacity Utilization 95.5% ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 40: Trinity St & W. 15th St

11: Colorado St & W. 18th St

2024 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection
Intersection Delay, s/veh 21.3
Intersection LOS C

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBF
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	4	202	36	0	82	32	5	0	15	60	66
Future Vol, veh/h	0	4	202	36	0	82	32	5	0	15	60	66
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	5	230	41	0	93	36	6	0	17	68	75
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	(
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		14.8				12.1				11.3		
HCM LOS		В				В				В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	11%	2%	69%	1%
Vol Thru, %	43%	83%	27%	96%
Vol Right, %	47%	15%	4%	3%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	141	242	119	478
LT Vol	15	4	82	4
Through Vol	60	202	32	458
RT Vol	66	36	5	16
Lane Flow Rate	160	275	135	543
Geometry Grp	1	1	1	1
Degree of Util (X)	0.269	0.476	0.254	0.829
Departure Headway (Hd)	6.034	6.233	6.751	5.604
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	596	583	533	652
Service Time	4.067	4.233	4.775	3.604
HCM Lane V/C Ratio	0.268	0.472	0.253	0.833
HCM Control Delay	11.3	14.8	12.1	29.9
HCM Lane LOS	В	В	В	D
HCM 95th-tile Q	1.1	2.6	1	8.8

MS Synchro 9 Report Page 1

11: Colorado St & W. 18th St

2024 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection
Intersection Delay, s/veh
Intersection LOS

Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	4	458	16
Future Vol, veh/h	0	4	458	16
Peak Hour Factor	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	5	520	18
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NIR		

Approach	SB	
Opposing Approach	NB	
Opposing Lanes	1	
Conflicting Approach Left	WB	
Conflicting Lanes Left	1	
Conflicting Approach Right	EB	
Conflicting Lanes Right	1	
HCM Control Delay	29.9	
HCM LOS	D	

12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection Intersection Delay, s/veh Intersection LOS 8.9

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ર્ન				f)				^	
Traffic Vol, veh/h	0	0	275	0	0	0	116	0	0	0	0	0
Future Vol, veh/h	0	0	275	0	0	0	116	0	0	0	0	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	316	0	0	0	133	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach			EB				WB				NB	
Opposing Approach			WB				EB				SB	
Opposing Lanes			1				1				1	
Conflicting Approach Left			SB				NB				EB	
Conflicting Lanes Left			1				1				1	
Conflicting Approach Right			NB				SB				WB	
Conflicting Lanes Right			1				1				1	
HCM Control Delay			9.3				8				0	
HCM LOS			Α				Α				-	
Conflicting Lanes Left Conflicting Approach Right Conflicting Lanes Right HCM Control Delay			1 NB 1 9.3				1 SB 1 8				1 WB 1 0	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	0%	
Vol Right, %	0%	0%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	275	116	9	
LT Vol	0	0	0	0	
Through Vol	0	275	116	0	
RT Vol	0	0	0	9	
Lane Flow Rate	0	316	133	10	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0.356	0.155	0.012	
Departure Headway (Hd)	4.911	4.051	4.187	4.29	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	885	848	839	
Service Time	2.911	2.088	2.256	2.29	
HCM Lane V/C Ratio	0	0.357	0.157	0.012	
HCM Control Delay	7.9	9.3	8	7.3	
HCM Lane LOS	N	Α	Α	Α	
HCM 95th-tile Q	0	1.6	0.5	0	

12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations				7
Traffic Vol, veh/h	0	0	0	9
Future Vol, veh/h	0	0	0	9
Peak Hour Factor	0.87	0.87	0.87	0.87
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	0	10
Number of Lanes	0	0	0	1
Approach				SB
Opposing Approach				NB
Opposing Lanes				1
Conflicting Approach Left				WB
Conflicting Lanes Left				1
Conflicting Approach Right				EB
Conflicting Lanes Right				1
HCM Control Delay				7.3
HCM LOS				Α

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection			
Intersection Delay, s/veh	14.8		
Intersection LOS	В		

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	124	98	8	0	17	177	106	0	21	0	0
Future Vol, veh/h	0	124	98	8	0	17	177	106	0	21	0	0
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	157	124	10	0	22	224	134	0	27	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		13.7				15.2				10.2		
HCM LOS		В				С				В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	100%	54%	6%	5%	
Vol Thru, %	0%	43%	59%	86%	
Vol Right, %	0%	3%	35%	9%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	21	230	300	271	
LT Vol	21	124	17	14	
Through Vol	0	98	177	233	
RT Vol	0	8	106	24	
Lane Flow Rate	27	291	380	343	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.05	0.464	0.564	0.547	
Departure Headway (Hd)	6.717	5.742	5.342	5.743	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	529	623	672	624	
Service Time	4.812	3.806	3.401	3.802	
HCM Lane V/C Ratio	0.051	0.467	0.565	0.55	
HCM Control Delay	10.2	13.7	15.2	15.6	
HCM Lane LOS	В	В	С	С	
HCM 95th-tile Q	0.2	2.5	3.5	3.3	

MS Synchro 9 Report Page 5

14: Brazos St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background + Site Timing Plan: AM

Intersection					
Intersection Delay, s/veh					
Intersection LOS					
Movement	SBU	SBL	SBT	SBR	
Lane Configurations			4		
Traffic Vol, veh/h	0	14	233	24	
Future Vol, veh/h	0	14	233	24	
Peak Hour Factor	0.79	0.79	0.79	0.79	
Heavy Vehicles, %	2	2	2	2	
Mvmt Flow	0	18	295	30	
Number of Lanes	0	0	1	0	
Approach		SB			
Opposing Approach		NB			
Opposing Lanes		1			
Conflicting Approach Left		WB			
Conflicting Lanes Left		1			
Conflicting Approach Right		EB			
Conflicting Lanes Right		1			
HCM Control Delay		15.6			
HCM LOS		C			

16: San Jacinto Blvd & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background + Site Timing Plan: AM

Intersection
Intersection Delay, s/veh 17
Intersection LOS C

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ĵ.				ર્ન					
Traffic Vol, veh/h	0	0	23	77	0	74	173	0	0	0	0	0
Future Vol, veh/h	0	0	23	77	0	74	173	0	0	0	0	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	24	82	0	79	184	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	0	0
Approach			EB			WB						
Oi A			WD			- ED						

Approacn	FR	WB	
Opposing Approach	WB	EB	
Opposing Lanes	1	1	
Conflicting Approach Left	SB		
Conflicting Lanes Left	3	0	
Conflicting Approach Right		SB	
Conflicting Lanes Right	0	3	
HCM Control Delay	10.9	16.7	
HCM LOS	В	С	

Lane	EBLn1	WBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	0%	30%	0%	0%	0%
Vol Thru, %	23%	70%	100%	100%	0%
Vol Right, %	77%	0%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	100	247	389	389	130
LT Vol	0	74	0	0	0
Through Vol	23	173	389	389	0
RT Vol	77	0	0	0	130
Lane Flow Rate	106	263	413	413	138
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.195	0.508	0.668	0.668	0.129
Departure Headway (Hd)	6.588	6.965	5.815	5.815	3.354
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	544	518	620	620	1065
Service Time	4.336	4.707	3.546	3.546	1.086
HCM Lane V/C Ratio	0.195	0.508	0.666	0.666	0.13
HCM Control Delay	10.9	16.7	19.5	19.5	6.6
HCM Lane LOS	В	С	С	С	Α
HCM 95th-tile Q	0.7	2.8	5	5	0.4

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
micraccion 203				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			41	7
Traffic Vol, veh/h	0	0	777	130
Future Vol, veh/h	0	0	777	130
Peak Hour Factor	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	827	138
Number of Lanes	0	0	2	1
Approach			SB	
Opposing Approach				
Opposing Lanes			0	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			17.7	
HCM LOS			С	

20: Colorado St & E. 17th St

2024 Background + Site Timing Plan: AM

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection Intersection Delay, s/veh Intersection LOS 30.2

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	31	185	109	0	0	25	0	0	21	102	0
Future Vol, veh/h	0	31	185	109	0	0	25	0	0	21	102	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	35	210	124	0	0	28	0	0	24	116	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB					WB			NB		
Opposing Approach		WB					EB			SB		
Opposing Lanes		1					1			1		
Conflicting Approach Left		SB					NB			EB		
Conflicting Lanes Left		1					1			1		
Conflicting Approach Right		NB					SB			WB		
Conflicting Lanes Right		1					1			1		
HCM Control Delay		17.7					10.4			11.3		
HCM LOS		С					В			В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	17%	10%	0%	0%	
Vol Thru, %	83%	57%	100%	95%	
Vol Right, %	0%	34%	0%	5%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	123	325	25	546	
LT Vol	21	31	0	0	
Through Vol	102	185	25	518	
RT Vol	0	109	0	28	
Lane Flow Rate	140	369	28	620	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.241	0.605	0.055	0.929	
Departure Headway (Hd)	6.216	5.898	7.016	5.39	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	573	609	514	670	
Service Time	4.312	3.973	5.016	3.452	
HCM Lane V/C Ratio	0.244	0.606	0.054	0.925	
HCM Control Delay	11.3	17.7	10.4	42.8	
HCM Lane LOS	В	С	В	Ε	
HCM 95th-tile Q	0.9	4	0.2	12.5	

Synchro 9 Report Page 9 MS

20: Colorado St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background + Site Timing Plan: AM

Intersection		
Intersection Delay, s/veh		
Intersection LOS		

SBU	SBL	SBT	SBR	
		4		
0	0	518	28	
0	0	518	28	
0.88	0.88	0.88	0.88	
2	2	2	2	
0	0	589	32	
0	0	1	0	
		SB		
		NB		
		1		
		WB		
		1		
		EB		
		1		
		42.8		
		Е		
	0 0 0.88 2 0	0 0 0 0 0.88 0.88 2 2 0 0	0 0 518 0 0 518 0.88 0.88 0.88 2 2 2 2 0 0 589 0 0 1 SB NB 1 WB 1 EB 1 42.8	0 0 518 28 0 0 518 28 0.88 0.88 0.88 0.88 2 2 2 2 2 0 0 589 32 0 0 1 0 SB NB 1 WB 1 EB 1 42.8

lΑ	for	Texas	Capitol	Comple	ex Ma	ster F	Plan	2018	Updat	е

Intersection	
Intersection Delay, s/veh	8.4
Intersection LOS	Α

Movement	EBU	EBL	EBT	WBU	WBT	WBR	SBU	SBL	SBR
Lane Configurations			ની		\$			Y	
Traffic Vol, veh/h	0	0	28	0	206	16	0	39	0
Future Vol, veh/h	0	0	28	0	206	16	0	39	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	32	0	234	18	0	44	0
Number of Lanes	0	0	1	0	1	0	0	1	0
Approach			EB		WB			SB	
Opposing Approach			WB		EB				
Opposing Lanes			1		1			0	
Conflicting Approach Left			SB					WB	
Conflicting Lanes Left			1		0			1	
Conflicting Approach Right					SB			EB	
Conflicting Lanes Right			0		1			1	
HCM Control Delay			7.5		8.6			8	
HCM LOS			Α		А			Α	

Lane	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	100%	
Vol Thru, %	100%	93%	0%	
Vol Right, %	0%	7%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	28	222	39	
LT Vol	0	0	39	
Through Vol	28	206	0	
RT Vol	0	16	0	
Lane Flow Rate	32	252	44	
Geometry Grp	1	1	1	
Degree of Util (X)	0.037	0.28	0.058	
Departure Headway (Hd)	4.201	3.991	4.747	
Convergence, Y/N	Yes	Yes	Yes	
Cap	840	896	759	
Service Time	2.288	2.037	2.747	
HCM Lane V/C Ratio	0.038	0.281	0.058	
HCM Control Delay	7.5	8.6	8	
HCM Lane LOS	Α	Α	Α	
HCM 95th-tile Q	0.1	1.2	0.2	

9: Guadalupe St & W. 18th St
TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Intersection Int Delay, s/veh	48.8								
•		ED7	EDD	14.0	ol Wo	т	NDI	NDD	
Movement		EBT	EBR	WI			NBL	NBR	
Lane Configurations		† }	457		ች ተ		Y		
Traffic Vol, veh/h		1121	156		31 79		10	51	
Future Vol, veh/h		1121	156	3.	31 79		10	51	
Conflicting Peds, #/hr		0	1			0	0	5	
Sign Control		Free	Free	Fr			Stop	Stop	
RT Channelized		-	None		- Non	e	-	None	
Storage Length		-	-		10	-	0	-	
Veh in Median Storage,	#	0	-			0	0	-	
Grade, %		0	-		-	0	0	-	
Peak Hour Factor		87	87		37 8	•	87	87	
Heavy Vehicles, %		2	2		2	2	2	2	
Mvmt Flow		1289	179	3	30 91	0	11	59	
Major/Minor		Najor1		Majo	r ?		Minor1		
	II.	<i>n</i> ajoi i 0	0	14		0	2595	740	
Conflicting Flow All			U	14				740	
Stage 1		-	-		-	-	1379	-	
Stage 2		-	-		-	-	1216	-	
Critical Hdwy		-	-	4.		-	6.84	6.94	
Critical Hdwy Stg 1		-	-		-	-	5.84	-	
Critical Hdwy Stg 2		-	-		-	-	5.84	-	
Follow-up Hdwy		-	-	2.		-	3.52	3.32	
Pot Cap-1 Maneuver		-	-	4	55	-	20	359	
Stage 1		-	-		-	-	199	-	
Stage 2		-	-		-	-	243	-	
Platoon blocked, %		-	-			-			
Mov Cap-1 Maneuver		-	-	4.	53	-	~ 3	357	
Mov Cap-2 Maneuver		-	-		-	-	~ 3	-	
Stage 1		-	-		-	-	199	-	
Stage 2		-	-				39	-	
Approach		ΓD		10	/D		ND		
Approach		EB			/B		NB		
HCM Control Delay, s		0		12	.5	\$	1736.7		
HCM LOS							F		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL WE	BT .				
Capacity (veh/h)	18	-		453					
HCM Lane V/C Ratio	3.895			0.84					
HCM Control Delay (s)	\$ 1736.7	-		42.5					
HCM Lane LOS	¥ 1730.7			E					
HCM 95th %tile Q(veh)	9.3			8.2					
` ,	7.3			0.2					
Votes									

Intersection												
Int Delay, s/veh	3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		^	7		ર્ન						414	
Traffic Vol, veh/h	0	13	48	61	10	0	0	0	0	75	1355	1
Future Vol, veh/h	0	13	48	61	10	0	0	0	0	75	1355	1
Conflicting Peds, #/hr	0	0	0	13	0	0	0	0	0	0	0	3
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	-	-	None		-	None	-	-	None	-	-	Non
Storage Length	-	-	0		-	-	-	-	-	-	-	
Veh in Median Storage, #	-	0	-		0	-	-	-	-	-	0	
Grade, %	-	0	-		0	-	-	0	-	-	0	
Peak Hour Factor	95	95	95	95		95	95	95	95	95	95	95
Heavy Vehicles, %	2	2	2	2		2	2	2	2	2	2	2
Mvmt Flow	0	14	51	64	11	0	0	0	0	79	1426	19
Major/Minor	Minor2			Minor1						Major2		
Conflicting Flow All	- 101111012	1632	774	891	1641					0	0	(
Stage 1		1632	114	071						U	-	
Stage 2		1032		891								
Critical Hdwy		6.54	6.94	7.54						4.14		
Critical Hdwy Stg 1	-	5.54	0.94	7.04						4.14		
Critical Hdwy Stg 2	-	0.04		6.54								
Follow-up Hdwy		4.02	3.32	3.52						2.22		
Pot Cap-1 Maneuver	0	100	341	237		0				2.22		
Stage 1	0	158	J41 -	231		0						
Stage 2	0	130		304		0						
Platoon blocked, %	U			30-	130	U						
Mov Cap-1 Maneuver		96	329	179	95							
Mov Cap-2 Maneuver		96	527	179								
Stage 1	_	152		.,,	,,,							
Stage 2	-	-		234		-						
, and the second												
Approach	EB			WE						SB		
HCM Control Delay, s	24.4			46.3								
HCM LOS	С			E								
Minor Lane/Major Mvmt	EBLn1	FRI n2\	VRI n1	SBL SBT	SBR							
Capacity (veh/h)	96	329	159	JDL JD1	JUK							
HCM Lane V/C Ratio	0.143		0.47									
HCM Control Delay (s)	48.6	17.9	46.3		_							
HCM Lane LOS	46.0 E	17.9 C	40.3 E									
HCM 95th %tile Q(veh)	0.5	0.5	2.2									
ncivi 45tti %tile Q(ven)	0.5	0.5	2.2		-							

13: W. 18th St & Parking Dr. 2 TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Intersection													
Int Delay, s/veh 4.	2												-
Movement	EBL	FRT	FRD	WRI	WBT W	RD	NIRI	NBT	NBR	SP	L SB	T CF	o o
Lane Configurations	LDL	4	LDIX	WDL	1)	DIC		11	IVDIX	JL	_ 50	I JL	1
Traffic Vol. veh/h	4	70	0	0		19	90		173)	0)
Future Vol. veh/h	4	70	0	0		19	90		173		-	-)
Conflicting Peds. #/hr	0	0	0	0		29	17		0		-	-)
Sign Control		Stop	Stop		Stop St		Free		Free	Fre		-	1
RT Channelized	310p		None	310p			-		None		-		
Storage Length			-		- 110	-	0		-			- 1101	
Veh in Median Storage, #		0					U	0					
Grade. %		0			·		- 1	_				0	
Peak Hour Factor	94	94	94	94	-	94	94	-	94		49	-	1
Heavy Vehicles, %	2	2	2	2	2	2	2		2)
Mymt Flow	4	74	0	0	_	20	96		184		_	-)
WWW. COW	4	74	U	- 0	30	20	70	020	104		J	U	,
Major/Minor	Minor2			Minor1		. N	ajor1						ı
Conflicting Flow All	504	1013	-	-	921 4	31	17	0	0				-
Stage 1	17	17	-			-	-		-				
Stage 2	487	996											
Critical Hdwy	6.44		-		6.54 7.	.14	5.34		-				
Critical Hdwy Stg 1	-						-						
Critical Hdwy Stg 2	6.74	5.54	-			-	-		-				
Follow-up Hdwy	3.82				4.02 3.	92	3.12						
Pot Cap-1 Maneuver	494		0				1133						
Stage 1		-	0	0		-	-						
Stage 2	485		0	0			-						
Platoon blocked, %	100	520		- 0									
Mov Cap-1 Maneuver	386	213			242 4	.89	1133						
Mov Cap-1 Maneuver	386	213				-	-						
Stage 1	300	213		-		-							
Stage 2	378				324								
Staye 2	3/0	273				-							
Approach	EB			WB			NB						
HCM Control Delay, s	30.6			20			0.9						
HCM LOS	D			C									
Minor Lane/Major Mvmt	NBL	NBT	NBR EBI	Ln1WBLn1									
Capacity (veh/h)	1133	-	- :	218 296									
HCM Lane V/C Ratio	0.085	-	- 0.3	361 0.19									
			- 3	0.6 20									
HCM Control Delay (s)	8.5	-		10.0 20									
HCM Control Delay (s) HCM Lane LOS	8.5 A	-		D C									

HCM 95th %tile Q(veh)

2024 Background + Site Timing Plan: AM

17: Trinity St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Intersection							
Int Delay, s/veh	3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			4	fà		
Traffic Vol, veh/h	35	21	154	80	267	257	
Future Vol, veh/h	35	21	154	80	267	257	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None		None	
Storage Length	0	-	-	-		-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	38	23	167	87	290	279	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	852	430	570	0	- majorz	0	
Stage 1	430	-	-	-		-	
Stage 2	422	-					
Critical Hdwy	6.42	6.22	4.12				
Critical Hdwy Stg 1	5.42	0.22	1.12				
Critical Hdwy Stg 2	5.42	-		-		_	
Follow-up Hdwy	3.518	3.318	2.218	-		-	
Pot Cap-1 Maneuver	330	625	1002			_	
Stage 1	656	025	1002		_		
Stage 2	662			-			
Platoon blocked, %	002				_		
Mov Cap-1 Maneuver	272	625	1002				
Mov Cap-1 Maneuver	272	025	1002				
Stage 1	656	_	_			_	
Stage 2	546						
Stage 2	340						
Approach	EB		NB		SB		
HCM Control Delay, s	17.7		6.1		0		
HCM LOS	17.7 C		0.1		U		
TICIVI EOS	C						
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR				
Capacity (veh/h)	1002	- 345	JD1 JDIN				
HCM Lane V/C Ratio	0.167	- 0.176					
	9.3	0.176					
HCM Control Delay (s)							
HCM Lane LOS	Α	A C					

Intersection													
Int Delay, s/veh	6.1												
Movement	EBL	EBT	EBR	W	BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		ર્ન				ĥ		ሻ	^				
Traffic Vol, veh/h	44	0	0		0	0	0	348	227	0	0	0	
Future Vol, veh/h	44	0	0		0	0	0	348	227	0	0	0	
Conflicting Peds, #/hr	0	0	5		0	0	0	6	0	0	0	0	
Sign Control	Stop	Stop	Stop	Fr	ee	Free	Free	Free	Free	Free	Stop	Stop	Sto
RT Channelized		-	None		-	-	None	-	-	None	-	-	Non
Storage Length	-	-	-		-	-	-	115	-	-	-	-	
Veh in Median Storage, #		0	-		-	0	-	-	0	-	-	-	
Grade, %	-	0	-		-	0	-	-	0	-	-	0	
Peak Hour Factor	88	88	88		88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	2	
Mvmt Flow	50	0	0		0	0	0	395	258	0	0	0	
					•								
Major/Minor	Minor2			Majo				Major1					
Conflicting Flow All	901	1056	-		-	-	0	7	0	-			
Stage 1	7	7	-		-	-	-	-	-	-			
Stage 2	894	1049	-		-	-	-	-	-	-			
Critical Hdwy	6.08	6.53	-		-	-	-	4.13	-	-			
Critical Hdwy Stg 1	5.43	5.53	-		-	-	-	-	-	-			
Critical Hdwy Stg 2	6.03	5.53	-		-	-	-	-	-	-			
Follow-up Hdwy		4.019	-		-	-	-	2.219	-	-			
Pot Cap-1 Maneuver	327	225	0		0	-	-	1613	-	0			
Stage 1	974	890	0		0	-	-	-	-	0			
Stage 2	334	303	0		0	-	-	-	-	0			
Platoon blocked, %						-	-		-				
Mov Cap-1 Maneuver	244	0	-		-	-	-	1613	-	-			
Mov Cap-2 Maneuver	244	0	-		-	-	-	-	-	-			
Stage 1	968	0	-		-	-	-	-	-	-			
Stage 2	251	0	-		-	-	-		-	-			
Approach	EB			V	VB			NB					
Approach HCM Control Delay, s	23.5			V	0			4.8					
HCM Control Delay, S HCM LOS	23.5 C				U			4.8					
HCW LUS	C												
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	WBT WE	3R								
Capacity (veh/h)	1613	-	244	-									
HCM Lane V/C Ratio	0.245		0.205										
HCM Control Delay (s)	8		23.5	-									
HCM Lane LOS	A		23.5 C	-									
HCM 95th %tile Q(veh)	1		0.8										
TIGINI 75111 701116 Q(VEII)		-	0.0										

0.6 - 0.6

2024 Background + Site

Timing Plan: AM

26: Trinity St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

IA for Texas	Capitol	Complex	Master	Plan	2018	Update

Intersection													
Int Delay, s/veh	8.5												
Movement		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			•	7		ની						414	7
Traffic Vol, veh/h		0	21	60	73	121	0	0	0	0	48	680	103
Future Vol, veh/h		0	21	60	73	121	0	0	0	0	48	680	103
Conflicting Peds, #/hr		0	0	23	0	0	0	0	0	0	4	0	0
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		-	-	None	-	-	None	-	-	None	-	-	None
Storage Length		-	-	40	-	-	-	-	-	-	-	-	50
Veh in Median Storage, #		-	0	-	-	0	-	-	-	-	-	0	-
Grade, %		-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor		92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %		2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow		0	23	65	79	132	0	0	0	0	52	739	112
Major/Minor	Mi	inor2			Minor1						Major2		

Major/Minor	Minor2			Minor1			Major2		
Conflicting Flow All	-	847	393	512	847	-	4	0	0
Stage 1	-	843	-	4	4	-	-	-	-
Stage 2	-	4	-	508	843	-	-	-	-
Critical Hdwy	-	6.54	6.94	7.54	6.54	-	4.14	-	-
Critical Hdwy Stg 1	-	5.54	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	6.54	5.54	-	·	-	-
Follow-up Hdwy	-	4.02	3.32	3.52	4.02	-	2.22	-	-
Pot Cap-1 Maneuver	0	297	606	445	297	0	1616	-	-
Stage 1	0	378	-	-	-	0	-	-	-
Stage 2	0	-	-	516	378	0	·	-	-
Platoon blocked, %								-	-
Mov Cap-1 Maneuver		277	606	353	277	-	1616	-	-
Mov Cap-2 Maneuver	-	277	-	353	277	-	-	-	-
Stage 1	-	354	-	-	-	-	-	-	-
Stage 2	-	-	-	404	354	-		-	-
Approach	EB			WB			SB		
HCM Control Delay, s	13.6			40.7			0.5		
HCM LOS	В			E			0.0		

Minor Lane/Major Mvmt	EBLn1	EBLn2\	NBLn1	SBL	SBT	SBR
Capacity (veh/h)	277	606	301	1616	-	-
HCM Lane V/C Ratio	0.082	0.108	0.701	0.032	-	-
HCM Control Delay (s)	19.2	11.7	40.7	7.3	0.1	-
HCM Lane LOS	С	В	Е	Α	Α	-
HCM 95th %tile Q(veh)	0.3	0.4	4.9	0.1	-	-

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			ተተቡ		
Traffic Vol, veh/h	36	0	103	542	0	0
Future Vol. veh/h	36	0	103	542	0	0
Conflicting Peds, #/hr	3	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-		-
Veh in Median Storage, #	# 0	-	-	0		
Grade, %	0	-	-	0	0	
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	41	0	118	623	0	0
Major/Minor	Minor2		Major1			
Conflicting Flow All	489		0	0		
Stage 1	0			-		
Stage 2	489			-		
Critical Hdwy	5.74	_	5.34	_		
Critical Hdwy Stg 1	-		-	-		
Critical Hdwy Stg 2	6.04	-	-	-		
Follow-up Hdwy	3.82	-	3.12	-		
Pot Cap-1 Maneuver	554	0	-	-		
Stage 1	-	0	-	-		
Stage 2	532	0				
Platoon blocked, %				-		
Mov Cap-1 Maneuver	554			-		
Mov Cap-2 Maneuver	554	-		-		
Stage 1		-		-		
Stage 2	532			-		
-						
Approach	EB		NB			
HCM Control Delay, s	12					
HCM LOS	B					
Minor Lane/Major Mvmt	NBL	NBT EBLn1				
Capacity (veh/h)	-	- 554				
HCM Lane V/C Ratio		- 0.075				
HCM Control Delay (s)		- 12				
HCM Lane LOS		- 12 - B				
HCM 95th %tile Q(veh)		- 0.2				
HOW FORT FORTIC Q(VEII)		- 0.2				

29: Colorado St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

7											
EBL		EBR	WBL		WBR	NBL	NBT	NBR	SBL		SBR
											7
					_						18
											18
-		_		_	_	-	-	-	-	-	25
Stop	Stop		Stop	Stop		Free	Free				Free
-	-	None	-	-	None	-	-	None	-	-	
-	-	-	-	-	-	-	-	-	-	-	0
-	0	-	-	_	-	-	-	-	-	0	-
-	0	-	-	-	-	-	0	-	-	0	-
92	92	92	92	92	92	92	92	92	92	92	92
2	2	2	2	2	2	2	2	2	2	2	2
0	14	52	58	10	0	0	0	0	210	1227	20
Minor2			Minor1						Major2		
	1672	660		1672						0	0
					_					-	
			-								
									7.17		
_		3 32							2 22		
_					_						
U	-	-	237	131	U				-		
	02	204	127	02							
									-		
				93					-		
	147	-		147	-				-		
-			188	147							
ED			WD						CD		
									28		
D			F								
FRI n1V	VRI n1	SRI	SRT SRD								
			381 3BK								
			-								
		-									
1.1	2.5	-									
		EBL EBT	EBL EBT EBR 0 13 48 0 0 13 48 0 0 0 0 Stop Stop Stop - None 0 - 0 0 - 92 92 92 2 2 2 2 0 14 52 Minor2 - 1672 660 - 1672 - 0 0 6.54 6.94 - 5.54 4.02 3.32 0 95 406 0 151 - 0 93 396 - 93 - 147 147 147 EB EBL EBL EBR 26.4 D EBL Stop Stop - Stop Stop - Stop Stop - Stop Stop - 147	EBL EBT EBR WBL 13 48 53 0 13 48 53 0 0 0 21 Stop Stop Stop - None - - 0 - - - 0 - - 92 92 92 92 2 2 2 2 2 0 14 52 58 Minor1 1672 660 1061 - 0 1061 - 1672 660 1061 - 1061 - - 0 1061 - - 0 - 1061 - - 0 - 1061 - - - 0 1061 - - - - - - - - - - - - - - - - -	EBL EBT EBR WBL WBT 0 13 48 53 9 0 13 48 53 9 0 0 0 0 21 0 Stop Stop Stop Stop Stop - None 0 0 - 0 0 - 0 92 92 92 92 92 92 2 2 2 2 2 2 2 0 14 52 58 10 Minor2	BEL BBT BBR WBL WBT WBR	EBL EBR WBL WBT WBR NBL 0 13 48 53 9 0	BBL BBT BBR WBL WBT WBR NBL NBT	BBL BBT BBR WBL WBT WBR NBL NBT NBR	BBL BBT BBR WBL WBT WBR NBL NBT NBR SBL NBT NBR NBL NBT NBT	FBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT

Int Delay, s/veh 71.3	3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NI	BL N	NBT	NBR	SBL	SBT	SBI
Lane Configurations		4			4				4			4	
Traffic Vol, veh/h	17	26	88	112	56	5			495	9	2	145	9
Future Vol, veh/h	17	26	88	112	56	5			495	9	2	145	9
Conflicting Peds, #/hr	0	0	0	0	0	15		3	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Fr	ee F	ree	Free	Free	Free	Fre
RT Channelized	-	-	None	-	-	None		-	-	None	-	-	Non
Storage Length	-	-	-	-	-	-		-	-	-	-	-	
Veh in Median Storage, #	-	0	-	-	0	-		-	0	-	-	0	
Grade, %	-	0	-	-	0	-		-	0	-	-	0	
Peak Hour Factor	79	79	79	79	79	79		79	79	79	79	79	7
Heavy Vehicles, %	2	2	2	2	2	2		2	2	2	2	2	
Mvmt Flow	22	33	111	142	71	6	1	19 (627	11	3	184	12
Major/Minor	Minor2			Minor1			Majo				Major2		
Conflicting Flow All	1176	1128	247	1191	1182	647	3	07	0	0	638	0	(
Stage 1	252	252	-	870	870	-		-	-	-	-	-	
Stage 2	924	876	-	321	312	-		-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.	12	-	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-		-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-		-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.2	18	-	-	2.218	-	
Pot Cap-1 Maneuver	168	204	792	164	190	471	12	54	-	-	946	-	
Stage 1	752	698		346	369	-		-	-	-	-		
Stage 2	323	367	-	691	658	-		-	-	-	-	-	
Platoon blocked, %									-	-			
Mov Cap-1 Maneuver	95	173	790	~ 107	161	464	12	54	-	-	932	-	
Mov Cap-2 Maneuver	95	173		~ 107	161	-		-	-	-	-		
Stage 1	640	693	-	295	315	-		-	-	-	-	-	
Stage 2	208	313	-	563	653			-	-				
Approach	EB			WB			N	NB			SB		
HCM Control Delay, s	31.4			\$ 442.8				1.3			0.1		
HCM LOS	31.4 D			\$ 442.0 F				۱.۵			0.1		
TICINI EOS				<u>'</u>									
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1WBLn1	SBL	SBT	SBR						
Capacity (veh/h)	1254	-	-	297 123	932	-	-						
HCM Lane V/C Ratio	0.095	-	-	0.558 1.78	0.003								
HCM Control Delay (s)	8.2	0	-	31.4\$ 442.8	8.9	0							
HCM Lane LOS	Α	A		D F	Α	A							
HCM 95th %tile Q(veh)	0.3	-	-	3.2 16.9	0	-	-						
Notes													

31: Brazos St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Intersection Int Delay, s/veh 9	.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations												
Traffic Vol, veh/h	0	37	0	0	169	0	0	0	0	0	0	
Future Vol, veh/h	0	37	0	0	169	0	0	0	0	0	0	
Conflicting Peds, #/hr	0	0	0	11	0	11	12	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	40	0	0	184	0	0	0	0	0	0	C
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	-	1	-	-	1	-	-	0	-	-	-	C
Stage 1	-	1	-	-	0	-	-	-	-	-	-	
Stage 2	-	0	-	-	1	-	-	-	-	-	-	
Critical Hdwy	-	6.52	-	-	6.52	-	-	-	-	-	-	
Critical Hdwy Stg 1	-	5.52	-	-	5.52	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	5.52	-	-	5.52	-	-	-	-	-	-	
Follow-up Hdwy	-	4.018	-	-	4.018	-	-	-	-	-	-	
Pot Cap-1 Maneuver	0	895	0	0	895	0	0	-	0	0	-	(
Stage 1	0	895	0	0	-	0	0	-	0	0	-	(
Stage 2	0	-	0	0	895	0	0	-	0	0	-	(
Platoon blocked, %								-			-	
Mov Cap-1 Maneuver	-	895	-	-	895	-	-	-	-	-	-	
Mov Cap-2 Maneuver	-	895	-	-	895	-	-		-	-	-	
Stage 1	-	895	-	-	-	-	-	-	-	-	-	
Stage 2					895	-	-		-	-	-	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.2			10.1			0			0		
HCM LOS	Α			В								
Minor Lane/Major Mvmt	NBT	EBLn1\	VBLn1	SBT								
Capacity (veh/h)	-	895	895	-								
HCM Lane V/C Ratio		0.045	0.205	-								
HCM Control Delay (s)		9.2	10.1	-								
HCM Lane LOS		A	В	-								

Intersection							
Int Delay, s/veh 2	2.2						
Movement	EB1	EBR		WBL	WBT	NBL	NBR
Lane Configurations	1	•			ર્સ	¥	
Traffic Vol, veh/h	36			3	133	44	0
Future Vol, veh/h	36	0		3	133	44	0
Conflicting Peds, #/hr	(0		26	0	0	0
Sign Control	Free	Free		Free	Free	Stop	Stop
RT Channelized		None		-	None	-	None
Storage Length					-	0	-
Veh in Median Storage, #	() -		-	0	0	-
Grade, %	() -		-	0	0	-
Peak Hour Factor	83	83		83	83	83	83
Heavy Vehicles, %	2	. 2		2	2	2	2
Mvmt Flow	43	0		4	160	53	0
Major/Minor	Major*		N	lajor2		Minor1	
Conflicting Flow All	((69	0	236	69
Stage 1				-	U	69	-
Stage 2						167	
Critical Hdwy				4.12		6.42	6.22
Critical Hdwy Stg 1				1.12	-	5.42	0.22
Critical Hdwy Stg 2					-	5.42	-
Follow-up Hdwy				2.218		3.518	3.318
Pot Cap-1 Maneuver				1532	-	752	994
Stage 1						954	
Stage 2				-	-	863	
Platoon blocked, %						000	
Mov Cap-1 Maneuver				1532		731	969
Mov Cap-2 Maneuver				-		731	-
Stage 1				-	-	930	
Stage 2						860	
3						000	
Approach	EE			WB		NB	
HCM Control Delay, s	(0.2		10.3	
HCM LOS	•			0.2		В	
Minor Lane/Major Mvmt	NBLn1 EB1	EBR	WBL	WBT			
Capacity (veh/h)	731		1532	WDI			
HCM Lane V/C Ratio							
HCM Control Delay (s)	10.3		7.4	0			
HCM Lane LOS	10.3 B		7.4 A	A			
HCM 95th %tile Q(veh)			0 0	A			
ncivi 45tii %tile Q(ven)	0.2		U	-			

HCM Control Delay (s) HCM Lane LOS

HCM 95th %tile Q(veh)

13.1 - -B - - 2024 Background + Site 33: Colorado St & Parking Dr. 3

Timing Plan: AM TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBF	R NBL	NBT	SBT	SBR
Lane Configurations		ī	1		† ††	7
Traffic Vol, veh/h	0	4		0	345	155
Future Vol, veh/h	0	4	5 0	0	345	155
Conflicting Peds, #/hr	0		0	0	0	125
Sign Control	Stop	Sto) Free	Free	Free	Free
RT Channelized	-	Non		None		None
Storage Length	-) -	-	-	50
Veh in Median Storage, #	0			-	0	-
Grade, %	0			0	0	-
Peak Hour Factor	83	8:	3 83	83	83	83
Heavy Vehicles, %	2		2 2	2	2	2
Mvmt Flow	0	5-	4 0	0	416	187
Major/Minor	Minor2				Major2	
Conflicting Flow All	-	33:	3		-	0
Stage 1	-		-			-
Stage 2			-			-
Critical Hdwy	-	7.1	4			-
Critical Hdwy Stg 1			-			-
Critical Hdwy Stg 2	-		-			-
Follow-up Hdwy		3.9	2			-
Pot Cap-1 Maneuver	0	56	5			-
Stage 1	0		-			-
Stage 2	0		-			-
Platoon blocked, %					-	-
Mov Cap-1 Maneuver	-	49	9			-
Mov Cap-2 Maneuver	-		-		-	-
Stage 1	-		-			-
Stage 2	-		-			-
Approach	EB				SB	
HCM Control Delay, s	13.1				0	
HCM LOS	В					
Minor Lane/Major Mvmt	EBLn1	SBT SBF	?			
Capacity (veh/h)	499		-			
HCM Lane V/C Ratio	0.109		-			
LICM Control Dolon (a)	10.1					

Intersection							
Int Delay, s/veh	1.6						
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Lane Configurations	Y			1→			ની
Traffic Vol, veh/h	14	15		695	90	120	386
Future Vol, veh/h	14	15		695	90	120	386
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized	-	None		-	None	-	None
Storage Length	0	-		-	-	-	-
Veh in Median Storage, #	0	-		0	-	-	0
Grade, %	0	-		0	-	-	0
Peak Hour Factor	92	92		92	92	92	92
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	15	16		755	98	130	420
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	1484	804		0	0	853	0
Stage 1	804	- 004		U	U	- 000	-
Stage 2	680						
Critical Hdwy	6.42	6.22				4.12	
Critical Hdwy Stg 1	5.42	0.22				4.12	
Critical Hdwy Stg 2	5.42						
Follow-up Hdwy	3.518	3.318				2.218	
Pot Cap-1 Maneuver	137	383				786	
Stage 1	440	303				700	
Stage 2	503						
Platoon blocked, %	303					•	
Mov Cap-1 Maneuver	107	383				786	
Mov Cap-1 Maneuver	107	303				700	
	440						
Stage 1	394						-
Stage 2	394						
Approach	WB			NB		SB	
HCM Control Delay, s	30.8			0		2.5	
HCM LOS	D						
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	-	- 171	786				
HCM Lane V/C Ratio	-	- 0.184	0.166	-			
HCM Control Delay (s)		- 30.8	10.5	0			
HCM Lane LOS	-	- D	В	Α			
HCM 95th %tile Q(veh)	-	- 0.7	0.6	-			

62: Colorado St & Parking Dr. 4 TIA for Texas Capitol Complex Master Plan 2018 Update

ming ridii. 74vi		TIA IOI TEXAS C	apitoi Coi	пр
		Intersection		
		Int Delay, s/veh	2.1	
		Movement		E
		Lane Configurations		
		Traffic Vol, veh/h		

Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	f a	
Traffic Vol, veh/h	12	12	84	625	494	96
Future Vol, veh/h	12	12	84	625	494	96
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0	-	-	-		-
Veh in Median Storage, #	0	-		0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	13	13	91	679	537	104

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	1451	589	641	0	-	0	
Stage 1	589	-	-	-		-	
Stage 2	862	-	-	-		-	
Critical Hdwy	6.42	6.22	4.12	-		-	
Critical Hdwy Stg 1	5.42	-	-	-		-	
Critical Hdwy Stg 2	5.42	-	-	-		-	
Follow-up Hdwy	3.518	3.318	2.218	-	-	-	
Pot Cap-1 Maneuver	144	508	943	-		-	
Stage 1	554	-	-	-		-	
Stage 2	414	-	-	-		-	
Platoon blocked, %				-		-	
Mov Cap-1 Maneuver	122	508	943	-		-	
Mov Cap-2 Maneuver	122	-	-	-	-	-	
Stage 1	554	-		-		-	
Stage 2	350	-	-	-	-	-	
-							
Approach	EB		NB		SB		
LICM Control Dolov. c	24		1.1		0		

Арргоасп	ED			IND	30	
HCM Control Delay, s	26			1.1	0	
HCM LOS	D					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR		

Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)	943	-	197	-	-
HCM Lane V/C Ratio	0.097	-	0.132	-	-
HCM Control Delay (s)	9.2	0	26	-	-
HCM Lane LOS	Α	Α	D	-	-
HCM 95th %tile Q(veh)	0.3	-	0.4	-	-

69: Parking Dr. 5 & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Intersection	2.1						
Int Delay, s/veh	2.1						
Movement	EB ⁻	EBR		WBL	WBT	NBL	NBR
Lane Configurations	1				ર્ન	Y	
Traffic Vol, veh/h	12	120		90	154	19	10
Future Vol, veh/h	12	120		90	154	19	10
Conflicting Peds, #/hr	() (0	0	0	0
Sign Control	Free	Free		Free	Free	Stop	Stop
RT Channelized		- None		-	None	-	None
Storage Length				-	-	0	-
Veh in Median Storage, #	• () -		-	0	0	-
Grade, %	() -		-	0	0	-
Peak Hour Factor	92	92		92	92	92	92
Heavy Vehicles, %	:	2 2		2	2	2	2
Mvmt Flow	130	130		98	167	21	11
Major/Minor	Major'			Major2		Minor1	
Conflicting Flow All	···ajo:			266	0	564	201
Stage 1				-	-	201	-
Stage 2					-	363	
Critical Hdwy				4.12	-	6.42	6.22
Critical Hdwy Stg 1						5.42	0.22
Critical Hdwy Stg 2					-	5.42	-
Follow-up Hdwy				2.218		3.518	3.318
Pot Cap-1 Maneuver				1298	-	487	840
Stage 1				1270		833	-
Stage 2					-	704	
Platoon blocked, %					-	701	
Mov Cap-1 Maneuver				1298	-	447	840
Mov Cap-2 Maneuver				-	-	447	-
Stage 1				-		833	
Stage 2					-	646	
						0.0	
Approach	EE	3		WB		NB	
HCM Control Delay, s)		3		12.2	
HCM LOS						В	
Minor Lane/Major Mvmt	NBLn1 EB	EBR	WBL	WBT			
Capacity (veh/h)							
HCM Lane V/C Ratio			0.075				
HCM Control Delay (s)				0			
HCM Lane LOS	_			A			
HCM 95th %tile Q(veh)	0.2		0.2	-			
ncivi yoti %tile Q(ven)	0.2		0.2	-			

73: Colorado St & Parking Dr. 7/Parkin Dr. 8
TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: AM

Intersection								
Int Delay, s/veh	2							
		EDT			MET	WDD	CDI	CDD
Movement	EBL	EBT			WBT	WBR	SBL	SBR
Lane Configurations	0.4	ન			- ↑	400	Y	40
Traffic Vol, veh/h	91	231			64	109	15	12
Future Vol, veh/h	91	231			64	109	15	12
Conflicting Peds, #/hr	0	0			0	0	0	0
Sign Control	Free	Free			Free	Free	Stop	Stop
RT Channelized	-	THOTIC			-	IVOITE	-	None
Storage Length	-	-			-	-	0	-
Veh in Median Storage, #	-	0			0	-	0	-
Grade, %	-	0			0	-	0	-
Peak Hour Factor	92	92			92	92	92	92
Heavy Vehicles, %	2	2			2	2	2	2
Mvmt Flow	99	251			70	118	16	13
Major/Minor	Major1				Major2		Minor2	
Conflicting Flow All	188	0			-	0	578	129
Stage 1	-	-			-	-	129	
Stage 2		-					449	-
Critical Hdwy	4.12	-					6.42	6.22
Critical Hdwy Stg 1	-	-					5.42	-
Critical Hdwy Stg 2		-					5.42	
Follow-up Hdwy	2.218	-					3.518	3.318
Pot Cap-1 Maneuver	1386	-					478	921
Stage 1	.000	-					897	,21
Stage 2		-					643	
Platoon blocked, %		-					313	
Mov Cap-1 Maneuver	1386	-					438	921
Mov Cap-2 Maneuver	-	-					438	,21
Stage 1		-					897	
Stage 2		-					590	
Stuge 2							370	
Approach	EB				WB		SB	
	2.2				0		11.6	
HCM Control Delay, s	2.2				0			
HCM LOS							В	
			WEE	WDD OF:				
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLr				
Capacity (veh/h)	1386		-	- 57				
HCM Lane V/C Ratio	0.071	-	-	- 0.05				
HCM Control Delay (s)	7.8	0	-	- 11.				
HCM Lane LOS	A	Α	-		В			
HCM 95th %tile Q(veh)	0.2		-	- 0	.2			

Int Delay, s/veh	2.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations		44			4			4			4	
Traffic Vol, veh/h	16	0	12	13	0	15	85	336	97	109	411	11
Future Vol, veh/h	16	0	12	13	0	15	85	336	97	109	411	11
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	Non
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, #		0	-		0	-	-	0	-	-	0	
Grade, %	-	0	-		0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	9:
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	17	0	13	14	0	16	92	365	105	118	447	12
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1358	1402	510	1356	1413	418	573	0	0	471	0	
Stage 1	747	747	510	603	603	410	3/3	U	U	4/1	-	
	611	655		753	810		-		-		-	
Stage 2 Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12			4.12		
Critical Hdwy Stg 1	6.12	5.52	0.22	6.12		0.22	4.12	-		4.12		
Critical Hdwy Stg 2	6.12	5.52		6.12			-		-	-		
Follow-up Hdwy		4.018	3.318		4.018		2.218			2.218		
Pot Cap-1 Maneuver	126	140	563	126	138	635	1000			1091	-	
Stage 1	405	420	505	486	488	033	1000			1091		
Stage 2	481	463		400	393					-		
Platoon blocked, %	401	403	-	402	373	-	-	-		-		
Mov Cap-1 Maneuver	97	102	563	98	101	635	1000			1091		
Mov Cap-1 Maneuver	97	102	505	98	101	033	1000	-		1091		
Stage 1	354	352		424	426					-		
	409	404		329	329		-		-	-		
Stage 2	409	404		329	329		-			-	•	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	35			29.2			1.5			1.5		
HCM LOS	E			D								
Minor Lane/Major Mvmt	NBL	NBT	NRD I	BLn1WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	1000	INDI	NDI(I	150 179	1091	301	JDR -					
HCM Lane V/C Ratio	0.092				0.1091							
	0.092	0	-	35 29.2	8.7	0	-					
HCM Control Delay (s) HCM Lane LOS	A A	A	-	35 29.2 E D	8.7 A	A						
		А			0.4	Α						
HCM 95th %tile Q(veh)	0.3	-	-	0.7 0.6	0.4	-	-					

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	\rightarrow	•	←	•	4	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑			^	7				ሻ	^	7
Traffic Volume (vph)	155	387	165	0	1414	746	0	0	0	194	655	237
Future Volume (vph)	155	387	165	0	1414	746	0	0	0	194	655	237
Confl. Peds. (#/hr)	30		70	70		30				42		70
Confl. Bikes (#/hr)			1			6						3
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	165	412	176	0	1504	794	0	0	0	206	697	252
Shared Lane Traffic (%)												
Lane Group Flow (vph)	165	588	0	0	1504	794	0	0	0	206	697	252
Turn Type	Prot	NA			NA	pm+ov				pm+pt	NA	Perm
Protected Phases	5	2			6	7				7	4	
Permitted Phases						6				4		4
Detector Phase	5	2			6	7				7	4	4
Switch Phase												
Minimum Initial (s)	2.0	15.0			15.0	10.0				10.0	5.0	5.0
Minimum Split (s)	7.0	27.0			34.0	15.0				15.0	32.0	32.0
Total Split (s)	25.0	92.0			67.0	43.0				43.0	43.0	43.0
Total Split (%)	18.5%	68.1%			49.6%	31.9%				31.9%	31.9%	31.9%
Yellow Time (s)	4.0	4.0			4.0	4.0				4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0				1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0				0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0				5.0	5.0	5.0
Lead/Lag	Lag				Lead							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max	None				None	Max	Max
Act Effct Green (s)	20.0	87.0			62.0	100.0				38.0	38.0	38.0
Actuated g/C Ratio	0.15	0.64			0.46	0.74				0.28	0.28	0.28
v/c Ratio	0.63	0.28			0.93	0.68				0.41	0.70	0.51
Control Delay	65.7	10.4			33.3	2.8				42.5	47.9	20.1
Queue Delay	0.0	0.0			45.6	0.4				0.0	0.0	0.0
Total Delay	65.7	10.4			78.9	3.2				42.5	47.9	20.1
LOS	E	В			E	Α				D	D	С
Approach Delay		22.6			52.7						40.8	
Approach LOS		С			D						D	
Queue Length 50th (ft)	138	106			601	25				147	288	73
Queue Length 95th (ft)	217	136			m655	m63				224	360	160
Internal Link Dist (ft)		228			45			159			210	
Turn Bay Length (ft)	160									130		120
Base Capacity (vph)	262	2094			1625	1172				498	996	499
Starvation Cap Reductn	0	0			371	88				0	0	0
Spillback Cap Reductn	0	0			0	0				0	0	0
Storage Cap Reductn	0	0			0	0				0	0	0
Reduced v/c Ratio	0.63	0.28			1.20	0.73				0.41	0.70	0.51

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 90

MS Synchro 9 Report Page 1

1: Martin Luther King Jr. Blvd & Guadalupe St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: PM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.93 Intersection Signal Delay: 44.1 Intersection Capacity Utilization 82.7% Intersection LOS: D ICU Level of Service E Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Martin Luther King Jr. Blvd & Guadalupe St →ø2 (R) Ø6 (R) <u></u> مر

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: PM

	-	•	•	_	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^			^	ሻሻ	7
Traffic Volume (vph)	559	0	0	1409	1086	248
Future Volume (vph)	559	0	0	1409	1086	248
Confl. Peds. (#/hr)						82
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	614	0	0	1548	1193	273
Shared Lane Traffic (%)						-
Lane Group Flow (vph)	614	0	0	1548	1193	273
Turn Type	NA			NA	Prot	Perm
Protected Phases	2			6	8	. 0
Permitted Phases				0	U	3
Detector Phase	2			6	8	3
Switch Phase				U	U	3
Minimum Initial (s)	10.0			10.0	5.0	5.0
Minimum Split (s)	30.0			15.0	10.0	10.0
	86.0			86.0	49.0	49.0
Total Split (s)	63.7%			63.7%	36.3%	36.3%
Total Split (%)						
Yellow Time (s)	4.0			4.0	4.0	4.0
All-Red Time (s)	1.0			1.0	1.0	1.0
Lost Time Adjust (s)	0.0			0.0	0.0	0.0
Total Lost Time (s)	5.0			5.0	5.0	5.0
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max			C-Max	Max	Max
Act Effct Green (s)	81.0			81.0	44.0	44.0
Actuated g/C Ratio	0.60			0.60	0.33	0.33
v/c Ratio	0.29			0.73	1.07	0.45
Control Delay	13.7			15.1	99.0	26.8
Queue Delay	0.3			1.3	13.6	0.0
Total Delay	14.0			16.4	112.6	26.8
LOS	В			В	F	С
Approach Delay	14.0			16.4	96.6	
Approach LOS	В			В	F	
Queue Length 50th (ft)	126			282	~601	108
Queue Length 95th (ft)	155			352	#743	174
Internal Link Dist (ft)	272			277	337	
Turn Bay Length (ft)	2,2			2,,	007	
Base Capacity (vph)	2123			2123	1118	601
Starvation Cap Reductn	857			115	0	0
Spillback Cap Reductn	037			344	90	0
Storage Cap Reductn	0			0	0	0
Reduced v/c Ratio	0.48			0.87	1.16	0.45
	0.40			0.07	1.10	0.40
Intersection Summary						
Cycle Length: 135						
Actuated Cycle Length: 13	5					
Offset: 0 (0%), Referenced		EBT and	6:WBT,	Start of G	ireen	
Natural Cycle: 70						
Control Type: Actuated-Co	ordinated					
Some Type. Netuated-ou	o. amated					

MS Synchro 9 Report
Page 3

3: Lavaca St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: PM

Maximum v/c Ratio: 1.07
Intersection Signal Delay: 48.4 Intersection LOS: D
Intersection Capacity Utilization 97.7% ICU Level of Service F
Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 3: Lavaca St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	\rightarrow	•	•	•	1	~	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	↑ ↑		٦	^			
Traffic Volume (vph)	952	0	13	1321	0	0	
Future Volume (vph)	952	0	13	1321	0	0	
Confl. Peds. (#/hr)		33	33		35		
Confl. Bikes (#/hr)		4					
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Adj. Flow (vph)	1013	0	14	1405	0	0	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	1013	0	14	1405	0	0	
Turn Type	NA		pm+pt	NA			
Protected Phases	2		1	6			
Permitted Phases			6				
Detector Phase	2		1	6			
Switch Phase	_						
Minimum Initial (s)	15.0		3.0	15.0			
Minimum Split (s)	34.0		8.0	20.0			
Total Split (s)	121.0		14.0	135.0			
Total Split (%)	89.6%			100.0%			
Yellow Time (s)	4.0		4.0	4.0			
All-Red Time (s)	1.0		1.0	1.0			
Lost Time Adjust (s)	0.0		0.0	0.0			
Total Lost Time (s)	5.0		5.0	5.0			
Lead/Lag	Lead		Lag	3.0			
Lead-Lag Optimize?	Yes		Yes				
Recall Mode	C-Max		None	C-Max			
Act Effct Green (s)	127.4		133.0	135.0			
Actuated g/C Ratio	0.94		0.99	1.00			
v/c Ratio	0.30		0.99	0.40			
Control Delay	0.30		0.02	0.40			
Queue Delay	0.0		0.0	0.4			
	0.0		0.0	0.0			
Total Delay LOS	0.8 A		Ο.1	0.4 A			
			А				
Approach Delay	0.8 A			0.4 A			
Approach LOS			0				
Queue Length 50th (ft)	0		0	3			
Queue Length 95th (ft)	56		m0	0	004		
Internal Link Dist (ft)	366		445	377	331		
Turn Bay Length (ft)	0000		115	0500			
Base Capacity (vph)	3339		578	3539			
Starvation Cap Reductn	0		0	0			
Spillback Cap Reductn	0		0	17			
Storage Cap Reductn	0		0	0			
Reduced v/c Ratio	0.30		0.02	0.40			
Intersection Summary							
Cycle Length: 135							
Actuated Cycle Length: 13							
Offset: 0 (0%), Referenced	to phase 2:1	EBT and	6:WBTL	, Start of C	Green		
Natural Cycle: 45							

MS Synchro 9 Report
Page 5

5: N. Congress Ave & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: PM

Splits and Phases: 5: N. Congress Ave & Martin Luther King Jr. Blvd

MS Synchro 9 Report

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	•	→	•	•	←	•	1	†	<i>></i>	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	^	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	91	945	32	45	938	136	125	24	333	100	26	253
Future Volume (vph)	91	945	32	45	938	136	125	24	333	100	26	253
Confl. Peds. (#/hr)	44		7	7		44	22		23	23		22
Confl. Bikes (#/hr)			4			3						
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	94	974	33	46	967	140	129	25	343	103	27	261
Shared Lane Traffic (%)												
Lane Group Flow (vph)	94	1007	0	46	967	140	0	154	343	0	130	261
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2			6		6	8		8	4		4
Detector Phase	5	2		1	6	6	8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	3.0	10.0		3.0	10.0	10.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	8.0	22.0		8.0	28.0	28.0	30.0	30.0	30.0	30.0	30.0	30.0
Total Split (s)	15.0	89.0		15.0	89.0	89.0	31.0	31.0	31.0	31.0	31.0	31.0
Total Split (%)	11.1%	65.9%		11.1%	65.9%	65.9%	23.0%	23.0%	23.0%	23.0%	23.0%	23.0%
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0		5.0	5.0		5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Recall Mode	None	C-Max		None	C-Max	C-Max	Max	Max	Max	Max	Max	Max
Act Effct Green (s)	96.0	89.7		92.9	86.5	86.5		26.0	26.0		26.0	26.0
Actuated g/C Ratio	0.71	0.66		0.69	0.64	0.64		0.19	0.19		0.19	0.19
v/c Ratio	0.24	0.43		0.12	0.43	0.16		0.75	0.71		0.69	0.56
Control Delay	5.5	8.4		2.5	5.7	1.9		75.0	25.1		70.8	14.9
Queue Delay	0.0	0.3		0.0	0.3	0.0		0.0	1.5		0.7	0.0
Total Delay	5.5	8.7		2.5	6.0	1.9		75.0	26.6		71.5	14.9
LOS	Α	Α		Α	Α	Α		E	С		Е	В
Approach Delay		8.4			5.4			41.6			33.7	
Approach LOS		Α			Α			D			С	
Queue Length 50th (ft)	16	155		2	123	10		129	86		107	30
Queue Length 95th (ft)	26	149		m6	162	27		#238	204		#200	118
Internal Link Dist (ft)		377			273			135			212	
Turn Bay Length (ft)	160			100		100			100			
Base Capacity (vph)	417	2337		422	2267	899		204	480		188	468
Starvation Cap Reductn	0	618		0	585	0		0	0		0	0
Spillback Cap Reductn	0	367		0	0	0		0	42		5	0
Storage Cap Reductn	0	0		0	0	0		0	0		0	0
Reduced v/c Ratio	0.23	0.59		0.11	0.57	0.16		0.75	0.78		0.71	0.56

Intersection Summary

Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 70

MS Synchro 9 Report Page 7

6: Brazos St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: PM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.75 Intersection Signal Delay: 15.7 Intersection Capacity Utilization 83.3% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service E # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Brazos St & Martin Luther King Jr. Blvd

MS Synchro 9 Report

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	—	•	4	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† }		ሻ	^					ሻ	^	7
Traffic Volume (vph)	0	1315	30	379	1174	0	0	0	0	39	204	144
Future Volume (vph)	0	1315	30	379	1174	0	0	0	0	39	204	144
Confl. Peds. (#/hr)			37	37						73		17
Confl. Bikes (#/hr)			8									14
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	1414	32	408	1262	0	0	0	0	42	219	155
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1446	0	408	1262	0	0	0	0	42	219	155
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		1	6						4	
Permitted Phases		_		6						4		4
Detector Phase		2		1	6					4	4	4
Switch Phase		400			40.0							
Minimum Initial (s)		10.0		3.0	10.0					5.0	5.0	5.0
Minimum Split (s)		32.0		8.0	30.0					30.0	30.0	30.0
Total Split (s)		78.0		25.0	103.0					32.0	32.0	32.0
Total Split (%)		57.8%		18.5%	76.3%					23.7%	23.7%	23.7%
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0 5.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)				5.0	5.0					5.0	5.0	5.0
Lead/Lag Lead-Lag Optimize?		Lag Yes		Lead Yes								
Recall Mode		C-Max		None	C-Max					Max	Max	Max
Act Effct Green (s)		73.0		98.0	98.0					27.0	27.0	27.0
Actuated g/C Ratio		0.54		0.73	0.73					0.20	0.20	0.20
v/c Ratio		0.76		1.19	0.73					0.20	0.20	0.40
Control Delay		20.4		149.3	4.2					45.9	47.5	19.0
Queue Delay		0.4		0.2	0.3					0.0	0.0	0.0
Total Delay		20.7		149.4	4.5					45.9	47.5	19.0
LOS		20.7 C		F	Α.					73.7 D	47.5 D	В
Approach Delay		20.7			39.9						36.7	D
Approach LOS		C			D						D	
Queue Length 50th (ft)		428		~364	123					31	86	34
Queue Length 95th (ft)		503		m#575	m127					65	127	100
Internal Link Dist (ft)		273		111111070	321			343		00	244	100
Turn Bay Length (ft)				120						100		100
Base Capacity (vph)		1906		344	2569					312	707	386
Starvation Cap Reductn		112		5	641					0	0	0
Spillback Cap Reductn		0		0	0					0	0	0
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.81		1.20	0.65					0.13	0.31	0.40
Intersection Summary												
Cycle Longth: 125												

Cycle Length: 135

Actuated Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 90

MS Synchro 9 Report Page 9

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: PM

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd ₩Ø2 (R)

8: Trinity St & Martin Luther King Jr. Blvd TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	•	•	•	•	4	†	~	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^			∱ β		ሻ	4	7			
Traffic Volume (vph)	87	1347	0	0	1285	53	217	327	595	0	0	0
Future Volume (vph)	87	1347	0	0	1285	53	217	327	595	0	0	0
Confl. Peds. (#/hr)			34			90	17		153			
Confl. Bikes (#/hr)						4			13			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	90	1389	0	0	1325	55	224	337	613	0	0	0
Shared Lane Traffic (%)							10%					
Lane Group Flow (vph)	90	1389	0	0	1380	0	202	359	613	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	104.0			89.0		31.0	31.0	31.0			
Total Split (%)	11.1%	77.0%			65.9%		23.0%	23.0%	23.0%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	99.0	99.0			86.6		26.0	26.0	26.0			
Actuated g/C Ratio	0.73	0.73			0.64		0.19	0.19	0.19			
v/c Ratio	0.35	0.54			0.62		0.65	1.06	2.25			
Control Delay	8.3	1.3			7.6		69.2	123.6	599.9			
Queue Delay	0.0	0.1			1.0		20.2	19.5	0.0			
Total Delay	8.3	1.4			8.5		89.4	143.1	599.9			
LOS	Α	Α			Α		F	F	F			
Approach Delay		1.8			8.5			372.4				
Approach LOS		Α			Α			F				
Queue Length 50th (ft)	3	22			116		181	~367	~823			
Queue Length 95th (ft)	m4	24			131		272	#578	#1062			
Internal Link Dist (ft)		321			699			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	286	2595			2230		313	339	272			
Starvation Cap Reductn	0	198			529		0	0	0			
Spillback Cap Reductn	0	0			104		100	109	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.31	0.58			0.81		0.95	1.56	2.25			

Intersection Summary

Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 70

MS Synchro 9 Report Page 11 8: Trinity St & Martin Luther King Jr. Blvd

2024 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 2.25

Intersection Signal Delay: 112.0 Intersection Capacity Utilization 91.7% Intersection LOS: F ICU Level of Service F

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd Tø4 Ø2 (R) ▼ Ø6 (R)

MS Synchro 9 Report

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	—	•	4	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		†	7		ર્ન						र्दी	
Fraffic Volume (vph)	0	21	12	166	97	0	0	0	0	61	1207	
Future Volume (vph)	0	21	12	166	97	0	0	0	0	61	1207	
Confl. Peds. (#/hr)			69							44		
Confl. Bikes (#/hr)									2			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.0
Parking (#/hr)		0										
Adj. Flow (vph)	0	22	13	173	101	0	0	0	0	64	1257	
Shared Lane Traffic (%)												
ane Group Flow (vph)	0	22	13	0	274	0	0	0	0	0	1345	
Turn Type		NA	Perm	Perm	NA					Perm	NA	
Protected Phases		4 12			4 12						2 10	
Permitted Phases			4 12	4 12						2 10		
Detector Phase		4 12	4 12	4 12	4 12					2 10	2 10	
Switch Phase										2.10	2.10	
Minimum Initial (s)												
Minimum Split (s)												
Fotal Split (s)												
Fotal Split (%)												
Yellow Time (s)												
All-Red Time (s)												
ost Time Adjust (s)												
Fotal Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		31.9	31.9		31.9						79.1	
Actuated g/C Ratio		0.24	0.24		0.24						0.59	
v/c Ratio		0.06	0.03		0.79						0.65	
Control Delay		21.6	0.2		35.0						13.7	
Queue Delay		0.0	0.0		0.0						0.0	
Total Delay		21.6	0.2		35.0						13.7	
_OS		С	Α		D						В	
Approach Delay		13.6			35.0						13.7	
Approach LOS		В			D						В	
Queue Length 50th (ft)		10	0		100						220	
Queue Length 95th (ft)		24	0		128						308	
nternal Link Dist (ft)		177			244			271			262	
Turn Bay Length (ft)												
Base Capacity (vph)		533	508		471						2060	
Starvation Cap Reductn		0	0		1						0	
Spillback Cap Reductn		0	0		0						0	
Storage Cap Reductn		0	0		0						0	
Reduced v/c Ratio		0.04	0.03		0.58						0.65	
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135												

Synchro 9 Report Page 13 MS

18: Guadalupe St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
	15.0	15.0	5.0	5.0
Minimum Initial (s)				
Minimum Split (s)	21.0	21.0	22.5	22.5
Total Split (s)	56.0	29.0	24.0	26.0
Total Split (%)	41%	21%	18%	19%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
	C-IVIAX	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
NEUGCU WU KAHU				

Synchro 9 Report Page 14 MS

18: Guadalupe St & E. 17th St

2024 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 90 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.79 Intersection Signal Delay: 17.2 Intersection Capacity Utilization 77.7% Analysis Period (min) 15 Intersection LOS: B ICU Level of Service D

Splits and Phases: 18: Guadalupe St & E. 17th St

MS Synchro 9 Report Page 15

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: PM

	۶	→	•	•	←	4	1	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			f)			414	7			
Traffic Volume (vph)	11	78	0	0	134	161	66	1224	70	0	0	0
Future Volume (vph)	11	78	0	0	134	161	66	1224	70	0	0	0
Confl. Peds. (#/hr)	34								47			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)		0										
Adj. Flow (vph)	12	85	0	0	146	175	72	1330	76	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	97	0	0	321	0	0	1402	76	0	0	0
Turn Type	Perm	NA			NA		Perm	NA	Perm			
Protected Phases		4 12			4 12			2 10				
Permitted Phases	4 12						2 10		2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase												
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
Lost Time Adjust (s)												
Total Lost Time (s)												
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode												
Act Effct Green (s)		33.7			33.7			77.3	77.3			
Actuated g/C Ratio		0.25			0.25			0.57	0.57			
v/c Ratio		0.25			0.72			0.48	0.10			
Control Delay		22.1			33.7			11.2	4.5			
Queue Delay		0.0			0.0			0.0	0.0			
Total Delay		22.1			33.7			11.2	4.5			
LOS		С			С			В	Α			
Approach Delay		22.1			33.7			10.9				
Approach LOS		С			С			В				
Queue Length 50th (ft)		41			154			163	9			
Queue Length 95th (ft)		m75			220			161	m16			
Internal Link Dist (ft)		244			319			272			254	
Turn Bay Length (ft)									100			
Base Capacity (vph)		501			577			2907	775			
Starvation Cap Reductn		0			0			154	0			
Spillback Cap Reductn		0			0			0	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.19			0.56			0.51	0.10			
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135	5											
Officet, 0 (00/) Deferenced	1k 0	NDTI CL	1 6									

Offset: 0 (0%), Referenced to phase 2:NBTL, Start of Green Natural Cycle: 100

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations			-	
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type	0		10	10
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	26.0	28.0	22.5	22.5
Total Split (s)	54.0	28.0	25.0	28.0
Total Split (%)	40%	21%	19%	21%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)	2.0	2.0	1.0	1.0
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

MS Synchro 9 Report Page 17

19: Lavaca St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: PM

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.72

Intersection Signal Delay: 15.3

Intersection Capacity Utilization 51.9%

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 19: Lavaca St & E. 17th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	•	•	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		ર્ન			1>			4412	7			
Traffic Volume (vph)	11	74	0	0	130	191	65	1145	68	0	0	
Future Volume (vph)	11	74	0	0	130	191	65	1145	68	0	0	
Confl. Peds. (#/hr)						170	88					
Confl. Bikes (#/hr)						2						
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Parking (#/hr)					0							
Adj. Flow (vph)	12	78	0	0	137	201	68	1205	72	0	0	
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	90	0	0	338	0	0	1273	72	0	0	
Turn Type	Perm	NA	Ü	Ü	NA	Ū	Perm	NA	Perm	Ü	Ü	
Protected Phases	T CITII	4 12			4 12		1 Cilli	2 10	1 Cilli			
Permitted Phases	4 12	1 12			1 12		2 10	2 10	2 10			
Detector Phase	4 12	4 12			4 12		2 10	2 10	2 10			
Switch Phase	1 12	1 12			1 12		2 10	2 10	2 10			
Minimum Initial (s)												
Minimum Split (s)												
Total Split (s)												
Total Split (%)												
Yellow Time (s)												
All-Red Time (s)												
. ,												
Lost Time Adjust (s) Total Lost Time (s)												
Lead/Lag Lead-Lag Optimize?												
Recall Mode												
		38.0			38.0			72.0	72.0			
Act Effct Green (s)								73.0	73.0			
Actuated g/C Ratio		0.28			0.28			0.54	0.54			
v/c Ratio		0.18			0.86			0.47	0.08			
Control Delay		20.8			44.2			15.5	4.3			
Queue Delay		0.0			0.0			0.7	0.0			
Total Delay		20.8			44.2			16.2	4.3			
LOS		С			D			В	Α			
Approach Delay		20.8			44.2			15.6				
Approach LOS		С			D			В				
Queue Length 50th (ft)		41			168			230	7			
Queue Length 95th (ft)		m73			238			m243	m8			
Internal Link Dist (ft)		233			60			281			272	
Turn Bay Length (ft)									100			
Base Capacity (vph)		568			449			2706	885			
Starvation Cap Reductn		0			0			961	0			
Spillback Cap Reductn		0			0			26	0			
Storage Cap Reductn		0			0			0	0			
Reduced v/c Ratio		0.16			0.75			0.73	0.08			
Intersection Summary												
Cycle Length: 135												
Actuated Cycle Length: 135		NBTL, St										

MS Synchro 9 Report Page 19

28: Lavaca St & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background + Site Timing Plan: PM

Lane Group	Ø2	Ø4	Ø10	Ø12
Lane Configurations				
Traffic Volume (vph)				
Future Volume (vph)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Parking (#/hr)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Turn Type				
Protected Phases	2	4	10	12
Permitted Phases				
Detector Phase				
Switch Phase				
	15.0	15.0	ГΛ	Γ.0
Minimum Initial (s)	15.0	15.0	5.0	5.0
Minimum Split (s)	28.0	32.0	21.0	20.0
Total Split (s)	55.0	32.0	24.0	24.0
Total Split (%)	41%	24%	18%	18%
Yellow Time (s)	4.0	4.0	3.5	3.5
All-Red Time (s)	2.0	2.0	1.0	1.0
Lost Time Adjust (s)				
Total Lost Time (s)				
Lead/Lag				
Lead-Lag Optimize?				
Recall Mode	C-Max	None	None	None
Act Effct Green (s)				
Actuated g/C Ratio				
v/c Ratio				
Control Delay				
Queue Delay				
Total Delay				
LOS				
Approach Delay				
Approach LOS				
Queue Length 50th (ft)				
Queue Length 95th (ft)				
Internal Link Dist (ft)				
Turn Bay Length (ft)				
Base Capacity (vph)				
Starvation Cap Reductn				
Spillback Cap Reductn				
Storage Cap Reductn				
Reduced v/c Ratio				
Intersection Summary				

28: Lavaca St & E. 16th St

2024 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Natural Cycle: 105 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.86

Intersection Signal Delay: 21.3 Intersection Capacity Utilization 56.4% ICU L
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal. Intersection LOS: C ICU Level of Service B

Splits and Phases: 28: Lavaca St & E. 16th St

MS Synchro 9 Report Page 21 34: Guadalupe St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background + Site Timing Plan: PM

	•	-	•	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተኈ		ሻ	ተተተ						414	*
Traffic Volume (vph)	0	968	99	253	1881	0	0	0	0	155	944	476
Future Volume (vph)	0	968	99	253	1881	0	0	0	0	155	944	476
Confl. Peds. (#/hr)			18	18						20		28
Confl. Bikes (#/hr)												28
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	0	1126	115	294	2187	0	0	0	0	180	1098	553
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1241	0	294	2187	0	0	0	0	0	1278	553
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		13	6						4	
Permitted Phases				6						4		4
Detector Phase		2		13	6					4	4	4
Switch Phase												
Minimum Initial (s)		10.0			5.0					5.0	5.0	5.0
Minimum Split (s)		25.0			25.0					32.0	32.0	32.0
Total Split (s)		58.0			88.0					47.0	47.0	47.0
Total Split (%)		43.0%			65.2%					34.8%	34.8%	34.8%
Yellow Time (s)		4.0			4.0					4.0	4.0	4.0
All-Red Time (s)		1.0			1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0						0.0	0.0
Total Lost Time (s)		5.0			5.0						5.0	5.0
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Max
Act Effct Green (s)		53.0		83.0	83.0						42.0	42.0
Actuated g/C Ratio		0.39		0.61	0.61						0.31	0.31
v/c Ratio		0.63		0.81	0.70						0.82	1.06
Control Delay		34.4		36.7	6.8						45.7	87.7
Queue Delay		0.0		44.2	0.4						0.0	0.0
Total Delay		34.4		81.0	7.2						45.7	87.7
LOS		С		F	Α						D	F
Approach Delay		34.4			15.9						58.4	
Approach LOS		С			В						Е	
Queue Length 50th (ft)		315		133	139						337	~454
Queue Length 95th (ft)		344		m172	141						383	#631
Internal Link Dist (ft)		262			240			197			285	
Turn Bay Length (ft)				50								100
Base Capacity (vph)		1968		365	3126						1564	524
Starvation Cap Reductn		0		90	417						0	0
Spillback Cap Reductn		0		0	0						0	0
Storage Cap Reductn		0		0	0						0	0
Reduced v/c Ratio		0.63		1.07	0.81						0.82	1.06
Intersection Summary												
Cycle Length: 135 Actuated Cycle Length: 135												
Offset: 0 (0%), Referenced t	o phase 2	EBT and	6:WBTL,	Start of	Green							
Natural Cycle: 90	,											

34: Guadalupe St & W. 15th St

2024 Background + Site Timing Plan: PM

TIA for Texas Capito	l Comp	olex Ma	ster Plan	2018	Update
Lane Group	Ø1	Ø3			

Lane Group	Ø1	Ø3
LaneConfigurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	3
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	5.0	8.0
Minimum Split (s)	10.0	13.0
Total Split (s)	15.0	15.0
Total Split (%)	11%	11%
Yellow Time (s)	4.0	4.0
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	Min	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

MS Synchro 9 Report Page 23

34: Guadalupe St & W. 15th St

2024 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.06 Intersection Signal Delay: 34.1
Intersection Capacity Utilization 83.0%
Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

Intersection LOS: C ICU Level of Service E

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 34: Guadalupe St & W. 15th St ÿ3 **₽** Ø4 **→**Ø2 (R)

35: Lavaca St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	•	-	•	•	—	•	4	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ተተተ			ተተ _ጉ			414	7			
Traffic Volume (vph)	132	958	0	0	1808	68	401	911	170	0	0	0
Future Volume (vph)	132	958	0	0	1808	68	401	911	170	0	0	0
Confl. Peds. (#/hr)	48					48	31		18			
Confl. Bikes (#/hr)			2						28			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	147	1064	0	0	2009	76	446	1012	189	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	147	1064	0	0	2085	0	0	1458	189	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		33.0	33.0	33.0			
Total Split (s)	20.0	86.0			66.0		49.0	49.0	49.0			
Total Split (%)	14.8%	63.7%			48.9%		36.3%	36.3%	36.3%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			6.0	6.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	81.0	81.0			64.4			43.0	43.0			
Actuated g/C Ratio	0.60	0.60			0.48			0.32	0.32			
v/c Ratio	0.71	0.35			0.87			0.93	0.35			
Control Delay	72.8	3.1			16.5			55.6	17.5			
Queue Delay	0.4	0.1			0.0			17.9	0.0			
Total Delay	73.2	3.2			16.5			73.5	17.5			
LOS	E	Α			В			E	В			
Approach Delay		11.7			16.5			67.0				
Approach LOS		В			В			E				
Queue Length 50th (ft)	96	45			132			452	54			
Queue Length 95th (ft)	m164	48			131			#545	120			
Internal Link Dist (ft)		240			335			116			281	
Turn Bay Length (ft)	50											
Base Capacity (vph)	249	3051			2407			1572	546			
Starvation Cap Reductn	8	875			0			0	0			
Spillback Cap Reductn	0	0			5			157	0			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.61	0.49			0.87			1.03	0.35			

Intersection Summary

Cycle Length: 135
Actuated Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90

MS Synchro 9 Report Page 25

35: Lavaca St & W. 15th St

2024 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.93

Intersection LOS: C

Intersection Signal Delay: 32.2 Intersection Capacity Utilization 83.0% Analysis Period (min) 15

ICU Level of Service E

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

MS Synchro 9 Report

36: Colorado St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	-	•	•	←	•	4	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑₽		ሻ	ተተ _ጉ			4			ર્ન	7
Traffic Volume (vph)	56	1103	22	23	1429	62	9	27	113	396	6	415
Future Volume (vph)	56	1103	22	23	1429	62	9	27	113	396	6	415
Confl. Peds. (#/hr)	33		35	35		33	99		6	6		99
Confl. Bikes (#/hr)			1			2			2			1
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Adj. Flow (vph)	64	1268	25	26	1643	71	10	31	130	455	7	477
Shared Lane Traffic (%)												
Lane Group Flow (vph)	64	1293	0	26	1714	0	0	171	0	0	462	477
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm		custom
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4			8		6
Detector Phase	5	2		1	6		4	4		8	8	6
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		5.0	5.0		5.0	5.0	15.0
Minimum Split (s)	10.0	20.0		10.0	22.0		36.0	36.0		10.0	10.0	22.0
Total Split (s)	10.0	79.0		10.0	79.0		46.0	46.0		46.0	46.0	79.0
Total Split (%)	7.4%	58.5%		7.4%	58.5%		34.1%	34.1%		34.1%	34.1%	58.5%
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0			5.0	5.0
Lead/Lag	Lead	Lag		Lead	Lag							Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Recall Mode	None	C-Max		None	C-Max		Max	Max		Max	Max	C-Max
Act Effct Green (s)	81.0	78.0		80.0	76.0			41.0			41.0	76.0
Actuated g/C Ratio	0.60	0.58		0.59	0.56			0.30			0.30	0.56
v/c Ratio	0.43	0.44		0.11	0.61			0.36			1.54	0.59
Control Delay	21.9	6.9		5.2	9.9			16.5			292.5	9.9
Queue Delay	0.0	0.2		0.0	0.1			0.0			0.0	0.2
Total Delay	21.9	7.1		5.2	10.0			16.5			292.5	10.0
LOS	С	Α		Α	В			В			F	В
Approach Delay		7.8			10.0			16.5			149.0	
Approach LOS		Α			Α			В			F	
Queue Length 50th (ft)	7	108		3	371			41			~568	88
Queue Length 95th (ft)	31	123		6	163			98			#748	176
Internal Link Dist (ft)		335			362			155			114	
Turn Bay Length (ft)	90			90								100
Base Capacity (vph)	150	2927		229	2830			480			300	807
Starvation Cap Reductn	0	648		0	232			0			0	0
Spillback Cap Reductn	0	0		0	141			0			0	33
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.43	0.57		0.11	0.66			0.36			1.54	0.62

Intersection Summary

Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 90

MS Synchro 9 Report Page 27

36: Colorado St & W. 15th St

2024 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.54

Intersection Signal Delay: 40.6 Intersection Capacity Utilization 99.1% Intersection LOS: D ICU Level of Service F

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

MS Synchro 9 Report

37: N. Congress Ave & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	-	*	1	•	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ተተ _ጉ		ሻ	^ ^		7
Traffic Volume (vph)	1671	0	0	1271	0	1
Future Volume (vph)	1671	0	0	1271	0	1
Confl. Peds. (#/hr)		49	49		41	14
Confl. Bikes (#/hr)						4
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Adj. Flow (vph)	1943	0	0	1478	0	1
Shared Lane Traffic (%)					,	
Lane Group Flow (vph)	1943	0	0	1478	0	1
Turn Type	NA		pm+pt	NA	,	Perm
Protected Phases	2		1	6		. 0
Permitted Phases			6	3		4
Detector Phase	2		1	6		4
Switch Phase	2			J		7
Minimum Initial (s)	5.0		5.0	5.0		5.0
Minimum Split (s)	25.0		10.0	25.0		33.0
	92.0		10.0	102.0		33.0
Total Split (s)	68.1%		7.4%	75.6%		24.4%
Total Split (%)			4.0			
Yellow Time (s)	4.0			4.0		4.0
All-Red Time (s)	1.0		1.0	1.0		1.0
Lost Time Adjust (s)	0.0		0.0	0.0		0.0
Total Lost Time (s)	5.0		5.0	5.0		5.0
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max		None	C-Max		Max
Act Effct Green (s)	97.0			97.0		28.0
Actuated g/C Ratio	0.72			0.72		0.21
v/c Ratio	0.53			0.40		0.00
Control Delay	8.0			7.7		0.0
Queue Delay	0.1			0.1		0.0
Total Delay	8.0			7.9		0.0
LOS	Α			Α		Α
Approach Delay	8.0			7.9		
Approach LOS	А			Α		
Queue Length 50th (ft)	194			183		0
Queue Length 95th (ft)	m187			81		0
Internal Link Dist (ft)	362			356	125	
Turn Bay Length (ft)						
Base Capacity (vph)	3653			3653		379
Starvation Cap Reductn	325			914		0
Spillback Cap Reductn	0			304		0
Storage Cap Reductn	0			0		0
Reduced v/c Ratio	0.58			0.54		0.00
	0.00			0.01		0.00
Intersection Summary						
Cycle Length: 135	-					
Actuated Cycle Length: 135						
Offset: 0 (0%), Referenced	to phase 2:1	EBT and	6:WBTL	, Start of G	Green	
latural Cycle: 80						

MS Synchro 9 Report Page 29

37: N. Congress Ave & W. 15th St

2024 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.53
Intersection Signal Delay: 7.9
Intersection Capacity Utilization 64.0%
ICU L
Analysis Period (min) 15
m Volume for 95th percentile queue is metered by upstream signal.

Intersection LOS: A ICU Level of Service B

Splits and Phases: 37: N. Congress Ave & W. 15th St

MS Synchro 9 Report

38: Brazos St & W. 15th St TIA for Texas Capitol Complex Master Plan 2018 Update

	۶	→	•	•	—	•	1	†	~	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, j	ተ ተጉ		٦	ተ ተጉ			ર્ન	7		4	
Traffic Volume (vph)	5	1660	39	10	1125	11	135	3	119	66	3	89
Future Volume (vph)	5	1660	39	10	1125	11	135	3	119	66	3	89
Confl. Peds. (#/hr)	8		9	9		8	5		19	19		5
Confl. Bikes (#/hr)						1						1
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	5	1785	42	11	1210	12	145	3	128	71	3	96
Shared Lane Traffic (%)												
Lane Group Flow (vph)	5	1827	0	11	1222	0	0	148	128	0	170	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA	Perm	Perm	NA	
Protected Phases	5	2		1	6			4			8	
Permitted Phases	2			6			4		4	8		
Detector Phase	5	2		1	6		4	4	4	8	8	
Switch Phase												
Minimum Initial (s)	5.0	15.0		5.0	15.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	10.0	22.0		10.0	22.0		32.0	32.0	32.0	32.0	32.0	
Total Split (s)	12.0	77.0		12.0	77.0		46.0	46.0	46.0	46.0	46.0	
Total Split (%)	8.9%	57.0%		8.9%	57.0%		34.1%	34.1%	34.1%	34.1%	34.1%	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0	5.0		5.0	
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Recall Mode	None	C-Max		None	C-Max		None	None	None	None	None	
Act Effct Green (s)	96.2	96.2		98.8	98.8			24.0	24.0		24.0	
Actuated g/C Ratio	0.71	0.71		0.73	0.73			0.18	0.18		0.18	
v/c Ratio	0.02	0.51		0.05	0.33			0.85	0.36		0.74	
Control Delay	6.4	4.4		6.8	5.1			89.9	15.8		54.5	
Queue Delay	0.0	0.0		0.0	0.1			0.0	0.0		0.0	
Total Delay	6.4	4.4		6.8	5.2			89.9	15.8		54.5	
LOS	Α	Α		Α	Α			F	В		D	
Approach Delay		4.4			5.2			55.5			54.5	
Approach LOS		Α			Α			Е			D	
Queue Length 50th (ft)	0	42		2	86			127	22		102	
Queue Length 95th (ft)	m1	108		m7	223			193	74		173	
Internal Link Dist (ft)		356			297			199			273	
Turn Bay Length (ft)	100			40					50			
Base Capacity (vph)	320	3609		214	3716			298	530		358	
Starvation Cap Reductn	0	132		0	1193			0	0		0	
Spillback Cap Reductn	0	270		0	0			0	4		2	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.02	0.55		0.05	0.48			0.50	0.24		0.48	

Intersection Summary

Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Natural Cycle: 75

MS Synchro 9 Report Page 31

38: Brazos St & W. 15th St

2024 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.85 Intersection Signal Delay: 11.1 Intersection Capacity Utilization 72.5%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 38: Brazos St & W. 15th St

MS Synchro 9 Report

39: San Jacinto Blvd & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

Traffic Volume (vph)				•	*		`	7	- 1	- 7	_	+	*
Traffic Volume (vph)	ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Traffic Volume (vph)	ane Configurations		ተ ቀሴ		*	^ ^						ተተኩ	
Future Volume (vph) 0 1963 117 67 929 0 0 0 0 0 522 Confl. Bikes (#hr) 11 11 11		0		117			0	0	0	0	522	648	31
Confi. Peds. (#/hr)		0		117	67		0	0	0	0	522	648	31
Confil. Bikes (#/hr) Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93											32		
Adj. Flow (vph)													
Adj. Flow (vph)	eak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.9
Shared Lane Traffic (%) Lane Group Flow (vph)	dj. Flow (vph)	0	2111	126	72	999	0	0	0	0	561	697	33
Lane Group Flow (vph) 0 2237 0 72 999 0 0 0 0 0 0 Turn Type NA pm+pt NA Perm Perm Protected Phases 2 1 6 4 Permitted Phases 4 Detector Phase 2 1 6 4 4 Switch Phase 8 4 4 4 Wilnimum Initial (s) 10.0 3.0 10.0 7.0 32.0 Minimum Initial (s) 28.0 8.0 28.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 40.0 </td <td></td>													
Turn Type NA pm+pt NA Perm Protected Phases 2 1 6 4 Permitted Phases 2 1 6 4 Detector Phase 2 1 6 4 Switch Phase 8 2 1 6 4 Winimum Initial (s) 10.0 3.0 10.0 7.0 Minimum Split (s) 28.0 8.0 28.0 32.0 Total Split (s) 80.0 15.0 95.0 40.0 Total Split (s) 59.3% 11.1% 70.4% 29.6% Vellow Time (s) 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 5.0 5.0 5.0 5.0 Lead-Lag Quitinize? Yes Yes Yes Yes Yes None C-Max None C-Max None Act Effet Green (s) 79.6 90.0 90.0 Act Leffet Green (s)	ane Group Flow (vph)	0	2237	0	72	999	0	0	0	0	0	1258	33
Protected Phases 2 1 6 6 4 Permitted Phases 6 6 4 Switch Phase 2 1 1 6 Switch Phase 8 Minimum Initial (s) 10.0 3.0 10.0 7.0 Minimum Split (s) 28.0 8.0 28.0 32.0 Total Split (s) 59.3% 11.1% 70.4% 29.6% Yellow Time (s) 1.0 1.0 1.0 1.0 1.0 Stort Time (s) 1.0 1.0 1.0 1.0 1.0 Total Time (s) 5.0 5.0 5.0 5.0 Total Lost Time (s) 5.0 5.0 5.0 Total Lost Time (s) 5.0 5.0 5.0 Fecall Mode CMax None C-Max None C-Max None Act Effet Green (s) 79.6 90.0 90.0 Actuated g/C Ratio 0.59 0.67 0.67 V/c Ratio 0.75 0.47 0.29 Control Delay 10.9 41.7 6.1 Queue Delay 0.1 0.0 0.2 Total Delay 11.0 41.7 6.3 LOS B D A Approach Delay 11.0 41.7 6.3 LOS B A Queue Length 50th (ft) 595 m71 102 Internal Link Dist (ft) 595 m71 102 Internal Link Dist (ft) 597 282 125 Turn Bay Length (ft) Base Capacity (vph) 2972 183 3390 Stlarvation Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Suppose Spilloack Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 0					pm+pt	NA					Perm	NA	Perr
Detector Phase 2			2									4	
Detector Phase 2	ermitted Phases				6						4		
Minimum Initial (s) 10.0 3.0 10.0 7.0 Minimum Split (s) 28.0 8.0 28.0 32.0 Total Split (s) 80.0 15.0 95.0 40.0 Total Split (%) 59.3% 11.1% 70.4% 29.6% Yellow Time (s) 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 1.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 Lead-Lag Optimize? Yes Yes Yes Recall Mode C-Max None Actualed Mode C-Max None C-Max None Act Leaf-Lag Optimize? Yes Yes Yes None Recall Mode C-Max None C-Max None Act Lead Green (s) 79.6 90.0 90.0 90.0 Actualed g/C Ratio 0.59 0.67 0.67 0.67 V/	etector Phase		2			6					4	4	
Minimum Split (s) 28.0 8.0 28.0 32.0 Total Split (s) 80.0 15.0 95.0 40.0 Total Split (s) 59.3% 11.1% 70.4% 29.6% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 Cost Time Adjust (s) 0.0 0.0 5.0 Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode CMax None CMax None Act Effet Green (s) 79.6 90.0 90.0 Act Letted g/C Ratio 0.59 0.67 0.67 Act Letted g/C Ratio 0.75 0.47 0.29 Control Delay 10.9 41.7 6.1 Queue Delay 11.0 41.7 6.3 LOS B D A Approach Delay 11.0 41.7 6.3 LOS B A Approach Delay 11.0 41.7 6.3 LOS B A Approach Los B B A A Dueue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 595 m71 102 Internal Link Dist (ft) 595 m71 102 Internal Link Dist (ft) 595 m71 102 Internal Link Dength (ft	witch Phase												
Minimum Split (s) 28.0 8.0 28.0 32.0 Total Split (s) 80.0 15.0 95.0 40.0 Total Split (k) 59.3% 11.1% 70.4% 29.6% Yellow Time (s) 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 5.0 Lead/Lag Lag Lead Lead Lead Lead/Lag Optimize? Yes Yes Yes None C-Max None C-Max None Actualed Green (s) None C-Max None Actualed green (s) None Actualed green (s) None C-Max None Actualed green (s) Actualed green (s) Actualed green (s) Actualed gree	linimum Initial (s)		10.0		3.0	10.0					7.0	7.0	7.
Total Split (s) 80.0 15.0 95.0 40.0 Total Split (%) 59.3% 11.1% 70.4% 29.6% 29.6% 40.0 Time (s) 4.0 4.0 4.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1												32.0	32.
Total Split (%) 59.3% 11.1% 70.4% 29.6% Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1												40.0	40.
Yellow Time (s) 4.0 4.0 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 Storage Cap Reductn 6 9 1.0 1.0 1.0 1.0 All-Red Time (s) 1.0 1.0 1.0 1.0 All-Red Time (s) 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 Lead/Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None C-Max None Act Effct Green (s) 79.6 90.0 90.0 Actuated g/C Ratio 0.59 0.67 0.67 V/c Ratio 0.75 0.47 0.29 Control Delay 10.9 41.7 6.1 Queue Delay 0.1 0.0 0.2 Total Delay 11.0 41.7 6.3 LOS B D A Approach Delay 11.0 41.7 6.3 Queue Length 50th (ft) 150 24 87 Queue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0												29.6%	29.69
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												4.0	4.
Lost Time Adjust (s) 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 Lead/Lag Lag Lead Lead-Lag Optimize? Yes Recall Mode C-Max None C-Max None Act Effc Green (s) 79.6 90.0 90.0 Actuated g/C Ratio 0.59 0.67 0.67 V/c Ratio 0.75 0.47 0.29 Control Delay 10.9 41.7 6.1 Queue Delay 0.1 0.0 0.2 Total Delay 11.0 41.7 6.3 LOS B D A Approach Delay 11.0 41.7 6.3 LOS B A Approach LOS B A Cueue Length 50th (ft) 150 24 87 Queue Length 50th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 8as 262 Satarvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Storage Cap Reductn												1.0	1.
Total Lost Time (s) 5.0 5.0 5.0 Lead/Lag Lead Lead Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None C-Max None Act Effct Green (s) 79.6 90.0 90.0 Actuated g/C Ratio 0.59 0.67 0.67 v/c Ratio 0.75 0.47 0.29 Control Delay 10.9 41.7 6.1 Queue Delay 0.1 0.0 0.2 Total Delay 11.0 41.7 6.3 LOS B D A Approach Delay 11.0 41.7 6.3 LOS B D A Approach LOS B A D A Dueue Length 50th (ft) 150 24 87 Queue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 297 282 125 Turn Bay Length (ft) 89 0 1256 Spillback Cap Reducth 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0 Storage Cap Reducth											110	0.0	0.
Lead/Lag Lag Lead Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None Act Effct Green (s) 79.6 90.0 90.0 90.0 Actualed g/C Ratio 0.59 0.67 0.67 0.67 0.67 v/c Ratio 0.75 0.47 0.29 0.00												5.0	5.
Lead-Lag Optimize? Yes Yes Recall Mode C-Max None C-Max None Act Effct Green (s) 79.6 90.0 90.0 90.0 Actualed g/C Ratio 0.59 0.67 0.67 0.67 0.67 V/c Ratio 0.75 0.47 0.29 0.20 0.0 0.20 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>0.</td></t<>						0.0						0.0	0.
Recall Mode C-Max None C-Max None Act Effet Green (s) 79.6 90.0 90.0 Actuated g/C Ratio 0.59 0.67 0.67 V/c Ratio 0.75 0.47 0.29 Control Delay 10.9 41.7 6.1 Queue Delay 0.1 0.0 0.2 Total Delay 11.0 41.7 6.3 LOS B D A Approach Delay 11.0 8.6 A Approach LOS B A A Queue Length 50th (ft) 150 24 87 Queue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0<													
Act Effct Green (s) 79.6 90.0 90.0 Actuated g/C Ratio 0.59 0.67 0.67 v/c Ratio 0.59 0.67 0.67 v/c Ratio 0.75 0.47 0.29 Control Delay 10.9 41.7 6.1 Queue Delay 0.1 0.0 0.2 Total Delay 11.0 41.7 6.3 LOS B D A Approach Delay 11.0 8.6 Approach Delay 11.0 8.6 Approach LOS B A A Queue Length 50th (ft) 150 24 87 Queue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Starvation Cap Reducth 89 0 1256 Spillback Cap Reducth 0 0 0 0 0 Storage Cap Reducth 0 0 0 0 0						C-Max					None	None	Non
Actuated g/C Ratio 0.59 0.67 0.67 v/c Ratio 0.75 0.47 0.29 Control Delay 10.9 41.7 6.1 Queue Delay 0.1 0.0 0.2 Total Delay 11.0 41.7 6.3 LOS B D A Approach Delay 11.0 8.6 Approach LOS B A A Queue Length 50th (ft) 150 24 87 Queue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Startantion Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0												35.0	35.
v/c Ratio 0.75 0.47 0.29 Control Delay 10.9 41.7 6.1 Queue Delay 0.1 0.0 0.2 Total Delay 11.0 41.7 6.3 LOS B D A Approach Delay 11.0 8.6 Approach LOS B A Queue Length 50th (ft) 150 24 87 Queue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0	. , ,											0.26	0.2
Control Delay 10.9 41.7 6.1 Queue Delay 0.1 0.0 0.2 Total Delay 11.0 41.7 6.3 LOS B D A Approach Delay 11.0 8.6 Approach LOS B A Queue Length 50th (ft) 150 24 87 Queue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0												1.25dl	0.7
Queue Delay 0.1 0.0 0.2 Total Delay 11.0 41.7 6.3 LOS B D A Approach Delay 11.0 8.6 Approach LOS B A Oueue Length 50th (ft) 150 24 87 Oueue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0												74.5	45.
Total Delay 11.0 41.7 6.3 LOS B D A Approach Delay 11.0 8.6 Approach LOS B A Queue Length 50th (ft) 150 24 87 Queue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Statuthard Link Dist Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0												0.0	0.
B D A												74.5	45.
Approach Delay 11.0 8.6 Approach LOS B A Queue Length 50th (ft) 150 24 87 Queue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0												E	
Aproach LOS B A Queue Length 50th (ft) 150 24 87 Queue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0												68.4	
Oueue Length 50th (ft) 150 24 87 Queue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0												E	
Queue Length 95th (ft) 595 m71 102 Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0			150		24							405	21
Internal Link Dist (ft) 297 282 125 Turn Bay Length (ft) 70 70 Base Capacity (vph) 2972 183 3390 Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0												#514	33
Turn Bay Length (ft) 70 Base Capacity (vph) 2972 183 3390 Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0					11171				125			272	55
Base Capacity (vph) 2972 183 3390 Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0					70	LUL			120			2.2	5
Starvation Cap Reductn 89 0 1256 Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0			2972			3390						1261	46
Spillback Cap Reductn 0 0 0 Storage Cap Reductn 0 0 0												0	70
Storage Cap Reductn 0 0 0												0	
5 · · · J · · · · · · · · · · · · · · ·												0	
												1.00	0.7
Intersection Summary	itersection Summary												

MS Synchro 9 Report Page 33

39: San Jacinto Blvd & W. 15th St

2024 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.00

Intersection LOS: C ICU Level of Service D

Intersection Signal Delay: 29.2 Intersection Capacity Utilization 79.9% Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

MS Synchro 9 Report

40: Trinity St & W. 15th St

TIA for Texas Capitol Complex Master Plan 2018 Update

	٠	-	\rightarrow	•	•	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^ ^			ተ ተ ጉ			414	7			
Traffic Volume (vph)	89	2165	0	0	818	147	183	315	289	0	0	0
Future Volume (vph)	89	2165	0	0	818	147	183	315	289	0	0	0
Confl. Peds. (#/hr)	2					2	7		8			
Confl. Bikes (#/hr)									9			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	93	2255	0	0	852	153	191	328	301	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	93	2255	0	0	1005	0	0	519	301	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	28.0			28.0		35.0	35.0	35.0			
Total Split (s)	10.0	100.0			90.0		35.0	35.0	35.0			
Total Split (%)	7.4%	74.1%			66.7%		25.9%	25.9%	25.9%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0			0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0			5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	95.0	95.0			85.0			30.0	30.0			
Actuated g/C Ratio	0.70	0.70			0.63			0.22	0.22			
v/c Ratio	0.26	0.63			0.32			0.67	0.78			
Control Delay	5.6	6.5			15.1			53.1	55.2			
Queue Delay	0.0	0.4			0.0			0.0	0.3			
Total Delay	5.6	6.9			15.1			53.1	55.5			
LOS	Α	Α			В			D	Ε			
Approach Delay		6.8			15.1			54.0				
Approach LOS		Α			В			D				
Queue Length 50th (ft)	18	163			191			221	206			
Queue Length 95th (ft)	m22	m171			202			285	#342			
Internal Link Dist (ft)		282			641			149			621	
Turn Bay Length (ft)	100											
Base Capacity (vph)	356	3578			3139			769	384			
Starvation Cap Reductn	0	656			0			0	0			
Spillback Cap Reductn	0	513			0			0	5			
Storage Cap Reductn	0	0			0			0	0			
Reduced v/c Ratio	0.26	0.77			0.32			0.67	0.79			

Intersection Summary

Cycle Length: 135

Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 75

MS Synchro 9 Report Page 35

40: Trinity St & W. 15th St

2024 Background + Site Timing Plan: PM

TIA for Texas Capitol Complex Master Plan 2018 Update

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.78

Intersection LOS: B

Intersection Signal Delay: 18.1 Intersection Capacity Utilization 79.9% Analysis Period (min) 15 ICU Level of Service D

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 40: Trinity St & W. 15th St

MS Synchro 9 Report

TIA for Texas Capitol Complex Master Plan 2018 Update

 Intersection

 Intersection Delay, s/veh
 127.6

 Intersection LOS
 F

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	6	106	14	0	76	202	10	0	15	342	289
Future Vol, veh/h	0	6	106	14	0	76	202	10	0	15	342	289
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	8	136	18	0	97	259	13	0	19	438	371
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		16.1				28.5				224.2		
HCM LOS		С				D				F		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	2%	5%	26%	10%	
Vol Thru, %	53%	84%	70%	66%	
Vol Right, %	45%	11%	3%	23%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	646	126	288	179	
LT Vol	15	6	76	18	
Through Vol	342	106	202	119	
RT Vol	289	14	10	42	
Lane Flow Rate	828	162	369	229	
Geometry Grp	1	1	1	1	
Degree of Util (X)	1.436	0.338	0.713	0.448	
Departure Headway (Hd)	6.24	8.743	7.985	7.89	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	588	414	458	459	
Service Time	4.24	6.743	5.985	5.89	
HCM Lane V/C Ratio	1.408	0.391	0.806	0.499	
HCM Control Delay	224.2	16.1	28.5	17.1	
HCM Lane LOS	F	С	D	С	
HCM 95th-tile Q	39.3	1.5	5.5	2.3	

MS Synchro 9 Report Page 1

11: Colorado St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
	ODLI	0.01	ODT	000
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	18	119	42
Future Vol, veh/h	0	18	119	42
Peak Hour Factor	0.78	0.78	0.78	0.78
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	23	153	54
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1 1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		W D		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		17.1		
HCM LOS		С		

12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection Intersection Delay, s/veh Intersection LOS 12.7

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ર્ન				f)				^	
Traffic Vol, veh/h	0	0	415	0	0	0	348	0	0	0	0	0
Future Vol, veh/h	0	0	415	0	0	0	348	0	0	0	0	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	483	0	0	0	405	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach			EB				WB				NB	
Opposing Approach			WB				EB				SB	
Opposing Lanes			1				1				1	
Conflicting Approach Left			SB				NB				EB	
Conflicting Lanes Left			1				1				1	
Conflicting Approach Right			NB				SB				WB	
Conflicting Lanes Right			1				1				1	
HCM Control Delay			13.5				11.9				0	
HCM LOS			В				В				-	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	0%	
Vol Right, %	0%	0%	0%	100%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	415	348	13	
LT Vol	0	0	0	0	
Through Vol	0	415	348	0	
RT Vol	0	0	0	13	
Lane Flow Rate	0	483	405	15	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0.587	0.501	0.022	
Departure Headway (Hd)	5.844	4.381	4.454	5.198	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	825	809	686	
Service Time	3.899	2.399	2.472	3.248	
HCM Lane V/C Ratio	0	0.585	0.501	0.022	
HCM Control Delay	8.9	13.5	11.9	8.4	
HCM Lane LOS	N	В	В	Α	
HCM 95th-tile Q	0	3.9	2.9	0.1	

Synchro 9 Report Page 3 MS

12: N. Congress Ave & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations				7
Traffic Vol, veh/h	0	0	0	13
Future Vol, veh/h	0	0	0	13
Peak Hour Factor	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2
Mvmt Flow	0	0	0	15
Number of Lanes	0	0	0	1
Approach				SB
Opposing Approach				NB
Opposing Lanes				1
Conflicting Approach Left				WB
Conflicting Lanes Left				1
Conflicting Approach Right				EB
Conflicting Lanes Right				1
HCM Control Delay				8.4
HCM LOS				Α

TIA for Texas Capitol Complex Master Plan 2018 Update

tersection	
tersection Delay, s/veh	52.6
tersection LOS	F

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	67	383	26	0	11	76	25	0	191	167	0
Future Vol, veh/h	0	67	383	26	0	11	76	25	0	191	167	0
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	78	445	30	0	13	88	29	0	222	194	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		87.8				15				39.7		
HCM LOS		F				В				E		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	53%	14%	10%	36%
Vol Thru, %	47%	80%	68%	21%
Vol Right, %	0%	5%	22%	43%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	358	476	112	273
LT Vol	191	67	11	97
Through Vol	167	383	76	58
RT Vol	0	26	25	118
Lane Flow Rate	416	553	130	317
Geometry Grp	1	1	1	1
Degree of Util (X)	0.843	1.075	0.295	0.645
Departure Headway (Hd)	7.63	6.994	8.51	7.669
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	479	520	425	473
Service Time	5.63	5.062	6.51	5.669
HCM Lane V/C Ratio	0.868	1.063	0.306	0.67
HCM Control Delay	39.7	87.8	15	23.6
HCM Lane LOS	E	F	В	С
HCM 95th-tile O	8.4	16.9	1.2	4.5

MS Synchro 9 Report Page 5

14: Brazos St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

SBU	SBL	SBT	SBR
		43-	
0	97	58	118
0	97	58	118
0.86	0.86	0.86	0.86
2	2	2	2
0	113	67	137
0	0	1	0
	SB		
	NB		
	1		
	WB		
	1		
	EB		
	1		
	23.6		
	С		
	0 0 0.86 2	0 97 0 97 0.86 0.86 2 2 0 113 0 0 SB NB 1 WB 1 EB	0 97 58 0 97 58 0.86 0.86 0.86 2 2 2 2 0 113 67 0 0 1 SB NB 1 WB 1 EB 1 23.6

16: San Jacinto Blvd & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update 2024 Background + Site Timing Plan: PM

 Intersection

 Intersection Delay, s/veh
 25.9

 Intersection LOS
 D

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			ĵ.				ર્ન					
Traffic Vol, veh/h	0	0	203	306	0	37	54	0	0	0	0	0
Future Vol, veh/h	0	0	203	306	0	37	54	0	0	0	0	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	214	322	0	39	57	0	0	0	0	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	0	0
A			ED			MD						

Approach	EB	WB	
Opposing Approach	WB	EB	
Opposing Lanes	1	1	
Conflicting Approach Left	SB		
Conflicting Lanes Left	3	0	
Conflicting Approach Right		SB	
Conflicting Lanes Right	0	3	
HCM Control Delay	39.9	11.9	
HCM LOS	E	В	

Lane	EBLn1	WBLn1	SBLn1	SBLn2	SBLn3
Vol Left, %	0%	41%	0%	0%	0%
Vol Thru, %	40%	59%	100%	100%	0%
Vol Right, %	60%	0%	0%	0%	100%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	509	91	285	285	34
LT Vol	0	37	0	0	0
Through Vol	203	54	285	285	0
RT Vol	306	0	0	0	34
Lane Flow Rate	536	96	299	299	36
Geometry Grp	7	7	7	7	7
Degree of Util (X)	0.895	0.195	0.54	0.54	0.04
Departure Headway (Hd)	6.013	7.342	6.495	6.495	4.021
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	600	487	554	554	883
Service Time	3.768	5.12	4.254	4.254	1.779
HCM Lane V/C Ratio	0.893	0.197	0.54	0.54	0.041
HCM Control Delay	39.9	11.9	16.7	16.7	6.9
HCM Lane LOS	E	В	С	С	Α
HCM 95th-tile Q	10.7	0.7	3.2	3.2	0.1

				ľ
SBU	SBL	SBT	SBR	
		412	7	
0	0	569	34	
0	0	569	34	
0.95	0.95	0.95	0.95	
2	2	2	2	
0	0	599	36	
0	0	2	1	
		SB		
		0		
		WB		
		1		
		EB		
		1		
		16.1		
		C		
	0 0 0.95 2	0 0 0 0 0.95 0.95 2 2 0 0	0 0 569 0 0 569 0.95 0.95 0.95 2 2 2 2 0 0 599 0 0 2 SB 0 WB 1 EB	0 0 569 34 0 0 569 34 0.95 0.95 0.95 0.95 2 2 2 2 2 0 0 599 36 0 0 2 1 SB 0 WB 1 EB 1 16.1

TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection
Intersection Delay, s/veh 57.5
Intersection LOS F

Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations			4				4				4	
Traffic Vol, veh/h	0	80	36	28	0	0	174	0	0	52	514	(
Future Vol, veh/h	0	80	36	28	0	0	174	0	0	52	514	C
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	98	44	34	0	0	212	0	0	63	627	0
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB					WB			NB		
Opposing Approach		WB					EB			SB		
Opposing Lanes		1					1			1		
Conflicting Approach Left		SB					NB			EB		
Conflicting Lanes Left		1					1			1		
Conflicting Approach Right		NB					SB			WB		
Conflicting Lanes Right		1					1			1		
HCM Control Delay		14.4					15.4			98		
HCM LOS		В					С			F		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	9%	56%	0%	0%	
Vol Thru, %	91%	25%	100%	60%	
Vol Right, %	0%	19%	0%	40%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	566	144	174	220	
LT Vol	52	80	0	0	
Through Vol	514	36	174	131	
RT Vol	0	28	0	89	
Lane Flow Rate	690	176	212	268	
Geometry Grp	1	1	1	1	
Degree of Util (X)	1.123	0.345	0.411	0.463	
Departure Headway (Hd)	5.859	7.51	7.383	6.528	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	614	481	490	555	
Service Time	3.938	5.51	5.383	4.528	
HCM Lane V/C Ratio	1.124	0.366	0.433	0.483	
HCM Control Delay	98	14.4	15.4	15	
HCM Lane LOS	F	В	С	В	
HCM 95th-tile Q	21.3	1.5	2	2.4	

MS Synchro 9 Report Page 9

20: Colorado St & E. 17th St TIA for Texas Capitol Complex Master Plan 2018 Update

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Lane Configurations			4	
Traffic Vol, veh/h	0	0	131	89
Future Vol, veh/h	0	0	131	89
Peak Hour Factor	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2
Mymt Flow	0	0	160	109
Number of Lanes	0	0	1	0
realiser of Earles				
Approach			SB	
Opposing Approach			NB	
Opposing Lanes			1	
Conflicting Approach Left			WB	
Conflicting Lanes Left			1	
Conflicting Approach Right			EB	
Conflicting Lanes Right			1	
HCM Control Delay			15	
HCM LOS			В	

lΑ	for	Texas	Capitol	Com	plex	Master	Plan	2018	Upd	ate

itersection	
ntersection Delay, s/veh	8.7
ntersection LOS	Δ

Movement	EBU	EBL	EBT	WBU	WBT	WBR	SBU	SBL	SBR
Lane Configurations			4		र्व			Y	
Traffic Vol, veh/h	0	0	193	0	40	52	0	97	0
Future Vol, veh/h	0	0	193	0	40	52	0	97	0
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	238	0	49	64	0	120	0
Number of Lanes	0	0	1	0	1	0	0	1	0
Approach			EB		WB			SB	
Opposing Approach			WB		EB				
Opposing Lanes			1		1			0	
Conflicting Approach Left			SB					WB	
Conflicting Lanes Left			1		0			1	
Conflicting Approach Right					SB			EB	
Conflicting Lanes Right			0		1			1	
HCM Control Delay			9.1		7.8			8.9	
HCM LOS			Α		A			Α	

Lane	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	100%	•
Vol Thru, %	100%	43%	0%	
Vol Right, %	0%	57%	0%	
Sign Control	Stop	Stop	Stop	
Traffic Vol by Lane	193	92	97	
LT Vol	0	0	97	
Through Vol	193	40	0	
RT Vol	0	52	0	
Lane Flow Rate	238	114	120	
Geometry Grp	1	1	1	
Degree of Util (X)	0.288	0.131	0.163	
Departure Headway (Hd)	4.357	4.155	4.904	
Convergence, Y/N	Yes	Yes	Yes	
Cap	827	864	733	
Service Time	2.374	2.174	2.928	
HCM Lane V/C Ratio	0.288	0.132	0.164	
HCM Control Delay	9.1	7.8	8.9	
HCM Lane LOS	Α	Α	Α	
HCM 95th-tile Q	1.2	0.5	0.6	

9: Guadalupe St & W. 18th St	
TIA for Texas Capitol Complex Master Plan 2018 Update	

Intersection							
Int Delay, s/veh 3	32.6						
Movement	EBT	EBR	W	BL \	NBT	NBL	NBR
Lane Configurations	^ 14				^	W	
Traffic Vol, veh/h	672				1365	66	305
Future Vol, veh/h	672	45		66 1	1365	66	305
Conflicting Peds, #/hr	C	8 (8	0	0	11
Sign Control	Free	Free	Fr	ee	Free	Stop	Stop
RT Channelized		None		- N	lone	-	None
Storage Length				40	-	0	-
Veh in Median Storage, #	C) -		-	0	0	-
Grade, %	C) -		-	0	0	-
Peak Hour Factor	94	94		94	94	94	94
Heavy Vehicles, %	2	2		2	2	2	2
Mvmt Flow	715	48		70 1	1452	70	324
Major/Minor	Major1		Majo	or2		Minor1	
Conflicting Flow All	(71	0	1613	400
Stage 1				-	-	747	-
Stage 2						866	
Critical Hdwy			4.	14	-	6.84	6.94
Critical Hdwy Stg 1				-	-	5.84	-
Critical Hdwy Stg 2				-	-	5.84	-
Follow-up Hdwy			2.	22	-	3.52	3.32
Pot Cap-1 Maneuver			8	40	-	95	600
Stage 1				-	-	429	-
Stage 2				-	-	372	-
Platoon blocked, %					-		
Mov Cap-1 Maneuver			8	31	-	86	589
Mov Cap-2 Maneuver				-	-	86	-
Stage 1				-	-	426	
Stage 2				-	-	341	-
Approach	EB	3	V	VB		NB	
HCM Control Delay, s	C)	().4		219.8	
HCM LOS						F	
Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL W	RT			
Capacity (veh/h)	289		831	-			
HCM Lane V/C Ratio	1.366						
HCM Control Delay (s)	219.8		9.7	-			
HCM Lane LOS	F -		Α.,				
HCM 95th %tile Q(veh)	20.4		0.3				
TOW FOUT FOUT Q(VCII)	20.7		0.5				

Intersection												
Int Delay, s/veh	45.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		^	7		ર્ન						નીંકે	
Traffic Vol, veh/h	0	21	12	204	97	0	0	0	0	37	1066	23
Future Vol, veh/h	0	21	12	204	97	0	0	0	0	37	1066	23
Conflicting Peds, #/hr	0	0	0	56	0	0	0	0	0	0	0	42
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	0	-	-	-	-	-	-	-	-	
Veh in Median Storage,		0	-	-	0	-	-	-	-	-	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	22	12	210	100	0	0	0	0	38	1099	24
Major/Minor	Minor2			Minor1						Major2		
Conflicting Flow All		1229	659	693	1241	-				0	0	(
Stage 1		1229	-	0,0	0					-		
Stage 2		0		693	1241							
Critical Hdwy		6.54	6.94	7.54	6.54					4.14		
Critical Hdwy Stg 1		5.54	0.71	7.51	0.01					-		
Critical Hdwy Stg 2		0.01	-	6.54	5.54	-				-		
Follow-up Hdwy		4.02	3.32	3.52	4.02	-				2.22		
Pot Cap-1 Maneuver	0	177	406	330	174	0					-	
Stage 1	0	248	-	-		0						
Stage 2	0			400	245	0				-		
Platoon blocked, %						_						
Mov Cap-1 Maneuver		170	390	288	167	-				-		
Mov Cap-2 Maneuver		170	-	288	167	-				-		
Stage 1		238	-		-	-				-	-	
Stage 2	-	-	-	352	235	-				-	-	
Approach	EB			WB						SB		
HCM Control Delay, s	23.9			216.9						30		
HCM LOS	23.9 C			216.9 F								
Minor Lane/Major Mvmt	EBLn1			SBL SBT	SBR							
Capacity (veh/h)	170	390	233		-							
HCM Lane V/C Ratio		0.032			-							
HCM Control Delay (s)	29.2	14.5	216.9		-							
HCM Lane LOS	D	В	F		-							
HCM 95th %tile Q(veh)	0.4	0.1	16.7		-							

13: W. 18th St & Parking Dr. 2 TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: PM

								_
Intersection								
	1.2							_
Movement	EBL EBT I	EBR	WBL WBT WBR	NBL NBT I	NBR	SBL	SBT S	BR
Lane Configurations	ની		1 2	ካ ተተቡ				_
Traffic Vol, veh/h	11 54	0	0 172 75	66 1234	78	0	0	0
uture Vol, veh/h	11 54	0	0 172 75	66 1234	78	0	0	0
Conflicting Peds, #/hr	0 0	0	0 0 21	25 0	0	0	0	0
Sign Control	Stop Stop	Stop	Stop Stop Stop	Free Free	Free	Free	Free F	ree
RT Channelized	N	lone	None	N	lone	-	- N	one
Storage Length		-		0 -	-	-	-	-
Veh in Median Storage, #		-	- 0 -	- 0	-	-	-	-
Grade, %	- 0	-	- 0 -	- 0	-	-	0	-
Peak Hour Factor	95 95	95	95 95 95	95 95	95	95	95	95
Heavy Vehicles, %	2 2	2	2 2 2	2 2	2	2	2	2
Mvmt Flow	12 57	0	0 181 79	69 1299	82	0	0	0
lajor/Minor	Minor2		Minor1	Major1				
Conflicting Flow All	795 1545	-	- 1504 712	25 0	0			
Stage 1	25 25	-	- 1479 -		-			
Stage 2	770 1520	-	- 25 -		-			
Critical Hdwy	6.44 6.54	-	- 6.54 7.14	5.34 -	-			
Critical Hdwy Stg 1		-	- 5.54 -		-			
Critical Hdwy Stg 2	6.74 5.54	-			-			
Follow-up Hdwy	3.82 4.02	-	- 4.02 3.92	J.12	-			
Pot Cap-1 Maneuver	336 114	0	0 ~ 120 322	1124 -	-			
Stage 1		0	0 188 -		-			
Stage 2	326 179	0	0		-			
Platoon blocked, %				-	-			
Mov Cap-1 Maneuver	- 104	-	- ~ 110 322	1124 -	-			
Mov Cap-2 Maneuver	- 104	-	- ~ 110 -		-			
Stage 1		-	- ~ 176 -		-			
Stage 2	- 168				-			
Approach	EB		WB	NB				
HCM Control Delay, s			\$ 484.8	0.4				
HCM LOS	-		F					
Minor Lane/Major Mvmt	NBL NBT I	VIRR FRI	n1WRI n1					
Capacity (veh/h)			- 137					
HCM Lane V/C Ratio			- 1.898					
HCM Control Delay (s)			-\$ 484.8					
HCM Lane LOS	A -		-5 +0+.0 - F					
HCM 95th %tile Q(veh)			- 20.2					
HOW FOUT WITE Q(VEH)	0.2		- ZU.Z					

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

17: Trinity St & W. 18th St TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site
Timing Plan: PM

Intersection						
Int Delay, s/veh 9.	7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			41	1>	
Traffic Vol, veh/h	242	145	30	255	53	50
Future Vol, veh/h	242	145	30	255	53	50
Conflicting Peds, #/hr	0	0	0	0	0	0
ign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	- 1	None	- 1	lone
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-		0	-
Grade, %	0	-	-	0	0	-
eak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	263	158	33	277	58	54
lajor/Minor	Minor2		Major1		Major2	
Conflicting Flow All	427	85	112	0	-	0
Stage 1	85	-	-	-		-
Stage 2	342	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-		-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-		-
Follow-up Hdwy	3.518	3.318	2.218	-		-
Pot Cap-1 Maneuver	584	974	1478	-		-
Stage 1	938	-	-	-		-
Stage 2	719	-	-	-		-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	569	974	1478	-	-	-
Mov Cap-2 Maneuver	569	-	-	-	-	-
Stage 1	938	-	-	-	-	-
Stage 2	700	-		-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	18.8		0.8		0	
HCM LOS	С					
Minor Lane/Major Mvmt	MDI	NBT EBLn1	SBT SBR			
Capacity (veh/h)	1478 0.022	- 674 - 0.624				
HCM Lane V/C Ratio HCM Control Delay (s)	7.5	0.624				
HCM Control Delay (S) HCM Lane LOS	7.5 A	0 18.8 A C				
	0.1	- 4.4				
HCM 95th %tile Q(veh)	U. í	- 4.4				

MS Synchro 9 Report Page 6

26: Trinity St & E. 17th St
TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site Timing Plan: PM

Intersection												
Int Delay, s/veh	80.3											
Movement	EBL	EBT	EBR	WBI	. WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		↑	7		ની						41	7
Traffic Vol, veh/h	0	148	161	3	44	0	0	0	0	108	1052	20
Future Vol, veh/h	0	148	161	3	44	0	0	0	0	108	1052	20
Conflicting Peds, #/hr	0	0	19	(0 (0	0	0	0	97	0	(
Sign Control	Stop	Stop	Stop	Sto	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None			None	-	-	None	-	-	None
Storage Length		-	40			-	-		-	-	-	50
Veh in Median Storage,	# -	0	-		- 0	-	-	-	-	-	0	
Grade, %		0	-		- 0	-	-	0	-	-	0	
Peak Hour Factor	85	85	85	8!	85	85	85	85	85	85	85	8!
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2	2	
Mymt Flow	0		189	4	_	0	0	0	0	127	1238	2
WWW. FIOW	J	17.1	107	•	02	U	· ·	U	U	127	1230	
Major/Minor	Minor2			Minor'						Major2		ı
Conflicting Flow All	-	1589	638	1076	1589	-				97	0	(
Stage 1		1492	-	9	97	-				-	-	
Stage 2		97	-	979	1492					-		
Critical Hdwy		6.54	6.94	7.5	6.54	-				4.14	-	
Critical Hdwy Stg 1		5.54	-							-		
Critical Hdwy Stg 2		-	-	6.5	5.54	-				-	-	
Follow-up Hdwy		4.02	3.32	3.52						2.22		
Pot Cap-1 Maneuver	0		419	174		0				1494		
Stage 1	0											
Stage 2	0			268		0						
Platoon blocked. %	Ū			200	, 100	U						
Mov Cap-1 Maneuver		~ 69	419		- 69					1494		
Mov Cap-1 Maneuver		~ 69	717		- 69					1777		
Stage 1		~ 132										
		~ 132			- 132					-		
Stage 2	-	-	-		- 132						-	
Approach	EB			WE	3					SB		
HCM Control Delay, s	\$ 403.6									1.2		
HCM LOS	F											
Minor Lane/Major Mvmt		EBLn2V	WBLn1	SBL SB	SBR							
Capacity (veh/h)	69	419	-	1494								
HCM Lane V/C Ratio	2.523			0.000	-							
HCM Control Delay (s)	\$ 820.4	20.5		7.6 0.6								
HCM Lane LOS	F	С	-	Α Α	•							
HCM 95th %tile Q(veh)	17	2.3	-	0.3	-							

Intersection						
Int Delay, s/veh	4.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			ተተቡ		
Traffic Vol, veh/h	231	0	20	551	0	0
Future Vol, veh/h	231	0	20	551	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0	-	-	-		-
Veh in Median Storage, #	ŧ 0	-	-	0		-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	278	0	24	664	0	0
Major/Minor	Minor2		Major1			
Conflicting Flow All	314	-	0	0		
Stage 1	0	-	-	-		
Stage 2	314	-	-	-		
Critical Hdwy	5.74	-	5.34	-		
Critical Hdwy Stg 1		-		-		
Critical Hdwy Stg 2	6.04	-	-	-		
Follow-up Hdwy	3.82	-	3.12	-		
Pot Cap-1 Maneuver	672	0		-		
Stage 1	-	0	-	-		
Stage 2	654	0		-		
Platoon blocked, %				-		
Mov Cap-1 Maneuver	672	-	-	-		
Mov Cap-2 Maneuver	672	-		-		
Stage 1	-			-		
Stage 2	654			-		
-						
Approach	EB		NB			
HCM Control Delay, s	14.1					
HCM LOS	В					
Minor Lane/Major Mvmt	NBL	NBT EBLn1				
	INDL -	- 672				
Capacity (veh/h)		- 0.414				
HCM Lane V/C Ratio HCM Control Delay (s)	-	- 0.414				
HCM Lane LOS	-	_				
=====	-	- B				
HCM 95th %tile Q(veh)	-	- 2				

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Intersection													
Int Delay, s/veh 10	02												
Movement	EBL	EBT	EBR	WB		WBR		NBL	NBT	NBR	SB		
Lane Configurations		Þ			ની							- 41	
Traffic Vol, veh/h	0	21	12	16		0		0	0	0	5		
Future Vol, veh/h	0	21	12	16	3 97	0		0	0	0	5	7 1289	24
Conflicting Peds, #/hr	0	0	0	2	4 0	0		0	0	0		0 0	43
Sign Control	Stop	Stop	Stop	Sto	o Stop	Stop		Free	Free	Free	Fre	e Free	Free
RT Channelized	-	-	None			None		-	-	None			None
Storage Length	-	-	-			-		-	-	-			. (
Veh in Median Storage, #	-	0	-		- 0	-		-	-	-		- C	
Grade, %	-	0	-		- 0	-		-	0	-		- 0) .
Peak Hour Factor	87	87	87	8	7 87	87		87	87	87	8	7 87	87
Heavy Vehicles, %	2	2	2		2 2	2		2	2	2		2 2	. 2
Mvmt Flow	0	24	14	18	7 111	0		0	0	0	6	6 1482	28
Major/Minor	Minor2			Minor	1						Major.	2	
Conflicting Flow All	-	1656	808	90	3 1656	-						0 0) ()
Stage 1		1656	-) 0	-							
Stage 2		0		90	-	-							
Critical Hdwy		6.54	6.94	7.5		-					4.1	4 .	
Critical Hdwy Stg 1		5.54	-			-							
Critical Hdwy Stg 2		-		6.5		-							
Follow-up Hdwy		4.02	3.32	3.5		-					2.2	2 .	
Pot Cap-1 Maneuver	0	97	324	23		0							
Stage 1	0	154	521			0							
Stage 2	0	101		29		0							
Platoon blocked, %	U			21	J 134	U							
Mov Cap-1 Maneuver		93	311	~ 17	5 ~ 93	-							
Mov Cap-1 Maneuver		93	-	~ 17									
Stage 1		148		- 17									
Stage 2		140		23									
Stage 2				23	/ 140								
Approach	EB			W)						SI)	
											31)	
HCM Control Delay, s	45.9			\$ 646.									
HCM LOS	E				=								
Minne I and Marine Marine	EDI = 411	NDI1	CDI	CDT CD									
Minor Lane/Major Mvmt	EBLn1V		SBL	SBT SBI	·								
Capacity (veh/h)	125	132	-	-	-								
HCM Lane V/C Ratio	0.303		-	-	-								
HCM Control Delay (s)		646.3	-	•	-								
HCM Lane LOS	E	F	-	-	-								
HCM 95th %tile Q(veh)	1.2	25.3	-	-	-								
Notes													
~: Volume exceeds capacit	y \$: De	elay exc	ceeds 30	00s +: Co	mputatio	n Not D	efined	*: All	major	volume i	n platoon		

Int Delay, s/veh 2	83.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	91	71	95	37	45	9	65	237	42	10	547	5
Future Vol, veh/h	91	71	95	37	45	9	65	237	42	10	547	5
Conflicting Peds, #/hr	0	0	0	0	0	15	88	0	0	0	0	8
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Fre
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	Non
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, #	ŧ -	0	-	-	0	-	-	0	-	-	0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	7
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	117	91	122	47	58	12	83	304	54	13	701	7.
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1398	1375	825	1366	1384	346	861	0	0	358	0	
	851	851	023	497	497	340	001	U	U	330	-	
Stage 1		524	-		887		-		-			
Stage 2 Critical Hdwy	547 7.12	6.52	6.22	869 7.12	6.52	6.22	4.12		-	4.12		
Critical Hdwy Stg 1	6.12	5.52	0.22	6.12	5.52	0.22	4.12			4.12		
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52				-	-		
		4.018	2 210		4.018	3.318	2.218			2.218		
Follow-up Hdwy						697	781		-	1201		
Pot Cap-1 Maneuver	118	145	372	124	143	097	/81	-	-	1201		
Stage 1 Stage 2	355	376	-	555 347	545		-		-	-	-	
Platoon blocked, %	521	530	-	347	362	-	-		-	-		
	rr.	110	241	24	111	687	701		-	1104	-	
Mov Cap-1 Maneuver	~ 55	113	341	~ 24 ~ 24	111	087	781	-	-	1184		
Mov Cap-2 Maneuver	~ 55	113	-			-	-	-	-	-		
Stage 1	282	338	-	481	472	-	-	-	-	-	-	
Stage 2	384	459	-	160	325	-	-	-	-		-	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	\$ 1123			\$ 885.9			1.9			0.1		
HCM LOS	F			F						0.1		
Minor Lane/Major Mvmt	NBL	NBT	NBR E	EBLn1WBLn1	SBL	SBT	SBR					
Capacity (veh/h)	781	-	-	100 46	1184	-	-					
HCM Lane V/C Ratio	0.107	-		3.295 2.536	0.011	-	-					
HCM Control Delay (s)	10.2	0	- \$	1123\$ 885.9	8.1	0	-					
HCM Lane LOS	В	Α	-	F F	Α	Α	-					
HCM 95th %tile Q(veh)	0.4	-	-	32.5 12.4	0	-	-					
Notes												

EBL EBT EBR

0

0

2 2

0

- 6.52

- 5.52

- 5.52

- 4.018

0 895

0 895

895

895

NBT EBLn1WBLn1 SBT

895 895

- 0.175 0.214

- 9.9 10.1

Α В

- 0.6 8.0

- 895

EB

9.9

0 157

81 81 81

Minor2

- None

Stop Stop Stop

0

0

0

0

0 127

0 127

WBL WBT WBR

155

0 25

- - None

0

0

0

81 81 81

2 2 2

Minor1

0 191

- 6.52

- 5.52

- 5.52

- 4.018

0 895

- 895

- 895

10.1

0 -

0 895 0

Stop Stop Stop

0 0 0

81 81 81

0 0 0

0

0 -

0

Free Free Free

- - None

0

2

0 -

0

0

0 155

Intersection Int Delay, s/veh Movement

Lane Configurations Traffic Vol, veh/h

Conflicting Peds, #/hr

Future Vol. veh/h

Sign Control

RT Channelized

Storage Length Veh in Median Storage, # Grade, %

Peak Hour Factor

Heavy Vehicles, %

Conflicting Flow All

Stage 1 Stage 2

Critical Hdwy Stg 1

Critical Hdwy Stg 2

Pot Cap-1 Maneuver

Stage 1

Stage 2

Platoon blocked, % Mov Cap-1 Maneuver

Mov Cap-2 Maneuver

Stage 1

Stage 2

Minor Lane/Major Mvmt

HCM Lane V/C Ratio

HCM Control Delay (s)

HCM 95th %tile Q(veh)

Capacity (veh/h)

HCM Lane LOS

Approach HCM Control Delay, s

HCM LOS

Follow-up Hdwy

Mymt Flow

Major/Minor

Critical Hdwy

0 0 0

81

2 2 2

Free Free Free

- - None

0

81 81

0 0

0

Timing Plan: PM

Intersection							
Int Delay, s/veh 2	2.9						
Movement	EBT	EBR		WBL	WBT	NBL	NBR
Lane Configurations	1,				ની	¥	
Traffic Vol, veh/h	82			15	67	43	0
Future Vol. veh/h	82	0		15	67	43	0
Conflicting Peds, #/hr	0	0		1	0	0	0
Sign Control	Free	Free		Free	Free	Stop	Stop
RT Channelized		None		-	None		None
Storage Length		-			-	0	-
Veh in Median Storage, #	0			-	0	0	-
Grade, %	0				0	0	
Peak Hour Factor	58			58	58	58	58
Heavy Vehicles, %	2			2	2	2	2
Mymt Flow	141	0		26	116	74	0
Major/Minor	Major1			Major2		Minor1	
Conflicting Flow All	0	0		142	0	309	142
Stage 1				172	-	142	172
Stage 2						167	
Critical Hdwy				4.12		6.42	6.22
Critical Hdwy Stg 1				1.12		5.42	0.22
Critical Hdwy Stg 2						5.42	
Follow-up Hdwy				2.218		3.518	3.318
Pot Cap-1 Maneuver				1441		683	906
Stage 1				. 771	-	885	700
Stage 2						863	
Platoon blocked, %					-	003	
Mov Cap-1 Maneuver				1441		669	905
Mov Cap-1 Maneuver				-	-	669	703
Stage 1				_		884	
Stage 2						847	
Stuge 2						047	
Approach	EB			WB		NB	
HCM Control Delay, s	0			1.4		11.1	
HCM LOS	- 0			1.4		11.1 B	
I ICIVI EUS						D	
Minor Long /Maior Monet	NDI-1 EDT	EDD	WDI	WBT			
Minor Lane/Major Mvmt	NBLn1 EBT	EBR		MRI			
Capacity (veh/h) HCM Lane V/C Ratio			0.018				
				0			
	11.1 -						
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)	B -	-		A			

MS	Synchro 9 Report
	Page 11

Intersection
Int Delay, s/veh

2024 Background + Site Timing Plan: PM

Intersection							
Int Delay, s/veh	3.7						
Movement	WBL	WBR		NBT	NBR	SBL	SBT
Lane Configurations	¥			f _a			લ
Traffic Vol, veh/h	89	95		130	16	21	719
Future Vol, veh/h	89	95		130	16	21	719
Conflicting Peds, #/hr	0	0		0	0	0	0
Sign Control	Stop	Stop		Free	Free	Free	Free
RT Channelized	-	None		-	None	-	None
Storage Length	0	-			-		-
Veh in Median Storage, #	0	-		0	-		0
Grade, %	0	-		0	-		0
Peak Hour Factor	92	92		92	92	92	92
Heavy Vehicles, %	2	2		2	2	2	2
Mymt Flow	97	103		141	17	23	782
Major/Minor	Minor1			Major1		Major2	
Conflicting Flow All	977	150		0	0	159	0
Stage 1	150	130		-	-	137	-
Stage 2	827						
Critical Hdwy	6.42	6.22				4.12	
Critical Hdwy Stg 1	5.42	0.22		-		4.12	
Critical Hdwy Stg 2	5.42						
Follow-up Hdwy	3.518	3.318				2.218	
Pot Cap-1 Maneuver	278	896				1420	
Stage 1	878	090		•		1420	
Stage 2	430						
Platoon blocked, %	430						
Mov Cap-1 Maneuver	270	896				1420	
Mov Cap-1 Maneuver	270	070				1420	
Stage 1	878						
Stage 2	418						
Stage 2	710						
Approach	WB			NB		SB	
HCM Control Delay, s	21			0		0.2	
HCM LOS	21 C			U		0.2	
I ICIVI LUS	C						
		NDDINDI :	001	0.0.T			
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT			
Capacity (veh/h)	-	- 422	1420	-			
HCM Control Dolay (s)	-	- 0.474	0.016	-			
HUM Control Dolay (c)							

33: Colorado St & Parking Dr. 3

HCM Control Delay (s)

HCM Lane LOS HCM 95th %tile Q(veh)

TIA for Texas Capitol Complex Master Plan 2018 Update

2024 Background + Site
Timing Plan: PM

Movement	EBL	El	BR NBL	NBT	SBT	SBR	
Lane Configurations			7		^	7	
Traffic Vol, veh/h	0		63 0	0	1298	53	
Future Vol, veh/h	0		63 0	0	1298	53	
Conflicting Peds, #/hr	0		0 0	0	0	15	
Sign Control	Stop	St	op Free	Free	Free	Free	
RT Channelized	-	No		None		None	
Storage Length			0 -	-		50	
Veh in Median Storage, #	0			-	0	-	
Grade, %	0			0	0	-	
Peak Hour Factor	89		89 89	89	89	89	
Heavy Vehicles, %	2		2 2	2	2	2	
Mvmt Flow	0		71 0	0	1458	60	
Major/Minor	Minor2				Major2		
Conflicting Flow All	-	7	44			0	
Stage 1			-			-	
Stage 2			-			-	
Critical Hdwy		7.	14			-	
Critical Hdwy Stg 1			-			-	
Critical Hdwy Stg 2	-				-	-	
Follow-up Hdwy		3.	92			-	
Pot Cap-1 Maneuver	0	3	06			-	
Stage 1	0		-				
Stage 2	0		-			-	
Platoon blocked, %						-	
Mov Cap-1 Maneuver	-	3	02			-	
Mov Cap-2 Maneuver			-			-	
Stage 1						-	
Stage 2							
g							
Approach	EB				SB		
HCM Control Delay, s	20.5				0		
HCM LOS	С						
Minor Lane/Major Mvmt	EBLn1	SBT SI	3R				
Capacity (veh/h)	302	-	-				
HCM Lane V/C Ratio	0.234	-	-				
HCM Control Delay (s)	20.5	-					
HCM Lane LOS	С	-					
HCM 95th %tile Q(veh)	0.9						

Synchro 9 Report Page 13 MS Synchro 9 Report Page 14

- - 21 7.6 0 - C A A - - 2.5 0 -

HCM 95th %tile Q(veh)

MS

0.1 - 2.9

2024 Background + Site Timing Plan: PM

Intersection						
Int Delay, s/veh	4.2					
Movement	EBL	EBR	NBL	NBT	SBT	
Lane Configurations	W			4	1>	
Traffic Vol, veh/h	79	79	15	209	661	
Future Vol, veh/h	79	79	15	209	661	
Conflicting Peds, #/hr	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	F
RT Channelized	-	None	-	None		No
Storage Length	0	-		-		
Veh in Median Storage, #		-		0	0	
Grade, %	0	-		0	0	
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	86	86	16	227	718	18
	- 30	- 00			710	
Major/Minor	Minor		Mois-1		PA-10	
Major/Minor	Minor2	700	Major1		Major2	_
Conflicting Flow All	988	728	737	0	-	0
Stage 1	728			-		-
Stage 2	260		4.10	-		
Critical Hdwy	6.42	6.22	4.12	-		
Critical Hdwy Stg 1	5.42			-		-
Critical Hdwy Stg 2	5.42		- 0.010	-	-	
Follow-up Hdwy	3.518	3.318	2.218	-		-
Pot Cap-1 Maneuver	274	423	869	-		-
Stage 1	478			-		-
Stage 2	783	-		-		-
Platoon blocked, %	0/0	100	0.10	-		-
Mov Cap-1 Maneuver	268	423	869	-	-	-
Mov Cap-2 Maneuver	268	-		-		-
Stage 1	478	-				-
Stage 2	767			-		-
Approach	EB		NB		SB	
HCM Control Delay, s	27.4		0.6		0	
HCM LOS	D					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR			
Capacity (veh/h)	869	- 328	JDI JDK			
HCM Lane V/C Ratio	0.019	- 0.524				
	9.2	0.524				
HCM Control Delay (s) HCM Lane LOS	9.2 A	0 27.4 A D				
HOMOSIL CO. 1)	A	A D				

Synchro 9 Report Page 15 Synchro 9 Report Page 16 MS

69: Parking Dr. 5 & E. 16th St TIA for Texas Capitol Complex Master Plan 2018 Update

Total Tota	Intersection						
Section Sect		15					
Tarrier Tarr							
raffic Vol, Veh/h	Movement		EBR	WBL			NBR
uture Vol, veh/h 200 21 16 150 121 63 conflicting Peds, #/hr 0 - None	Lane Configurations	₽			ની	W	
Conflicting Peds, #hr	Traffic Vol, veh/h			16			
Stage 2 Stage 3 Stage 2 Stage 4 Stage 2 Stage 4 Stage 2 Stage 4 Stage 2 Stage 4 Stage 4 Stage 5 Stage 6 Stage 6 Stage 6 Stage 6 Stage 6 Stage 7 Stag	Future Vol, veh/h	200	21	16	150	121	63
None	Conflicting Peds, #/hr	0	0	0	0	0	0
International Control Contro	Sign Control	Free	Free	Free		Stop	Stop
Teh in Median Storage, # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RT Channelized	-	None	-	None		None
Grade, %	Storage Length	-	-	-	-	0	-
eak Hour Factor 92 93 68 86 92 93 93 93 94	Veh in Median Storage, #	# 0	-	-	0	0	-
Reavy Vehicles, % 2 2 2 2 2 2 2 2 2	Grade, %	0	-	-	0	0	-
Internation	Peak Hour Factor	92	92	92	92	92	92
Tajor/Minor Major1 Major2 Minor1	Heavy Vehicles, %	2	2	2	2	2	2
Stage 1	Mvmt Flow	217	23	17	163	132	68
Stage 1							
Stage 1	Maior/Minor	Maior1		Maior2		Minor1	
Stage 1			0				220
Stage 2							
tritical Hdwy							
cirtical Hdwy Stg 1 5.42 5.42 5.42 5.42							
Litrical Hdwy Stg 2 - - - 5.42 - 2 collow-up Hdwy - - 2.218 - 3.518 3.318 3 collow-up Hdwy - - 2.218 - 584 810 Stage 1 - - 1327 - 885 - Stage 2 - - - 835 - Ialtono blocked, % - - - 835 - Idvo Cap-1 Maneuver - - 1327 576 810 fov Cap-2 Maneuver - - - 809 - Stage 1 - - - 823 - stage 2 - - - 823 - pproach EB WB NB ICM Control Delay, s 0 0.7 13.2 ICM LOS B B WBT apacity (veh/h) 639 - 1327 CCM Lane V/C Ratio 0.313 - 0.013 - ICM Control Delay (s) 13.2 - 7.7 0 ICM LoS B - A A							
ollow-up Hdwy - - 2.218 - 3.518 3.318 vot Cap-1 Maneuver - - 1327 - 584 810 Stage 1 - - - - 809 - Stage 2 - - - - 835 - relation blocked, % - - - - - 876 810 fov Cap-1 Maneuver - - - 576 810 - - 576 810 - - - 576 810 - - - 576 810 - - - - 576 810 -							
Tot Cap-1 Maneuver							
Stage 1							
Stage 2							
Alatoon blocked, % - - -							
Mov Cap-1 Maneuver - - 1327 - 576 810 fov Cap-2 Maneuver - - - - 576 - Stage 1 - - - - 809 - Stage 2 - - - - 823 - pproach EB WB NB NB ICM Control Delay, s 0 0.7 13.2 - ICM Lane LOS B WB WBT - <						033	-
Nov Cap-2 Maneuver		-		1227		576	910
Stage 1							
Stage 2			_		-		-
Description Delay, s Description Delay De					-		-
CM Control Delay, s	Staye 2			-		023	
CM Control Delay, s				,			
Inor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT							
Section Sect		0		0.7			
Capacity (veh/h) 639	HCM LOS					В	
Capacity (veh/h) 639							
CM Lane V/C Ratio 0.313 0.013	Minor Lane/Major Mvmt	NBLn1 EBT	EBR	WBL WBT			
CM Lane V/C Ratio 0.313 - 0.013 - 0.013 - 0.015 - 0.01	Capacity (veh/h)	639 -	-	1327 -			
ICM Control Delay (s) 13.2 7.7 0 ICM Lane LOS B A A	HCM Lane V/C Ratio	0.313 -	-	0.013 -			
ICM Lane LOS B A A	HCM Control Delay (s)		-	7.7 0			
ICM 95th %tile Q(veh) 1.3 0 -	HCM Lane LOS	В -	-	A A			
	HCM 95th %tile Q(veh)	1.3 -	-	0 -			

Intersection									
Int Delay, s/veh	4.1								
Movement	EBL	EBT				WBT	WBR	SBL	SBR
Lane Configurations	LDL	4				f)	WEIN	¥	OBIT
Traffic Vol, veh/h	16	126				252	19	95	80
Future Vol. veh/h	16	126				252	19	95	80
Conflicting Peds, #/hr	0	0				0	0	0	0
Sign Control	Free	Free				Free	Free	Stop	Stop
RT Channelized	-	None				-	None	Jiop -	None
Storage Length		INOTIC -					-	0	TVOTIC -
Veh in Median Storage, #		0				0		0	-
Grade, %		0				0		0	
Peak Hour Factor	92	92				92	92	92	92
Heavy Vehicles, %	2	2				2	2	2	2
Mymt Flow	17	137				274	21	103	87
WIVING! IOW	1/	137				214	21	103	- 07
Major/Minor	Major1				N/	Major2		Minor2	
Conflicting Flow All	295	0				-	0	456	284
Stage 1	275	-					-	284	204
Stage 2								172	
Critical Hdwy	4.12							6.42	6.22
Critical Hdwy Stg 1	4.12							5.42	0.22
Critical Hdwy Stg 2							-	5.42	
Follow-up Hdwy	2.218							3.518	3.318
Pot Cap-1 Maneuver	1266							562	755
Stage 1	1200							764	/55
Stage 2							-	858	
Platoon blocked. %							-	636	-
Mov Cap-1 Maneuver	1266	-				-	-	554	755
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	1200						-	554 554	/55
						-		764	-
Stage 1						-	-		-
Stage 2	-							845	
Approach	EB					WB		SB	
HCM Control Delay, s	0.9					0		13.1	
HCM LOS	0.9					U		13.1 B	
TICIWI EOS								ь	
Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR S	RI n1				
Capacity (veh/h)	1266	-			631				
HCM Lane V/C Ratio	0.014				0.301				
HCM Control Delay (s)	7.9	0			13.1				
HCM Lane LOS	7.9 A	A			13.1 B				
HCM 95th %tile Q(veh)	0	A			1.3				
TIGINI 70111 701118 Q(VEII)	0				1.3				

Intersection														
Int Delay, s/veh	7.7													
Movement	EBL	EBT	EBR	١	NBL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4				4				4			4	
Traffic Vol, veh/h	101	0	74		85	0	95		15	304	17	19	136	21
Future Vol, veh/h	101	0	74		85	0	95		15	304	17	19	136	21
Conflicting Peds, #/hr	0	0	0		0	0	0		0	0	0	0	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop		Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None		-	-	None		-	-	None	-	-	None
Storage Length	-	-	-		-	-	-		-	-	-	-	-	-
Veh in Median Storage, #		0	-		-	0	-		-	0	-	-	0	-
Grade, %	-	0	-		-	0	-		-	0	-	-	0	-
Peak Hour Factor	92	92	92		92	92	92		92	92	92	92	92	92
Heavy Vehicles, %	2	2	2		2	2	2		2	2	2	2	2	2
Mvmt Flow	110	0	80		92	0	103		16	330	18	21	148	23
Major/Minor	Minor2			Mi	nor1			N	Major1			Major2		
Conflicting Flow All	625	583	159		613	584	340		171	0	0	349	0	0
Stage 1	201	201	-		372	372	-		-	-	-	-	-	-
Stage 2	424	382	-		241	212			-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3	.518	4.018	3.318		2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	397	424	886		405	423	702		1406	-	-	1210	-	-
Stage 1	801	735	-		648	619	-		-	-	-	-	-	-
Stage 2	608	613	-		762	727	-		-	-	-	-	-	-
Platoon blocked, %										-	-		-	-
Mov Cap-1 Maneuver	330	410	886		359	409	702		1406	-	-	1210	-	-
Mov Cap-2 Maneuver	330	410	-		359	409	-		-	-	-	-	-	-
Stage 1	790	721	-		639	610	-		-	-	-	-	-	-
Stage 2	511	604	-		680	713	-		-	-	-	-	-	-
Approach	EB				WB				NB			SB		
HCM Control Delay, s	18.8				17.4				0.3			0.9		
HCM LOS	С				С									
Minor Lane/Major Mvmt	NBL	NBT	NRD	EBLn1WE	ΩI n1	SBL	SBT	SBR						
	1406	INDI	NDICE	449	484	1210	301	JUIN						
Capacity (veh/h) HCM Lane V/C Ratio	0.012			0.424 0		0.017								
HCM Control Delay (s)	7.6	0			17.4	0.017	0							
HCM Lane LOS	7.6 A	A		10.0 C	17.4 C	A	A							
HCM 95th %tile Q(veh)	0	Α .		2.1	1.9	0.1	А							
TIGINI FOUT WHILE Q(VEH)	0		-	Z. I	1.7	0.1								

Synchro 9 Report Page 18 MS

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2020 Background (Optimized)
Timing Plan: PM

	•	-	•	•	←	•	4	†	<i>></i>	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^			† }		ሻ	4	7			
Traffic Volume (vph)	83	952	0	0	1116	51	214	314	337	0	0	0
Future Volume (vph)	83	952	0	0	1116	51	214	314	337	0	0	0
Confl. Peds. (#/hr)			33			87	17		148			
Confl. Bikes (#/hr)						4			12			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	86	981	0	0	1151	53	221	324	347	0	0	0
Shared Lane Traffic (%)									10%			
Lane Group Flow (vph)	86	981	0	0	1204	0	221	359	312	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	75.0			60.0		60.0	60.0	60.0			
Total Split (%)	11.1%	55.6%			44.4%		44.4%	44.4%	44.4%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	70.0	70.0			56.4		55.0	55.0	55.0			
Actuated g/C Ratio	0.52	0.52			0.42		0.41	0.41	0.41			
v/c Ratio	0.50	0.53			0.83		0.32	0.52	0.66			
Control Delay	48.5	13.1			21.3		36.9	41.5	40.6			
Queue Delay	0.0	0.1			0.0		0.0	0.0	0.0			
Total Delay	48.5	13.2			21.3		36.9	41.5	40.6			
LOS	D	В			С		D	D	D			
Approach Delay		16.1			21.3			40.1				
Approach LOS		В			С			D				
Queue Length 50th (ft)	32	114			181		148	268	200			
Queue Length 95th (ft)	97	137			223		m209	364	m316			
Internal Link Dist (ft)		321			699			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	189	1835			1452		697	692	475			
Starvation Cap Reductn	0	130			0		0	0	0			
Spillback Cap Reductn	0	0			0		0	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.46	0.58			0.83		0.32	0.52	0.66			
Intersection Summary												

Cycle Length: 135

Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 60

MS Synchro 9 Report Page 1

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2020 Background (Optimized) Timing Plan: PM

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2020 Background + Site (Optimized) Timing Plan: PM

	•	-	•	•	←	•	4	†	<i>></i>	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^			ħβ		ሻ	4î	7			
Traffic Volume (vph)	83	1097	0	0	1176	51	214	314	482	0	0	0
Future Volume (vph)	83	1097	0	0	1176	51	214	314	482	0	0	0
Confl. Peds. (#/hr)			33			87	17		148			
Confl. Bikes (#/hr)						4			12			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	86	1131	0	0	1212	53	221	324	497	0	0	0
Shared Lane Traffic (%)									22%			
Lane Group Flow (vph)	86	1131	0	0	1265	0	221	433	388	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	75.0			60.0		60.0	60.0	60.0			
Total Split (%)	11.1%	55.6%			44.4%		44.4%	44.4%	44.4%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	70.0	70.0			56.4		55.0	55.0	55.0			
Actuated g/C Ratio	0.52	0.52			0.42		0.41	0.41	0.41			
v/c Ratio	0.51	0.62			0.87		0.32	0.67	0.83			
Control Delay	52.7	13.4			24.5		34.9	43.9	54.0			
Queue Delay	0.0	0.1			0.0		0.2	0.0	0.0			
Total Delay	52.7	13.5			24.5		35.1	43.9	54.0			
LOS	D	В			С		D	D	D			
Approach Delay		16.3			24.5			45.8				
Approach LOS		В			С			D				
Queue Length 50th (ft)	41	130			203		142	324	288			
Queue Length 95th (ft)	m95	150			249		m204	455	#484			
Internal Link Dist (ft)		321			699			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	184	1835			1454		697	650	465			
Starvation Cap Reductn	0	108			0		0	0	0			
Spillback Cap Reductn	0	0			0		92	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.47	0.65			0.87		0.37	0.67	0.83			

Intersection Summary

Cycle Length: 135

Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 60

MS Synchro 9 Report Page 1

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2020 Background + Site (Optimized) Timing Plan: PM

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2022 Background (Optimized) Timing Plan: AM

	•	→	\rightarrow	•	←	•	1	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^			† }		ሻ	î,	7			
Traffic Volume (vph)	152	533	0	0	1805	58	67	84	108	0	0	0
Future Volume (vph)	152	533	0	0	1805	58	67	84	108	0	0	0
Confl. Peds. (#/hr)			35			58	34		28			
Confl. Bikes (#/hr)						4			4			
Peak Hour Factor	0.89	0.89	0.89	0.95	0.95	0.95	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	171	599	0	0	1900	61	75	94	121	0	0	0
Shared Lane Traffic (%)									17%			
Lane Group Flow (vph)	171	599	0	0	1961	0	75	115	100	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	26.0			5.5		26.0	26.0	26.0			
Total Split (s)	14.4	94.0			79.6		26.0	26.0	26.0			
Total Split (%)	12.0%	78.3%			66.3%		21.7%	21.7%	21.7%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	89.5	89.0			75.4		21.0	21.0	21.0			
Actuated g/C Ratio	0.75	0.74			0.63		0.18	0.18	0.18			
v/c Ratio	0.85	0.23			0.89		0.26	0.38	0.30			
Control Delay	78.2	1.0			8.5		40.9	39.7	9.4			
Queue Delay	0.0	0.1			1.5		0.3	0.0	0.0			
Total Delay	78.2	1.2			10.0		41.2	39.7	9.4			
LOS	Е	Α			Α		D	D	Α			
Approach Delay		18.3			10.0			29.6				
Approach LOS		В			Α			С				
Queue Length 50th (ft)	99	13			105		49	74	4			
Queue Length 95th (ft)	#204	16			m54		m72	m108	m23			
Internal Link Dist (ft)	400	321			675			350			106	
Turn Bay Length (ft)	120	0/0/			0044		004	004				
Base Capacity (vph)	207	2624			2211		291	304	328			
Starvation Cap Reductn	0	980			81		0	0	0			
Spillback Cap Reductn	0	0			113		48	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.83	0.36			0.93		0.31	0.38	0.30			

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 90

MS Synchro 9 Report Page 1

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

Ø6 (R)

2022 Background (Optimized) Timing Plan: AM

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2022 Background (Optimized) Timing Plan: PM

	٠	-	\rightarrow	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, j	^			† }		Ţ	f)	7			
Traffic Volume (vph)	85	1116	0	0	1198	52	215	321	486	0	0	0
Future Volume (vph)	85	1116	0	0	1198	52	215	321	486	0	0	0
Confl. Peds. (#/hr)			34			89	17		151			
Confl. Bikes (#/hr)						4			13			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	88	1151	0	0	1235	54	222	331	501	0	0	0
Shared Lane Traffic (%)									22%			
Lane Group Flow (vph)	88	1151	0	0	1289	0	222	441	391	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase		400			40.0							
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	75.0			60.0		60.0	60.0	60.0			
Total Split (%)	11.1%	55.6%			44.4%		44.4%	44.4%	44.4%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	70.0	70.0			56.4		55.0	55.0	55.0			
Actuated g/C Ratio	0.52	0.52			0.42		0.41	0.41	0.41			
v/c Ratio	0.53	0.63			0.89		0.32	0.68	0.85			
Control Delay	53.8	13.5			24.5		36.2	46.4	57.5			
Queue Delay	0.0	0.1			0.0		0.2	0.0	0.0			
Total Delay	53.8	13.7			24.5		36.4	46.4	57.5			
LOS	D	В			С		D	D	E			
Approach Delay		16.5			24.5			48.4				
Approach LOS		В			С			D				
Queue Length 50th (ft)	43	133			195		152	356	310			
Queue Length 95th (ft)	m95	153			#704		m218	485	#493			
Internal Link Dist (ft)		321			699			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	184	1835			1453		697	650	461			
Starvation Cap Reductn	0	108			0		0	0	0			
Spillback Cap Reductn	0	0			0		101	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.48	0.67			0.89		0.37	0.68	0.85			

Intersection Summary

Cycle Length: 135

Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 65

MS Synchro 9 Report Page 1

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2022 Background (Optimized) Timing Plan: PM

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2022 Background + Site (Optimized) Timing Plan: AM

	•	-	\rightarrow	•	←	•	1	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^			ħβ		ሻ	£	7			
Traffic Volume (vph)	152	542	0	0	1985	58	67	84	125	0	0	0
Future Volume (vph)	152	542	0	0	1985	58	67	84	125	0	0	0
Confl. Peds. (#/hr)			35			58	34		28			
Confl. Bikes (#/hr)						4			4			
Peak Hour Factor	0.89	0.89	0.89	0.95	0.95	0.95	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	171	609	0	0	2089	61	75	94	140	0	0	0
Shared Lane Traffic (%)									21%			
Lane Group Flow (vph)	171	609	0	0	2150	0	75	123	111	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	26.0			5.5		26.0	26.0	26.0			
Total Split (s)	14.4	94.0			79.6		26.0	26.0	26.0			
Total Split (%)	12.0%	78.3%			66.3%		21.7%	21.7%	21.7%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	89.5	89.0			75.4		21.0	21.0	21.0			
Actuated g/C Ratio	0.75	0.74			0.63		0.18	0.18	0.18			
v/c Ratio	0.85	0.23			0.97		0.26	0.41	0.33			
Control Delay	78.3	1.0			14.4		41.1	39.5	9.2			
Queue Delay	0.0	0.1			33.1		2.1	0.0	0.0			
Total Delay	78.3	1.1			47.5		43.2	39.5	9.2			
LOS	E	Α			D		D	D	Α			
Approach Delay		18.1			47.5			29.5				
Approach LOS		В			D			С				
Queue Length 50th (ft)	99	13			191		49	77	4			
Queue Length 95th (ft)	#204	16			m60		m70	m112	m25			
Internal Link Dist (ft)		321			675			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	207	2624			2213		291	303	337			
Starvation Cap Reductn	0	972			35		0	0	0			
Spillback Cap Reductn	0	0			220		128	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.83	0.37			1.08		0.46	0.41	0.33			

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 110

MS Synchro 9 Report Page 1

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

Ø6 (R)

2022 Background + Site (Optimized) Timing Plan: AM

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2022 Background + Site (Optimized) Timing Plan: PM

	٠	-	\rightarrow	•	←	•	4	†	<i>></i>	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, j	^			† }		Ţ	f)	7			
Traffic Volume (vph)	85	1169	0	0	1230	52	215	321	591	0	0	0
Future Volume (vph)	85	1169	0	0	1230	52	215	321	591	0	0	0
Confl. Peds. (#/hr)			34			89	17		151			
Confl. Bikes (#/hr)						4			13			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	88	1205	0	0	1268	54	222	331	609	0	0	0
Shared Lane Traffic (%)									27%			
Lane Group Flow (vph)	88	1205	0	0	1322	0	222	495	445	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2	_					4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	75.0			60.0		60.0	60.0	60.0			
Total Split (%)	11.1%	55.6%			44.4%		44.4%	44.4%	44.4%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	70.0	70.0			56.4		55.0	55.0	55.0			
Actuated g/C Ratio	0.52	0.52			0.42		0.41	0.41	0.41			
v/c Ratio	0.53	0.66			0.91		0.32	0.79	0.97			
Control Delay	53.3	13.5			26.9		35.4	51.5	75.9			
Queue Delay	0.0	0.2			0.2		0.2	0.0	0.0			
Total Delay	53.3	13.6			27.1		35.6	51.5	75.9			
LOS	D	В			С		D	D	E			
Approach Delay		16.3			27.1			57.8				
Approach LOS		В			С			E				
Queue Length 50th (ft)	44	135			207		150	411	377			
Queue Length 95th (ft)	m87	156			#736		m215	561	#607			
Internal Link Dist (ft)		321			699			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	184	1835			1453		697	629	461			
Starvation Cap Reductn	0	104			0		0	0	0			
Spillback Cap Reductn	0	0			8		116	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.48	0.70			0.91		0.38	0.79	0.97			

Intersection Summary

Cycle Length: 135

Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 75

MS Synchro 9 Report Page 1

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

Ø6 (R)

2022 Background + Site (Optimized) Timing Plan: PM

0.93 0.93

0 985

ħ٦

744

744

800

2

2

5.0

30.0

55.0

45.8%

4.0

1.0

0.0

5.0

Lag

Yes

50.0

0.42

0.69

23.8

24.8

24.8

С

С

152

174

273

1426

199

0

0.80

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green

0.9

C-Max

172

172

54

0.93

185

0 486

Lane Group

Lane Configurations

Traffic Volume (vph)

Future Volume (vph)

Confl. Peds. (#/hr)

Confl. Bikes (#/hr)

Peak Hour Factor

Protected Phases

Permitted Phases Detector Phase

Minimum Split (s)

Switch Phase Minimum Initial (s)

Total Split (s)

Total Split (%)

Yellow Time (s)

All-Red Time (s)

Lead/Lag

v/c Ratio

Control Delay

Queue Delay

Approach Delay

Approach LOS

Queue Length 50th (ft)

Queue Length 95th (ft)

Internal Link Dist (ft)

Turn Bay Length (ft)

Base Capacity (vph)

Starvation Cap Reductn

Spillback Cap Reductn

Storage Cap Reductn

Intersection Summary
Cycle Length: 120
Actuated Cycle Length: 120

Reduced v/c Ratio

Natural Cycle: 100

Total Delay

LOS

Recall Mode

Lost Time Adjust (s)

Total Lost Time (s)

Lead-Lag Optimize?

Act Effct Green (s)

Actuated g/C Ratio

Shared Lane Traffic (%)

Lane Group Flow (vph)

Adj. Flow (vph)

Turn Type

0.93

40

Perm

10.0

28.0

28.0

4.0

1.0

0.0

5.0

Max

23.0

0.19

0.12

41.4

0.0

41.4

26

58 37

100

334

0

0

0.12

343

44

52

0.93

56

56

NA

4

10.0

28.0

28.0

4.0

1.0

0.0

5.0

Max

23.0

0.19

0.08

40.3

40.3

25.9

D

18

244

678

0

0 8

0

0.08

0.0

23.3% 23.3% 23.3%

56

56

49

29

60

60

Perm

10.0

28.0

28.0

4.0

1.0

0.0

5.0

Max

23.0

0.19

0.17

2.2

0.0

2.2

Α

0

8

100

353

0.17

0

0.93

MS Synchro 9 Report Page 1

WBT

4↑ 1469

0.97

1514

1659

NA

6

6

10.0

30.0

92.0

76.7%

4.0

1.0

0.0

5.0

C-Max

0.72

0.96

23.5

47.2

55.6

321

0 155

D

87.5 87.0

0.73

0.96

42.1

42.0 23.7

84.1

245 264

m264 m281

120

506 1731

90 134

1.17 1.05

0

0

0

0

0

0

0

0

0

0 37

0 40

0

625

625 1469

54

0.99

631

23%

pm+pt

19

19

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background (Optimized) Timing Plan: AM

Lane Group	Ø1	Ø9
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	9
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	5.0
Minimum Split (s)	5.5	9.5
Total Split (s)	20.0	17.0
Total Split (%)	17%	14%
Yellow Time (s)	3.5	3.5
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		

MS Synchro 9 Report

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background (Optimized) Timing Plan: AM

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd ÿ1 ÿ9

MS Synchro 9 Report Page 3

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background (Optimized) Timing Plan: AM

	•	-	•	•	←	•	4	†	<i>></i>	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	^			↑ ↑		J.	rî	7			
Traffic Volume (vph)	155	552	0	0	2015	60	68	86	126	0	0	0
Future Volume (vph)	155	552	0	0	2015	60	68	86	126	0	0	0
Confl. Peds. (#/hr)			36			60	35		28			
Confl. Bikes (#/hr)						4			4			
Peak Hour Factor	0.89	0.89	0.89	0.95	0.95	0.95	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	174	620	0	0	2121	63	76	97	142	0	0	0
Shared Lane Traffic (%)									21%			
Lane Group Flow (vph)	174	620	0	0	2184	0	76	127	112	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Minimum Split (s)	5.5	26.0			5.5		26.0	26.0	26.0			
Total Split (s)	13.6	94.0			80.4		26.0	26.0	26.0			
Total Split (%)	11.3%	78.3%			67.0%		21.7%	21.7%	21.7%			
Yellow Time (s)	3.5	4.0			3.5		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	4.5	5.0			4.5		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	89.5	89.0			75.9		21.0	21.0	21.0			
Actuated g/C Ratio	0.75	0.74			0.63		0.18	0.18	0.18			
v/c Ratio	0.89	0.24			0.98		0.26	0.42	0.33			
Control Delay	87.4	1.2			15.5		41.6	40.4	9.2			
Queue Delay	0.0	0.2			25.9		1.1	0.0	0.0			
Total Delay	87.4	1.4			41.3		42.7	40.4	9.2			
LOS	F	Α			D		D	D	A			
Approach Delay		20.2			41.3			29.9				
Approach LOS		С			D			С				
Queue Length 50th (ft)	104	14			197		51	82	4			
Queue Length 95th (ft)	m#205	17			m47		m72	m115	m25			
Internal Link Dist (ft)	11111 200	321			675		, _	350	IIILO		106	
Turn Bay Length (ft)	120	021			0.0			550				
Base Capacity (vph)	196	2624			2226		291	303	338			
Starvation Cap Reductn	0	1073			68		0	0	0			
Spillback Cap Reductn	0	0			174		97	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.89	0.40			1.06		0.39	0.42	0.33			
riodadda iid Raild	0.07	0.10			00		3.57	J. 12	0.00			

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 110

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background (Optimized) Timing Plan: AM

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.98

Intersection Signal Delay: 35.1 Intersection LOS: D

Intersection Capacity Utilization 95.5% ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background (Optimized) Timing Plan: PM

	•	-	•	•	—	•	4	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑ 1>		7	44					٦	^	7
Traffic Volume (vph)	0	1156	30	369	1152	0	0	0	0	39	204	144
Future Volume (vph)	0	1156	30	369	1152	0	0	0	0	39	204	144
Confl. Peds. (#/hr)			37	37						73		17
Confl. Bikes (#/hr)			8									14
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	1243	32	397	1239	0	0	0	0	42	219	155
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1275	0	397	1239	0	0	0	0	42	219	155
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		1	6						4	
Permitted Phases				6						4		4
Detector Phase		2		1	6					4	4	4
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					5.0	5.0	5.0
Minimum Split (s)		32.0		8.0	30.0					30.0	30.0	30.0
Total Split (s)		78.0		25.0	103.0					32.0	32.0	32.0
Total Split (%)		57.8%		18.5%	76.3%					23.7%	23.7%	23.7%
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					Max	Max	Max
Act Effct Green (s)		73.0		98.0	98.0					27.0	27.0	27.0
Actuated g/C Ratio		0.54		0.73	0.73					0.20	0.20	0.20
v/c Ratio		0.67		1.03	0.48					0.13	0.31	0.40
Control Delay		16.4		95.3	3.6					45.9	47.5	17.7
Queue Delay		0.5		17.4	0.5					0.0	0.0	0.0
Total Delay		16.9		112.7	4.2					45.9	47.5	17.7
LOS		В		F	Α					D	D	В
Approach Delay		16.9			30.5						36.2	
Approach LOS		В			С						D	
Queue Length 50th (ft)		271		~283	70					31	86	30
Queue Length 95th (ft)		285		m#357	m83					65	127	96
Internal Link Dist (ft)		273			321			343			244	
Turn Bay Length (ft)				120						100		100
Base Capacity (vph)		1904		385	2569					312	707	390
Starvation Cap Reductn		260		18	810					0	0	0
Spillback Cap Reductn		0		0	0					0	0	0
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.78		1.08	0.70					0.13	0.31	0.40
Intersection Summary												

Cycle Length: 135

Actuated Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 90

MS Synchro 9 Report Page 1

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background (Optimized) Timing Plan: PM

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd ₩Ø2 (R)

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background (Optimized) Timing Plan: PM

	۶	-	\rightarrow	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^			† î>		ሻ	fà	7			
Traffic Volume (vph)	87	1188	0	0	1253	53	217	327	595	0	0	0
Future Volume (vph)	87	1188	0	0	1253	53	217	327	595	0	0	0
Confl. Peds. (#/hr)			34			90	17		153			
Confl. Bikes (#/hr)						4			13			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	90	1225	0	0	1292	55	224	337	613	0	0	0
Shared Lane Traffic (%)									27%			
Lane Group Flow (vph)	90	1225	0	0	1347	0	224	503	447	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2						4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	75.0			60.0		60.0	60.0	60.0			
Total Split (%)	11.1%	55.6%			44.4%		44.4%	44.4%	44.4%			
Yellow Time (s)	4.0	4.0			4.0		4.0	4.0	4.0			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Recall Mode	None	C-Max			C-Max		Max	Max	Max			
Act Effct Green (s)	70.0	70.0			56.3		55.0	55.0	55.0			
Actuated g/C Ratio	0.52	0.52			0.42		0.41	0.41	0.41			
v/c Ratio	0.54	0.67			0.93		0.32	0.80	0.97			
Control Delay	54.1	13.8			27.8		35.5	52.5	78.0			
Queue Delay	0.0	0.2			0.5		0.2	0.0	0.0			
Total Delay	54.1	13.9			28.3		35.7	52.5	78.0			
LOS	D	В			С		D	D	E			
Approach Delay		16.7			28.3			59.0				
Approach LOS		В			С			E				
Queue Length 50th (ft)	45	137			201		151	422	382			
Queue Length 95th (ft)	m88	163			#741		m216	571	#614			
Internal Link Dist (ft)	11100	321			699		210	350			106	
Turn Bay Length (ft)	120	OL.			0,,			000			100	
Base Capacity (vph)	184	1835			1451		697	629	459			
Starvation Cap Reductn	0	105			0		0	0	0			
Spillback Cap Reductn	0	0			14		116	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.49	0.71			0.94		0.39	0.80	0.97			

Intersection Summary

Cycle Length: 135

Cycle Length: 135
Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green
Natural Cycle: 70

MS Synchro 9 Report Page 3

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

Ø6 (R)

2024 Background (Optimized) Timing Plan: PM

2024 Background + Site (Optimized)
Timing Plan: AM

	•	\rightarrow	•	•	←	•	1	Ť	~	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† 1>		*	414					ሻ	^	7
Traffic Volume (vph)	0	769	172	685	1591	0	0	0	0	37	52	56
Future Volume (vph)	0	769	172	685	1591	0	0	0	0	37	52	56
Confl. Peds. (#/hr)			54	54						8		49
Confl. Bikes (#/hr)			2									29
Peak Hour Factor	0.93	0.93	0.93	0.99	0.97	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	827	185	692	1640	0	0	0	0	40	56	60
Shared Lane Traffic (%)				23%								
Lane Group Flow (vph)	0	1012	0	533	1799	0	0	0	0	40	56	60
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		19	6						4	
Permitted Phases				6						4		4
Detector Phase		2		19	6					4	4	4
Switch Phase												
Minimum Initial (s)		5.0			10.0					10.0	10.0	10.0
Minimum Split (s)		30.0			30.0					28.0	28.0	28.0
Total Split (s)		55.0			92.0					28.0	28.0	28.0
Total Split (%)		45.8%			76.7%					23.3%	23.3%	23.3%
Yellow Time (s)		4.0			4.0					4.0	4.0	4.0
All-Red Time (s)		1.0			1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0					0.0	0.0	0.0
Total Lost Time (s)		5.0			5.0					5.0	5.0	5.0
Lead/Lag		Lag										
Lead-Lag Optimize?		Yes										
Recall Mode		C-Max			C-Max					Max	Max	Max
Act Effct Green (s)		50.0		87.5	87.0					23.0	23.0	23.0
Actuated g/C Ratio		0.42		0.73	0.72					0.19	0.19	0.19
v/c Ratio		0.71		1.07	1.06					0.12	0.08	0.17
Control Delay		15.5		64.7	40.4					41.4	40.3	2.2
Queue Delay		4.2		14.8	17.8					0.0	0.0	21.4
Total Delay		19.7		79.4	58.3					41.4	40.3	23.6
LOS		В		E	Е					D	D	С
Approach Delay		19.7			63.1						34.2	
Approach LOS		В			Е						С	
Queue Length 50th (ft)		293		~305	~239					26	18	0
Queue Length 95th (ft)		405		m#257	m169					58	37	8
Internal Link Dist (ft)		273			321			343			244	
Turn Bay Length (ft)				120						100		100
Base Capacity (vph)		1427		498	1700					334	678	353
Starvation Cap Reductn		330		155	301					0	0	0
Spillback Cap Reductn		0		0	76					0	0	277
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.92		1.55	1.29					0.12	0.08	0.79
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120 Offset: 30 (25%) Peference		0.507	1 ()4/5	TI CI.								
LITTERT: 20 CONV.) Deference	a to phace	/·FRI ar										

Offset: 30 (25%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 120

Synchro 9 Report Page 1 MS

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background + Site (Optimized) Timing Plan: AM

Lane Group	Ø1	Ø9
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Confl. Peds. (#/hr)		
Confl. Bikes (#/hr)		
Peak Hour Factor		
Adj. Flow (vph)		
Shared Lane Traffic (%)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	1	9
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	5.0
Minimum Split (s)	5.5	9.5
Total Split (s)	20.0	17.0
Total Split (%)	17%	14%
Yellow Time (s)	3.5	3.5
All-Red Time (s)	1.0	1.0
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag	Lead	
Lead-Lag Optimize?	Yes	
Recall Mode	None	None
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (ft)		
Queue Length 95th (ft)		
Internal Link Dist (ft)		
Turn Bay Length (ft)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Cummens		
Intersection Summary		

Synchro 9 Report Page 2 MS

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background + Site (Optimized) Timing Plan: AM

Control Type: Actuated-Coordinated Maximum v/c Ratio: 1.07 Intersection Signal Delay: 49.3 Intersection Capacity Utilization 100.5% Intersection LOS: D ICU Level of Service G Analysis Period (min) 15 Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd ÿ9

MS Synchro 9 Report Page 3

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background + Site (Optimized) Timing Plan: AM

Lane Configurations		٠	→	•	•	←	•	4	†	/	>	ţ	1
Traffic Volume (vph)	Lane Group			EBR	WBL		WBR		NBT		SBL	SBT	SBF
Future Volume (vph) 155 577 0 0 2198 60 68 86 126 0 0 Confl. Pleeds. (#hr) 36 60 35 28 Confl. Bikes (#hr) 4 4 Peak Hour Factor 0.89 0.89 0.89 0.89 0.95 0.95 0.95 0.89 0.89 0.89 0.89 0.89 0.89 0.89 Adj. Flow (vph) 174 648 0 0 2314 63 76 97 142 0 0 Shared Lane Traffic (%) Lane Group Flow (vph) 174 648 0 0 2377 0 76 127 112 0 0 Turn Type pm+pt NA NA Perm NA Perm NA Perm Protected Phases 5 2 6 4 4 4 4 Permitted Phases 2 2 6 4 4 4 4 Permitted Phases 5 2 6 6 4 4 4 4 Switch Phase Minimum Initial (s) 1.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Lane Configurations	ሻ	^			۸ħ		7	₽	7			
Confil. Peds. (#/hr)' 36	Traffic Volume (vph)	155	577	0	0	2198	60	68	86	126	0	0	(
Confil Bikes (#hr) Peak Hour Factor 0.89 0.89 0.89 0.95 0.95 0.95 0.95 0.89 0.89 0.89 0.89 0.89 0.8 Adj. Flow (ph) 174 648 0 0 2374 63 76 97 142 0 0 Shared Lane Traffic (%) Lane Group Flow (ph) 174 648 0 0 2377 0 76 127 112 0 0 Turn Type pm+pt NA NA Perm NA Perm Protected Phases 5 2 66 4 4 4 4 Permitted Phases 5 5 2 66 4 4 4 4 Permitted Phases 5 5 2 6 6 4 4 4 4 Permitted Phases 5 5 2 6 6 4 4 4 4 Permitted Phases 6 5 2 6 6 4 4 4 4 Permitted Phases 7 2 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Future Volume (vph)	155	577	0	0	2198	60	68	86	126	0	0	(
Peak Hour Factor	Confl. Peds. (#/hr)			36			60	35		28			
Adj. Flow (vph)	Confl. Bikes (#/hr)												
Shared Lane Traffic (%) 174 648 0 0 2377 0 76 127 112 0 0 0 174 174 648 0 0 2377 0 76 127 112 0 0 0 174 17	Peak Hour Factor	0.89	0.89	0.89	0.95	0.95	0.95	0.89	0.89		0.89	0.89	0.89
Lane Group Flow (vph) 174 648 0 0 2377 0 76 127 112 0 0 Turn Type pm+pt NA NA Perm NA Perm Permitted Perm Permitted Perm Permitted Perm Permitted Permit P	Adj. Flow (vph)	174	648	0	0	2314	63	76	97	142	0	0	(
Turn Type	Shared Lane Traffic (%)									21%			
Protected Phases 5 2 6 4 4 4 4 Permitted Phases 2 4 4 4 4 Detector Phase 5 2 6 4 <td>Lane Group Flow (vph)</td> <td>174</td> <td>648</td> <td>0</td> <td>0</td> <td>2377</td> <td>0</td> <td>76</td> <td>127</td> <td>112</td> <td>0</td> <td>0</td> <td>(</td>	Lane Group Flow (vph)	174	648	0	0	2377	0	76	127	112	0	0	(
Permitted Phases 2	Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Detector Phase S 2 6 4 4 4 4 5	Protected Phases	5	2			6			4				
Switch Phase Minimum Initial (s) 1.0 10.0 1.0 10.0 10.0 10.0 10.0 10.0 Month mum Split (s) 5.5 26.0 21.7% 21.7% 21.7% 21.7% 21.7% 21.7% 21.7% 21.7% 21.7% 21.7% 21.7% 21.7% 21.7% 21.7% 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	Permitted Phases	2						4		4			
Minimum Initial (s) 1.0 10.0 1.0 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Split (s) 5.5 26.0 27.0 27.0 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	Detector Phase	5	2			6		4	4	4			
Minimum Split (s) 5.5 26.0 5.5 26.0 26.0 26.0 26.0 Total Split (s) 13.6 94.0 80.4 26.0 26.0 26.0 70.0 21.7% 21.0 4.0 Al.0 Al.2 Al.4 Al.1 Al.1 Al.1 Al.1 Al.1 Al.1 Al.1	Switch Phase												
Minimum Split (s) 5.5 26.0 5.5 26.0 26.0 26.0 26.0 Total Split (s) 13.6 94.0 80.4 26.0 26.0 26.0 70.0 21.7% 21.0 4.0 Al.0 Al.2 Al.4 Al.1 Al.1 Al.1 Al.1 Al.1 Al.1 Al.1	Minimum Initial (s)	1.0	10.0			1.0		10.0	10.0	10.0			
Total Split (s) 13.6 94.0 80.4 26.0 26.0 26.0 Total Split (%) 11.3% 78.3% 67.0% 21.7% 21.7% 21.7% Yellow Time (s) 13.5 4.0 3.5 4.0 4.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.5 5.0 4.5 5.0 5.0 5.0 5.0 Lead/Lag Lead/Lag Lead/Lag Optimize? Yes Yes Recall Mode None C-Max C-Max Max Max Max Max Act Effet Green (s) 89.5 89.0 75.9 21.0 21.0 21.0 21.0 Actuated g/C Ratio 0.75 0.74 0.63 0.18 0.18 0.18 0.18 v/c Ratio 0.89 0.25 1.07 0.26 0.42 0.33 Control Delay 75.7 2.7 47.3 41.4 40.1 9.1 Oueue Delay 0.0 0.3 12.3 0.4 0.0 0.0 0.0 Total Delay 75.7 3.0 59.6 41.7 40.1 9.1 LOS E A E D D A Approach Delay 18.4 59.6 29.5 Approach Delay Strip 19.1 13 21 -351 50 83 4 Oueue Length 95th (ft) 113 21 -351 50 83 4 Oueue Length 95th (ft) 120 Base Capacity (vph) 196 2624 2227 291 303 338 Starvation Cap Reductn 0 1258 23 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			26.0					26.0		26.0			
Total Split (%)			94.0			80.4		26.0	26.0				
Yellow Time (s) 3.5 4.0 3.5 4.0 4.0 4.0 A.0 AII-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			78.3%						21.7%				
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			4.0			3.5		4.0		4.0			
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.5 5.0 4.5 5.0 5.0 5.0 Lead Lead/Lag Lead Lag Lead/Lag Optimize? Yes Yes Yes Recall Mode None C-Max C-Max Max Max Max Act Effet Green (s) 89.5 89.0 75.9 21.0 21.0 21.0 21.0 Actuated g/C Ratio 0.75 0.74 0.63 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18						1.0		1.0					
Total Lost Time (s)						0.0		0.0					
Lead/Lag Lead Lag Lead-Lag Optimize? Yes Yes Recall Mode None C-Max C-Max Max Max Max Act Effct Green (s) 89.5 89.0 75.9 Actualed g/C Ratio 0.75 0.74 0.63 0.18 0.18 v/c Ratio 0.89 0.25 1.07 0.26 0.42 0.33 Control Delay 75.7 2.7 47.3 41.4 40.1 9.1 Queue Delay 0.0 0.3 12.3 0.4 0.0 0.0 Total Delay 75.7 3.0 59.6 41.7 40.1 9.1 LOS E A E D D A Approach LOS B E C C Queue Length 50th (ft) 113 21 -351 50 83 4 Queue Length 95th (ft) m#188 52 m54 m69 m110 m22		4.5	5.0			4.5		5.0	5.0	5.0			
Lead-Lag Optimize? Yes Yes Recall Mode None C-Max C-Max Max Max Max Act Effct Green (s) 89.5 89.0 75.9 21.0 21.0 21.0 Actualed g/C Ratio 0.75 0.74 0.63 0.18 0.18 0.18 v/c Ratio 0.89 0.25 1.07 0.26 0.42 0.33 Control Delay 75.7 2.7 47.3 41.4 40.1 9.1 Queue Delay 0.0 0.3 12.3 0.4 0.0 0.0 Total Delay 75.7 3.0 59.6 41.7 40.1 9.1 LOS E A E D D A Approach Delay 18.4 59.6 29.5 A Approach LOS B E C C Queue Length 50th (ft) 113 21 -351 50 83 4 Queue Length 95th (ft) m#188 52		Lead				Lag							
Recall Mode None C-Max C-Max Max Max Max Act Effet Green (s) 89.5 89.0 75.9 21.0 23.3 21.0 21.0 23.3 21.0 21.0 22.1 21.0 23.1 21.0 22.1 29.1 22.1 29.1 22.1 22.1 29.1 22.1 22.		Yes											
Actuated g/C Ratio 0.75 0.74 0.63 0.18 0.18 0.18 v/c Ratio 0.89 0.25 1.07 0.26 0.42 0.33 Control Delay 75.7 2.7 47.3 41.4 40.1 9.1 Oueue Delay 0.0 0.3 12.3 0.4 40.0 0.0 Total Delay 75.7 3.0 59.6 41.7 40.1 9.1 LOS E A E D D A Approach Delay 18.4 59.6 29.5 Approach LOS B E C C Queue Length 50th (ft) 113 21 -351 50 83 4 Queue Length 95th (ft) m#188 52 m54 m69 m110 m22 Internal Link Dist (ft) 321 675 350 106 Turn Bay Length (ft) 120 Base Capacity (vph) 196 2624 2227 291 303 338 Starvation Cap Reductn 0 1258 23 0 0 0 Spillback Cap Reductn 0 0 59 48 0 0 Storage Cap Reductn 0		None	C-Max			C-Max		Max	Max	Max			
Actuated g/C Ratio 0.75 0.74 0.63 0.18 0.18 0.18 0.18 0/C Ratio 0.89 0.25 1.07 0.26 0.42 0.33 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	Act Effct Green (s)	89.5	89.0			75.9		21.0	21.0	21.0			
v/c Ratio 0.89 0.25 1.07 0.26 0.42 0.33 Control Delay 75.7 2.7 47.3 41.4 40.1 9.1 Queue Delay 0.0 0.3 12.3 0.4 40.0 0.0 Total Delay 75.7 3.0 59.6 41.7 40.1 9.1 LOS E A E D D A Approach Delay 18.4 59.6 29.5 A Approach LOS B E C C Queue Length 50th (ft) 113 21 -351 50 83 4 Queue Length 95th (ft) m#188 52 m54 m69 m110 m22 Internal Link Dist (ft) 321 675 350 106 106 Turn Bay Length (ft) 120 2227 291 303 338 Starvation Cap Reductn 0 0 0 0 0 0 0 0 0 0		0.75	0.74			0.63		0.18	0.18	0.18			
Control Delay 75.7 2.7 47.3 41.4 40.1 9.1 Queue Delay 0.0 0.3 12.3 0.4 0.0 0.0 Total Delay 75.7 3.0 59.6 41.7 40.1 9.1 LOS E A E D D A Approach Delay 18.4 59.6 29.5 A Approach LOS B E C C Queue Length 50th (ft) 113 21 -351 50 83 4 Queue Length 95th (ft) m#188 52 m54 m69 m110 m22 Internal Link Dist (ft) 321 675 350 106 Turn Bay Length (ft) 120 Base Capacity (vph) 196 2624 2227 291 303 338 Starvation Cap Reductn 0 1258 23 0 0 0 Spillback Cap Reductn 0 0 59 48 0 0		0.89	0.25			1.07		0.26	0.42	0.33			
Queue Delay 0.0 0.3 12.3 0.4 0.0 0.0 Total Delay 75.7 3.0 59.6 41.7 40.1 9.1 LOS E A E D D A Approach Delay 18.4 59.6 29.5 S Approach LOS B E C C Oueue Length 50th (ft) 113 21 -351 50 83 4 Oueue Length 95th (ft) m#188 52 m54 m69 m110 m22 Internal Link Dist (ft) 321 675 350 106 Turn Bay Length (ft) 120 Base Capacity (vph) 196 2624 2227 291 303 338 Starvation Cap Reductn 0 1258 23 0 0 0 Spillback Cap Reductn 0 0 59 48 0 0 Storage Cap Reductn 0 0 0 0 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Total Delay 75.7 3.0 59.6 41.7 40.1 9.1 LOS E A E D D A Approach Delay 18.4 59.6 29.5 C Approach LOS B E C C Queue Length 50th (ft) 113 21 -351 50 83 4 Queue Length 95th (ft) m#188 52 m54 m69 m110 m22 Internal Link Dist (ft) 120 321 675 350 106 Turn Bay Length (ft) 120 88ee Capacity (vph) 196 2624 2227 291 303 338 Starvation Cap Reductn 0 1258 23 0 0 0 Spillback Cap Reductn 0 0 59 48 0 0 Storage Cap Reductn 0 0 0 0 0 0													
LOS E A E D D A Approach Delay 18.4 59.6 29.5 A Approach LOS B E C C Queue Length 50th (ft) 113 21 -351 50 83 4 Queue Length 95th (ft) m#188 52 m54 m69 m110 m22 Internal Link Dist (ft) 321 675 350 106 106 Turn Bay Length (ft) 120 2 291 303 338 338 Starvation Cap Reductn 0 1258 23 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 0													
Approach LOS B E C Oueue Length 50th (ft) 113 21 -351 50 83 4 Oueue Length 95th (ft) m#188 52 m54 m69 m110 m22 Internal Link Dist (ft) 321 675 350 106 Turn Bay Length (ft) 120 Base Capacity (vph) 196 2624 2227 291 303 338 Starvation Cap Reductn 0 1258 23 0 0 0 Spillback Cap Reductn 0 0 59 48 0 0 Storage Cap Reductn 0 0 0 0 0 0													
Approach LOS B E C Queue Length 50th (ft) 113 21 -351 50 83 4 Queue Length 95th (ft) m#188 52 m54 m69 m110 m22 Internal Link Dist (ft) 120 Base Capacity (vph) 196 2624 2227 291 303 338 Starwation Cap Reductn 0 1258 23 0 0 0 Storage Cap Reductn 0 0 59 48 0 0 Storage Cap Reductn 0 0 0 0 0 0													
Oueue Length 50th (ft) 113 21 -351 50 83 4 Oueue Length 95th (ft) m#188 52 m54 m69 m110 m22 Internal Link Dist (ft) 321 675 350 106 Turn Bay Length (ft) 120 Base Capacity (vph) 196 2624 2227 291 303 338 Starvation Cap Reducth 0 1258 23 0 0 0 Spillback Cap Reducth 0 0 59 48 0 0 Storage Cap Reducth 0 0 0 0 0													
Queue Length 95th (ft) m#188 52 m54 m69 m110 m22 Internal Link Dist (ft) 321 675 350 106 Turn Bay Length (ft) 120 50 100 100 Base Capacity (vph) 196 2624 2227 291 303 338 Starvation Cap Reductn 0 1258 23 0 0 0 Spillback Cap Reductn 0 0 59 48 0 0 Storage Cap Reductn 0 0 0 0 0 0		113						50		4			
Internal Link Dist (ft) 321 675 350 106 Turn Bay Length (ft) 120 Base Capacity (vph) 196 2624 2227 291 303 338 Starvation Cap Reductn 0 1258 23 0 0 0 Spillback Cap Reductn 0 0 59 48 0 0 Storage Cap Reductn 0 0 0 0 0													
Turn Bay Length (ft) 120 Base Capacity (vph) 196 2624 2227 291 303 338 Sase Capacity (vph) 0 1258 23 0 0 0 Spillback Cap Reductn 0 0 59 48 0 0 Storage Cap Reductn 0 0 0 0 0												106	
Base Capacity (vph) 196 2624 2227 291 303 338 Starvation Cap Reductn 0 1258 23 0 0 0 Spillback Cap Reductn 0 0 59 48 0 0 Storage Cap Reductn 0 0 0 0 0		120	02.			0.0			550			.00	
Starvation Cap Reductn 0 1258 23 0 0 0 Spillback Cap Reductn 0 0 59 48 0 0 Storage Cap Reductn 0 0 0 0 0			2624			2227		291	303	338			
Spillback Cap Reductn 0 0 59 48 0 0 Storage Cap Reductn 0 0 0 0 0													
Storage Cap Reductn 0 0 0 0 0													
1.10 0.01 0.12 0.00													
		0.07	0.17			1.10		0.01	0.12	0.00			

Intersection Summary

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 140

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background + Site (Optimized)

Timing Plan: AM

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.07
Intersection Signal Delay: 47.2 Intersection LOS: D
Intersection Capacity Utilization 100.5% ICU Level of Service G
Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Trinity St & Martin Luther King Jr. Blvd

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

	•	-	•	•	←	•	1	†	-	-	Ų.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† 1>		ሻ	^					ሻ	^	7
Traffic Volume (vph)	0	1315	30	379	1174	0	0	0	0	39	204	144
Future Volume (vph)	0	1315	30	379	1174	0	0	0	0	39	204	144
Confl. Peds. (#/hr)			37	37						73		17
Confl. Bikes (#/hr)			8									14
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	0	1414	32	408	1262	0	0	0	0	42	219	155
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1446	0	408	1262	0	0	0	0	42	219	155
Turn Type		NA		pm+pt	NA					Perm	NA	Perm
Protected Phases		2		1	6						4	
Permitted Phases				6						4		4
Detector Phase		2		1	6					4	4	4
Switch Phase												
Minimum Initial (s)		10.0		3.0	10.0					5.0	5.0	5.0
Minimum Split (s)		32.0		8.0	30.0					30.0	30.0	30.0
Total Split (s)		78.0		25.0	103.0					32.0	32.0	32.0
Total Split (%)		57.8%		18.5%	76.3%					23.7%	23.7%	23.7%
Yellow Time (s)		4.0		4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Recall Mode		C-Max		None	C-Max					Max	Max	Max
Act Effct Green (s)		73.0		98.0	98.0					27.0	27.0	27.0
Actuated g/C Ratio		0.54		0.73	0.73					0.20	0.20	0.20
v/c Ratio		0.76		1.19	0.49					0.13	0.31	0.40
Control Delay		19.0		150.0	3.6					45.9	47.5	19.0
Queue Delay		0.4		0.4	0.6					0.0	0.0	0.0
Total Delay		19.3		150.3	4.1					45.9	47.5	19.0
LOS		В		F	Α					D	D	В
Approach Delay		19.3			39.9						36.7	
Approach LOS		В			D						D	
Queue Length 50th (ft)		428		~365	70					31	86	34
Queue Length 95th (ft)		402		m#441	m81					65	127	100
Internal Link Dist (ft)		273			321			343			244	
Turn Bay Length (ft)				120						100		100
Base Capacity (vph)		1906		344	2569					312	707	386
Starvation Cap Reductn		112		11	810					0	0	0
Spillback Cap Reductn		0		0	0					0	0	0
Storage Cap Reductn		0		0	0					0	0	0
Reduced v/c Ratio		0.81		1.23	0.72					0.13	0.31	0.40
Intersection Summary												
Cycle Length: 135												

Actuated Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 90

MS Synchro 9 Report Page 1

7: San Jacinto Blvd & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background + Site Timing Plan: PM

Splits and Phases: 7: San Jacinto Blvd & Martin Luther King Jr. Blvd ₩Ø2 (R)

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background + Site Timing Plan: PM

	•	-	\rightarrow	•	←	•	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^			ħβ		ሻ	1	7			
Traffic Volume (vph)	87	1347	0	0	1285	53	217	327	595	0	0	0
Future Volume (vph)	87	1347	0	0	1285	53	217	327	595	0	0	0
Confl. Peds. (#/hr)			34			90	17		153			
Confl. Bikes (#/hr)						4			13			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	90	1389	0	0	1325	55	224	337	613	0	0	0
Shared Lane Traffic (%)									27%			
Lane Group Flow (vph)	90	1389	0	0	1380	0	224	503	447	0	0	0
Turn Type	pm+pt	NA			NA		Perm	NA	Perm			
Protected Phases	5	2			6			4				
Permitted Phases	2	_					4		4			
Detector Phase	5	2			6		4	4	4			
Switch Phase												
Minimum Initial (s)	3.0	10.0			10.0		5.0	5.0	5.0			
Minimum Split (s)	8.0	26.0			26.0		26.0	26.0	26.0			
Total Split (s)	15.0	75.0			60.0		60.0	60.0	60.0			
Total Split (%)	11.1%	55.6%			44.4%		44.4%	44.4%	44.4%			
Yellow Time (s)	4.0	4.0			4.0		4.4.470	4.470	4.4.470			
All-Red Time (s)	1.0	1.0			1.0		1.0	1.0	1.0			
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.0	5.0			5.0		5.0	5.0	5.0			
Lead/Lag	Lead	5.0			Lag		5.0	5.0	5.0			
Lead-Lag Optimize?	Yes				Yes							
	None	C-Max					Mari	Man	Max			
Recall Mode	70.0				C-Max 56.3		Max 55.0	Max 55.0	55.0			
Act Effct Green (s)		70.0										
Actuated g/C Ratio	0.52	0.52			0.42		0.41	0.41	0.41			
v/c Ratio	0.54	0.76			0.95		0.32	0.80	0.97			
Control Delay	51.8	15.9			31.3		35.8	52.7	78.2			
Queue Delay	0.0	0.3			2.6		0.9	0.0	0.0			
Total Delay	51.8	16.2			33.9		36.7	52.7	78.2			
LOS	D	В			С		D	D	Е			
Approach Delay		18.4			33.9			59.4				
Approach LOS		В			С			E				
Queue Length 50th (ft)	45	146			213		152	422	381			
Queue Length 95th (ft)	m73	242			#771		m217	573	#612			
Internal Link Dist (ft)		321			699			350			106	
Turn Bay Length (ft)	120											
Base Capacity (vph)	184	1835			1452		697	629	459			
Starvation Cap Reductn	0	93			0		0	0	0			
Spillback Cap Reductn	0	0			35		258	0	0			
Storage Cap Reductn	0	0			0		0	0	0			
Reduced v/c Ratio	0.49	0.80			0.97		0.51	0.80	0.97			
the second second												

Intersection Summary

Cycle Length: 135

Offset: 0 (0%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 75

MS Synchro 9 Report Page 3

8: Trinity St & Martin Luther King Jr. Blvd TIA for TFC Capitol Complex in Austin, Texas

2024 Background + Site Timing Plan: PM

MS Synchro 9 Report Page 4

Council Question and Answer

Related To Item #14 Meeting Date June 22, 2017

Additional Answer Information

QUESTION: Questions from Work Session.

ANSWER:

1) Please provide copies of previous Council resolutions related to work with the Facilities Commission. MAYOR PRO TEM TOVO

Linked below are Council Resolutions related to work with the Texas Facilities Commission:

- Resolution No. 20101118-061: Approve a resolution authorizing the City Manager to negotiate
 and execute an Interlocal Agreement in an amount not to exceed \$200,000 to partner in the
 Texas Facilities Commission's master planning effort. (Council Member Sheryl Cole/ Council
 Member Randi Shade/ Council Member Riley)
- Resolution No. 20121108-054: Approve a resolution directing the City Manager to negotiate and execute an interlocal agreement with the Texas Facilities Commission to participate in the Texas Facilities Commission's master planning efforts for sites located in the City. (Mayor Pro Tem Sheryl Cole/ Council Member William Spelman/ Council Member Chris Riley)
- Resolution No. 20121206-063: Approve a resolution directing the City Manager to negotiate
 and execute an interlocal agreement with the Texas Facilities Commission to participate in the
 Texas Facilities Commission's Capitol Area Development Strategy for sites located in the City.
 (Mayor Pro Tem Sheryl Cole/ Council Member William Spelman/ Council Member Chris Riley)
- Resolution No 20121206-064: Approve a resolution directing the City Manager to provide notice about, and to submit to the first available land use commission meeting for public hearing, project proposals that have been submitted for consideration to the Texas Facilities Commission for properties within the City of Austin for which City comments are required pursuant to Texas Government Code Section 2267.055. (Mayor Pro Tem Sheryl Cole/ Council Member William Spelman/ Council Member Chris Riley)
- <u>Resolution No. 20130822-085:</u> Approve a resolution directing the City Manager to review and analyze recently enacted State laws relating to Public-Private Partnership proposals and identify any needed adjustments to City policies and procedures. (Council Member Morrison/Council Member Kathie Tovo/ Council Member Mike Martinez)
- 2) Please provide copies of any legal memos that may have been distributed in response to the resolutions referenced in the previous question. MAYOR PRO TEM TOVO

 Pending

3) Is the Texas Facilities Commission willing to consider incorporating labor standards as a part of Phase One project specifications? MAYOR PRO TEM TOVO

The following response was provided by the Texas Facilities Commission (TFC).

TFC is willing to discuss but notes that it is bound by statute to require a minimum prevailing wage rate on all State capital improvement projects, see Texas Government Code 2258. The rates are typically determined by the most recent (to time of bidding) federal Davis-Bacon surveys for the county of the project location, refer to federal wage guidelines: https://www.wdol.gov/dba.aspx.

Additional information can be found in the Texas Facilities Commission 2015 Uniform General Conditions, Article 2. Wage Rates and Other Laws Governing Construction, see: http://www.tfc.state.tx.us/divisions/facilities/prog/construct/formsindex/2015%20UGC%2003.07.2017.Final.p

http://www.tfc.state.tx.us/divisions/facilities/prog/construct/formsindex/2015%20UGC%2003.07.2017.Final.p

4) Please provide additional information regarding direct costs to the City. COUNCIL MEMBER HOUSTON

With regard to process, TFC will be responsible for all costs of service (includes direct staff time) associated with review, processing, and inspections for Phase One, including the costs noted in the attachment referenced in the response to question #2. The estimate assumes that the review and permitting will occur under the General Permit Program, which costs \$5,000 and will be paid by the TFC.

As described previously, the TFC request for expedited review would primarily be fulfilled through the utilization of the General Permit Program. This program was also made available to Capital Metro and the University of Texas in recent interlocal agreements.

Outside of the General Permit Program, City staff would prioritize related project submittals and is not committed to any specific days for review other than those that are established by each department. The intent of prioritization is that a TFC project submittal "gets put at the top of the stack" once the submittal is received.

With regard to transportation impacts, the City anticipates partnering with the TFC on what we have noted as "System Improvements" on a pro rata basis, consistent with City policy, in a future phase of the development. "System Improvements" are characterized by Austin Transportation (ATD) as improvements triggered by conditions that are external to the site and considered shared non-project traffic. For discussion purposes only, ATD provided high level cost estimates for the referenced improvements based on preliminary review of the Traffic Impact Analysis. ATD estimates the City would be responsible for a proportionate cost share of approximately \$740K during Phase Two or Three of the Capitol Complex Project. See Slide 10.

5) Please provide additional information regarding proposed vehicular circulation routes in the project area as they relate to cycling vehicles in and out of the proposed parking garages entrances and exits. COUNCIL MEMBER HOUSTON The following response was provided by the Texas Facilities Commission (TFC).

The new underground parking garage will be primarily accessed on 17th Street, east and west bound. Designated visitor access will be from Brazos Street adjacent to Martin Luther King Jr. Blvd. Additional above grade parking is accessed from 18th street, adjacent to Brazos Street. Conversion of existing one way streets to two way circulation will increase the carrying capacity of the streets within the Capitol Complex and allow multiple paths to the surrounding collector streets. A new traffic signal at Colorado Street and Martin Luther King Jr. Blvd. will aid traffic entering and exiting from this collector. Traffic Impact Analysis reveals that the Phase One Project will cause a manageable loss of service for short durations during peak periods, primarily in the morning and evening. Additional traffic control measures will be implemented under the two proposed future phases.

6) Please provide additional information regarding the fee waivers requested by the Texas Facilities Commission. COUNCIL MEMBER POOL

The Texas Facilities Commission (TFC) has requested a waiver of fees associated with the subterranean easements required for construction of the underground utility tunnels extending from the Central Utility Plant, located at 201 East 14th Street, to the new building proposed for 1801 Congress Avenue (see Slide 5). Staff estimates the value at approximately 5% of the fee simple interest. At \$250/ square foot for 21,867 square feet, the estimated fee is \$273,338.

TFC has also requested a waiver of the fees associated with right-of-way usage in the project area over the 4 ½ year project term. The fee structure for right-of-way usage includes tiers for which the cost is calculated based on square footage and duration. Fees were estimated over a 5-year period and rounded up to account for the potential for unanticipated issues during the construction stage. The projected total is approximately \$6.6M. Attached is a spreadsheet that details those calculations.

The total amount requested is \$6.9M. Neither fee type is considered a direct staff cost nor a cost to the City; they are considered unrealized revenue. This is consistent with the previously approved interlocal agreement with the University of Texas.

Utility relocations associated with this project will be reviewed and approved by the City and subject to City design standards. TFC will be responsible for all project related costs.

ATTACHMENT 2

7) Please provide additional information regarding State development activities that do not require City consent. COUNCIL MEMBER POOL

State agencies are not required to comply with City development regulations on State-owned properties. In this case, the Texas Facilities Commission is seeking City support on the project packages that extend beyond State property and into City right-of-way.

8) Please provide additional information regarding planned public access to the parking facilities proposed as a part of Phase One. Specifically, will the spaces will be publicly accessible and if so, during what timeframe and at what cost (if applicable)? COUNCIL MEMBER POOL

The following response was provided by the Texas Facilities Commission (TFC).

TFC is statutorily required to monetize its parking facilities after regular business hours. TFC has the ability to waive this requirement for not for profit events. TFC has a long history of collaboration in the planning of, and provision of free parking for major events such as the MS-150, Run for the Cure, and other large events. During regular business hours, a portion of the new garage will be devoted for visitor parking, at a fee. This visitor parking is set aside for the museum district but its capacity can be increased for special events. Parking fees collected by the State can be used to offset maintenance costs resulting from the use of the garages.

9) Please provide additional detail regarding the \$581M Phase One project costs. COUNCIL MEMBER POOL The following response was provided by the Texas Facilities Commission (TFC).

TFC project cost estimates that are pertinent to the work in the City's ROW and vacated Congress Avenue total \$107.2 M and include:

a. Utility Relocation: \$20.7 M
b. Excavation: \$15 M
c. Underground Parking: \$60.1 M
d. Mall: \$11.4 M

the section that has recently been under discussion near the Grove Planned Unit Development (PUD) property. COUNCIL	
the section that has recently been under discussion near the Grove Planned Unit Development (PUD) property. COUNCIL MEMBER ALTER The following response was provided by the Texas Facilities Commission (TFC). TFC has no control over, or knowledge of, rights of way owned or controlled by the State that could be available for sale to the City. TFC does not own the land adjacent to the planned PUD. It is owned by the Texas State Library and Archives Commission. Any agreement that would obligate the holdings of another State agency in	
The following response was provided by the Texas Facilities Commission (TFC). TFC has no control over, or knowledge of, rights of way owned or controlled by the State that could be available for sale to the City. TFC does not own the land adjacent to the planned PUD. It is owned by the Texas State Library and Archives Commission. Any agreement that would obligate the holdings of another State agency in	10) Please provide a list of right-of-way sections that the City might be interested in acquiring from the State, including the section that has recently been under discussion near the Grove Planned Unit Development (PUD) property. COUNCIL MEMBER ALTER
for sale to the City. TFC does not own the land adjacent to the planned PUD. It is owned by the Texas State Library and Archives Commission. Any agreement that would obligate the holdings of another State agency in	The following response was provided by the Texas Facilities Commission (TFC).
	for sale to the City. TFC does not own the land adjacent to the planned PUD. It is owned by the Texas State Library and Archives Commission. Any agreement that would obligate the holdings of another State agency in

Capitol Complex Phase One Right-of-Way Usage Estimates- 5yr period

TIER 1 - (day 1 - 180)	length	width	# of days	fee per sq.ft	Total
Sidewalk Space (1700 Brazos)	345	10	180	0.01	\$6,210.00
Sidewalk Space (E MLK)	390	10	180	0.01	\$7,020.00
Sidewalk Space (E 18th)	390	10	180	0.01	\$7,020.00
Sidewalk Space (E 17th N)	150	10	180	0.01	\$2,700.00
Sidewalk Space (E 17th S)	150	10	180	0.01	\$2,700.00
Sidewalk Space (E 16th N)	280	10	180	0.01	\$5,040.00
Sidewalk Space (W 17th N)	190	10	180	0.01	\$3,420.00
Sidewalk Space (W 17th S)	190	10	180	0.01	\$3,420.00
1st Traffic Lane (E 17th)	150	22	180	0.1	\$59,400.00
1st Traffic Lane (W 17th)	190	22	180	0.1	\$75,240.00
				total	\$172,170.00
TIER 2 - (day 181 - 365)	length	width	# of days	fee per sq.ft	Total
Sidewalk Space (W MLK)	345	10	185	0.05	\$31,912.50
Sidewalk Space (1800 Colorado)	390	10	185	0.05	\$36,075.00
Sidewalk Space (W 18th n/c)	390	10	185	0.05	\$36,075.00
Sidewalk Space (W 18th s/c)	150	10	185	0.05	\$13,875.00
Sidewalk Space (1700 Colorado)	150	10	185	0.05	\$13,875.00
Sidewalk Space (W 17th n/c)	280	10	185	0.05	\$25,900.00
Sidewalk Space (W 17th s/c)	190	10	185	0.05	\$17,575.00
Sidewalk Space (1600 Colorado)	190	10	185	0.05	\$17,575.00
1st Traffic Lane (W 18th)	150	22	185	0.14	\$85,470.00
1st Traffic Lane (W 17th)	190	22	185	0.14	\$108,262.00
, ,				total	\$386,594.50
TIER 3 - (day 366 - 545)	length	width	# of days	fee per sq.ft	Total
Sidewalk Space (W MLK)	345	10	180	0.09	\$55,890.00
Sidewalk Space (1800 Colorado)	390	10	180	0.09	\$63,180.00
Sidewalk Space (W 18th n/c)	390	10	180	0.09	\$63,180.00
Sidewalk Space (W 18th s/c)	150	10	180	0.09	\$24,300.00
Sidewalk Space (1700 Colorado)	150	10	180	0.09	\$24,300.00
Sidewalk Space (W 17th n/c)	280	10	180	0.09	\$45,360.00
Sidewalk Space (W 17th s/c)	190	10	180	0.09	\$30,780.00
Sidewalk Space (W 16th n/c)	190	10	180	0.09	\$30,780.00
1st Traffic Lane (W 18th)	150	22	180	0.18	\$106,920.00
1st Traffic Lane (W 17th)	190	22	180	0.18	\$135,432.00
				total	\$580,122.00
TIER 4 - (546 days and over)	length	width	# of days	fee per sq.ft	Total
Sidewalk Space (W MLK)	345	10	1280	0.13	\$574,080.00
Sidewalk Space (1800 Colorado)	390	10	1280	0.13	\$648,960.00
Sidewalk Space (W 18th n/c)	390	10	1280	0.13	\$648,960.00
Sidewalk Space (W 18th s/c)	150	10	1280	0.13	\$249,600.00
Sidewalk Space (1700 Colorado)	150	10	1280	0.13	\$249,600.00
Sidewalk Space (W 17th n/c)	280	10	1280	0.13	\$465,920.00
Sidewalk Space (W 17th s/c)	190	10	1280	0.13	\$316,160.00
Sidewalk Space (W 16th n/c)	190	10	1280	0.13	\$316,160.00
1st Traffic Lane (W 18th)					
	150	22	1280	0.2	\$844,800.00
1st Traffic Lane (W 17th)		22 22	1280 1280	0.2 0.2	\$844,800.00 \$1,070,080.00 \$5,384,320.00

ESTIMATED TOTAL: \$6,523,206.50

Council Question and Answer

Related To	Item #18	Meeting Date	June 15, 2017

Additional Answer Information

QUESTION: Will this program be included in the baseline research being proposed in item 15 from Economic Development? Please provide detail on outcome measures and outcome achievements for the program from the start of the program to the current cohort. Are participants given the opportunity to participate multiple times and build on their skill sets? COUNCIL MEMBER ALTER'S OFFICE

ANSWER:

The Emerging Leaders Summer Internship Program (ELSIP), along with all youth programs initiated by the City, will be included in the baseline research to determine if the programs meet the criteria related to item 15 regarding an interlocal agreement with the University of Texas at Austin's Ray Marshall Center. The baseline metrics this interlocal will evaluate are current youth focused programs in Science, Technology, Engineering, Mathematics, Creative and Entrepreneurship (STEM-CE) for study and careers. While the ELSIP may not meet the baseline metrics, it will be part of the evaluation process.

The ELSIP strives to provide Austin youth with opportunities where they can develop leadership skills while learning services that the City of Austin offers. The internships are designed to provide students with a learning environment where they can explore career fields they may want to pursue in the future. ELISP works to create workforce development opportunities for the youth. The students gain work experience in a professional environment, knowledge of money management, personal responsibilities that align with going to work, patterns of responsible behavior, and the knowledge of appropriate work attire.

The program began in 2013 and youth employed through the ELSIP program has increased since the first year. Interns gain skills from their work placement, leadership days, as well as through the final project which summarizes the overall internship experience. Each year the program is evaluated in order to increase the intern experience. Evaluations are put into place to receive input and feedback from supervisors and interns that participate in the program to better the overall internship experience. The overall evaluation of each intern includes site visits, surveys, student highlights, and a debriefing meeting. These evaluations show the success of the program by providing employment for the students, and also providing opportunities and real life experience.

The following chart shows the growth in participants since it began:

2013	14
2014	32
2015	37
2016	37
2017	50

As funding increases for this program, staff continues to recruit more students to participate. The additional funding received in 2017 will allow for a total of 50 students in the ELSIP program.

Student participants can reapply each summer if they meet the requirements. Students must be a rising sophomore,

junior, or senior in high school to participate. After completing an interview and all required paperwork, interns are placed in an internship for 6 weeks. There are no restrictions for students to participate in multiple years.

Mexic-Arte Museum Museum Building Project As of June 2017

Fund 2001	ng Raised by the Museum for the Project Private Donations Manuel and Jane Zuniga - \$100000 Mitte Foundation - \$100000 Long Foundation - \$100000	\$300000
2004	Houston Endowment Strategic Plan Outlook and Building Program	\$100,000
2010	National Endowment for the Humanities Grant Art Storage Needs Assessment	\$4000
2010	Economic Development Administration Grant Feasibility Study design, plans to prepare Mexic-Arte Museum to begin the renovation and construction of the museum.	\$500,000
2015	Private Inheritance Donation	\$185271
2016	Private Donation	\$25000
		\$1,114,271.00

Future Funding to be Raised

Fall 2016 – Butler Nonprofit Consulting determined that Mexic-Arte can likely complete a capital campaign goal of between \$1,704,000 to \$3,720,000

In 2016 Mexic-Arte Museum hired a third party, Butler Non-Profit Consulting to conduct a capital campaign feasibility analysis. At the same time, we looked at different scopes and facets of the project. We hope to settle on a final design soon and will then kick off a capital campaign. We hope to do this with the confidence that we have the \$5 million from the City bonds. We look forward to working with the City of Austin in the transformation of a great downtown for the community.

Council Question and Answer

Related To Item #58 Meeting Date June 15, 2017

Additional Answer Information

QUESTION: 1) What are the differences between the proposed agreement with Austin Independent School District and the existing agreement? 2) Is it accurate SOS compliance would limit the site to 15% impervious cover, the existing AISD/City agreement provides for 20-25%, and current proposal would allow 40% or more impervious cover? 3) Please provide more detail/accounting on the arrangement for mitigating impervious cover. What will be the final total impervious cover for the tract calculated as a percent of net site area? 4) Are area tracts of land being used to offset existing impervious cover on the Bowie High School site? If yes, which sites and are they secured? Are the transfer credits for the sites available or have they already been dedicated? 5) Council's resolution provided for including the Travis Country tract for transfer of impervious cover for AISD and there appeared to be an understanding that AISD and City staff agreed the Travis Country tract is suitable for transfer of development rights within the Barton Springs Zone. Why is the agreement/exhibit without reference to this tract of land? COUNCIL MEMBER KITCHEN'S OFFICE

ANSWER:

What are the differences between the proposed agreement with Austin Independent School District and the existing agreement?

The current agreement requires AISD to comply with 1994 regulations except as modified by the agreement. Except for specific campuses named in the agreement, the current agreement includes the following requirements for development of campuses in the Barton Springs Zone (BSZ):

- Impervious cover is limited to 25% of net site area or the amount allowed under SOS regulations (15-25% of net site area), whichever is greater, or, if the property was owned by AISD prior to May 18, 1986, the maximum impervious cover in effect on that date.
- Transfers of impervious cover to exceed 25% are prohibited.
- For Critical Environmental Feature (CEF) buffers that are left undisturbed, AISD receives an additional 20,000 square feet of impervious cover. Current code prohibits development or expansion of existing development within a CEF buffer.
- Three campuses (Travis Country, Village at Western Oaks, Boone) are allowed 50% (net site) impervious cover. Kiker is allowed 38% (net site).

Generally, the current agreement is set up to facilitate construction of new schools and not redevelopment of existing schools. Bowie H.S. was constructed in the mid-1980's before the first agreement between the City and AISD was signed in 1994.

The proposed agreement requires AISD to develop Bowie High School under current watershed regulations (Ch. 25-8) or the regulations in effect at the time of site plan application. Otherwise, the current agreement remains in place. Current regulations for redevelopment in the Barton Springs Zone include:

- No increase in impervious cover.
- No increase in non-compliance within creek buffers and CEF buffers.

- SOS water quality treatment for the entire site if existing impervious cover is 40% or less, and sedimentation/filtration treatment if the site has over 40% impervious cover.
- If over 40% impervious cover, any area with sedimentation/filtration treatment must be mitigated to 20% impervious cover through dedication of land or payment to the City for purchase of land.
- Council approval is required for a civic use.

AISD estimates that the Bowie campus has 39.8% impervious cover. However, the proposed agreement requires SOS water quality treatment even if later surveys find additional impervious cover that would allow sedimentation/filtration treatment. Because AISD will likely have to acquire adjacent properties to provide sufficient space for SOS water quality treatment, the actual impervious cover is likely to be significantly lower.

Is it accurate SOS compliance would limit the site to 15% impervious cover, the existing AISD/City agreement provides for 20-25%, and current proposal would allow 40% or more impervious cover?

An undeveloped, private tract at the Bowie location would be allowed 15% impervious cover. The current agreement provides for 25% impervious cover, but that appears to have been intended for undeveloped sites. The current proposal would limit impervious cover to only what currently exists on site (estimated 39.8%) consistent with current regulations, and would prohibit moving existing impervious cover to new areas within the creek or CEF buffers.

Please provide more detail/accounting on the arrangement for mitigating impervious cover. What will be the final total impervious cover for the tract calculated as a percent of net site area?

No mitigation is currently proposed because it would not be required by current code since AISD has agreed to provide SOS water quality treatment even if final surveys find that impervious cover exceeds 40%.

Final impervious cover will not exceed what exists on site today (estimated 39.8%).

Are area tracts of land being used to offset existing impervious cover on the Bowie High School site? If yes, which sites and are they secured? Are the transfer credits for the sites available or have they already been dedicated?

No, AISD is considering acquiring adjacent tracts to use for irrigation for the proposed SOS water quality treatment. There are no transfers proposed. Transfers within the Barton Springs Zone are prohibited by current code and the current agreement with AISD..

Council's resolution provided for including the Travis Country tract for transfer of impervious cover for AISD and there appeared to be an understanding that AISD and City staff agreed the Travis Country tract is suitable for transfer of development rights within the Barton Springs Zone. Why is the agreement/exhibit without reference to this tract of land?

Council's Resolution No. 20170420-028 directs staff to negotiate an agreement with AISD "for the purpose of facilitating the expansion and redevelopment of Bowie High School." It goes on to direct that the agreement should include "[a]n option for transferring development rights from one or more parcels in Travis County to Bowie High School in a manner that is beneficial to AISD and the City[.]" The Travis Country tract was not included in the agreement because a transfer of development rights is not necessary to facilitate the expansion and redevelopment of Bowie High School proposed by AISD. City and AISD staff determined that the project can comply with current City SOS water quality requirements and all other current watershed regulations, thus mitigation is unnecessary. Please see the June 12, 2017 memo from Interim Assistant City Manager Hensley to Council for additional detail.

MEMORANDUM

TO:

Mayor and Council Members

FROM:

Sara Hensley, Interim Assistant City Manager

DATE:

June 12, 2017

SUBJECT:

Update Regarding Agreement with Austin Independent School District Regarding Bowie

High School (Council Resolution 20170420-028)

Resolution 20170420-028 initiated a process to amend the City's Land Development Standards Agreement with Austin Independent School District (AISD) to facilitate the expansion and redevelopment of Bowie High School. At the time of the April 20, 2017 resolution, AISD believed it would need to transfer impervious cover from their Travis Country property to use as mitigation for excess impervious cover at Bowie High School.

Subsequent analysis of the project by AISD and City staff has determined that Bowie can be redeveloped in compliance with the City's current environmental regulations contained in the Barton Springs Zone Redevelopment Exception (City Code section 25-8-26), making the transfer of impervious cover unnecessary for the expansion of Bowie High School. Consequently, a less complicated agreement with AISD to allow use of 25-8-26 for the redevelopment of Bowie High School will be presented to Council for consideration on June 22nd. The agreement will include a requirement for beneficial use of stormwater, as requested by public stakeholders.

AISD remains interested in a broader amendment to the Land Development Standards Agreement (LDSA) to allow the transfer of impervious cover to facilitate future school redevelopment projects within the Barton Springs Zone. Staff from the Office of Real Estate Services, Law and Watershed Protection Departments are working with AISD to develop an amendment to the LSDA to be presented to Council at a later date. The amendment would allow transfers of impervious cover from Travis Country and other AISD parcels within the Barton Springs Zone which have been restricted to prevent development. The transfer would require adherence to appropriate conditions to address environmental protection. If you have any questions please contact Chuck Lesniak, Environmental Officer, or Andy Linseisen, Assistant Director, Development Services Department, at your convenience.

Cc: Elaine Hart, Acting City Manager

Bert Lumbreras, Assistant City Manager Joe Pantalion, P.E., Director, Watershed Protection Department Rodney Gonzales, Director, Development Services Department

Andy Linseisen, P.E., Assistant Director, Development Services Department

Chuck Lesniak, Environmental Officer, Watershed Protection Department

Mitzi Cotton, Law Department

Council Question and Answer

Related To Item #62 Meeting Date June 15, 2017

Additional Answer Information

QUESTION: Has this topic in the resolution: "City boards and commissions, including terms of Planning Commission members;" already been treated by the Board and Commissions Transition Taskforce? 2) What were their findings and what is left for this commission to explore? 3) Has this type of commission existed in the past for the City? If so, please provide a copy of their work products. 4) Please provide context for the establishment of this commission at this juncture. COUNCIL MEMBER ALTER'S OFFICECOUNCIL MEMBER ALTER'S OFFICE

ANSWER:

(1) Has this topic in the resolution: "City boards and commissions, including terms of Planning Commission members;" already been treated by the Board and Commissions Transition Taskforce?

The Board and Commissions Transition Taskforce, in 2014, deliberated whether to merge the Planning Commission with the Zoning & Platting Commission and looked at possible re-allocation of workload. The specific issue of "terms of Planning Commission members" does not appear to have been considered.

(2) What were their findings and what is left for this commission to explore?

Findings are included in their final report at the following link: http://www.austintexas.gov/edims/document.cfm?id=209716

Directing general and/or specific areas of inquiry would be the province of Council via resolution.

Previous discussions/questions relating to "terms for Planning Commission members" have highlighted the issue that the Planning Commission terms (unlike almost all other boards/commissions) are set in Article X of the City Charter rather than in the Code. The Charter requirement is for a fixed 2-year term and for a stagger. With the unique situation of an entirely new 10-1 council being sworn in at the same time in 2014, the stagger does not now exist. Because the Planning Commission term is contained in the Charter rather than the Code, the terms do not run in consonance with the terms of appointing council members.

(3) Has this type of commission existed in the past for the City? If so, please provide a copy of their work products.

Yes. Attached are older resolutions from 1997, 1983, 1993, and 2001 establishing Charter Review Commissions.

The most recent have been a Charter Review Commission established by Council Resolution 20110804-028 to propose ballot items for the 2012 election relating to single-member district representation, and a Charter Review Commission established by Council Resolution 20070405-029 to propose ballot items for the 2008 election also relating to geographical representation for election for council members.

Those resolutions are at the following links:

Resolution 20110804-028 - http://www.austintexas.gov/department/city-council/2011/20110804-reg.htm#028

Resolution 20070405-029 - http://www.austintexas.gov/department/city-council/2007/20070405-reg.htm#029

Historically, in Austin as well as in other similarly-situated home rule cities operating under charters, charter review commissions are constituted every several years to make "technical" recommendations and "substantive" recommendations to Council for possible inclusion on an upcoming ballot so that the electorate can vote whether to amend the existing charter. Some charters contain a provision for mandatory constitution of a commission at designated time intervals, but the City of Austin Charter does not. "Technical" recommendations involve provisions which have been superseded by state law or judicial interpretation, which contain obsolete references to state statutes, or which have been rendered meaningless due to passage of time (i.e. transition sections). Adoption of technical recommendations do not make any actual change in the prevailing law. Instead, they merely remove from the charter all provisions which are directly misleading because they conflict with superior authority, or which are clutter. In contrast, "substantive" recommendations are those which would actually result in some change in the city's governing law.

The following link is to materials provided by the National League of Cities, which contains background information on charter review commissions: http://mrsc.org/getmedia/64cb955c-fb66-4fb9-9f71-e21c9ce257d5/chartercommissions.pdf.aspx

As previously provided in (2) above, the final report of the 2012 Charter Review Commission can be found at the following link:

http://www.austintexas.gov/edims/document.cfm?id=209716

We have not as yet been able to locate a final report from the 2008 Charter Review Commission. A description of Council action limiting the scope of study, number of members, and method for expansion of scope can be found at the following link:

http://www.austintexas.gov/department/city-council/2007/20070405-reg.htm#029

(4) Please provide context for the establishment of this commission at this juncture

The Law Department and the City Clerk's Office collaborated to prepare a draft resolution in response to an Item from Council (IFC) from Council Member Pool's office. We are unable to provide further context. The timing is likely to be related to the general practice of a Charter Review Commission working about a year out from anticipated election. The next general municipal election will be November 2018.

RESOLUTION 970814-29

BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF AUSTIN:

The City Council establishes a Charter Revision Committee composed of nine members for the sole purpose of advising the City Council whether the City Charter should be amended to provide for changes in the method of the election of Council Members with emphasis on election from single-member districts. Members of the Committee shall be representative of the community and shall be appointed by the Council on a consensus basis. The Committee shall begin its work as soon as all members are appointed but no later than September 8, 1997, and shall work expeditiously with the goal of proposing appropriate amendments for consideration by the City Council. The City Manager shall provide appropriate resources to the Charter Revision Committee and televise all Committee meetings.

ADOPTED: August 14, 1997 ATTEST: James E. Aldridge

JS/rjn 0814cha.res

SUMMARY OF RECOMMENDATIONS CHARTER REVISION COMMITTEE CITY OF AUSTIN

JANUARY 15, 2000

The Charter Revision Committee recommends to the Austin City Council that a Charter Election be held in May, 2000 in order for the voters to vote on the following recommendations:

- 1. That the City Council consist of a mayor elected at large and ten members elected from neighborhood (single member) districts; that all district members have three year terms and must live in the districts from they are elected for at least six months prior to the filing deadline for the election in which they are candidates; that one third of the district representatives be elected each year except for the first year of implementation when all district candidates will be elected with terms for each district determined by lot; that the number of districts be increased to twelve when the population of the city increases by 25,000 above the population determined by the year 2000 Federal decennial census.
- 2. That the term of office of the Mayor be four years.
- 3. That an independent Redistricting Committee be appointed by the City Council to perform the decennial and interim redistrictings.
- 4. That, in the year preceding the year in which the Federal decennial census is conducted, the City Council appoint a Charter Revision Committee to examine and recommend on possible changes to the method of election of the City Council.
- 5. That Instant Runoff Voting be used to resolve general elections in which no candidates receives the required majority of the votes cast and that this item be a separate ballot item from the above.

INTRODUCTION

The Charter Revision Committee was established by the Austin City Council in August, 1997. Its charge was to advise the City Council as to whether the City Charter should be amended to provide for changes in the method of election of Council members, with emphasis on election from single member districts. Because of changes in the membership of the Committee and an intervening Charter amendment election in November, 1997, the Committee did not start meeting regularly until November, 1998. Since that time, it has met at least monthly, frequently with election experts, consultants, and people from other cities and has held five focus groups and seven public hearings with the citizens of Austin. (See appendix A for details).

Although the charge to the Committee focussed on election of the City Council from single member districts, the Committee looked at a broad spectrum of possible methods of election as it became apparent that the growth of the city both in area and in population and the dispersion of minority populations into the general population could have an impact on the dynamics of any system of election. The deliberations of the Committee were somewhat hampered by uncertainty about the dispersion of minority populations throughout the community as the most reliable data available is 1990 census data. Additionally, in the course of its research, the Committee found that state law precludes the use of a number of election systems which might address the issue of dispersion of minorities – whether ethnic or opinion groups – throughout the city. These include: at large elections without places; proportional voting; cumulative voting; and multimember districts with at large elections within the districts. In other words, the choices available to the city at the present time are the current system of at-large city wide election by place; single member neighborhood districts; multi member districts with places and mixed systems involving a combination of districts and at large Council members, again all being elected by place.

In addition to the system of election to the City Council, the Committee also considered related issues such as length of term of office, whether or not the Council should be elected on a staggered basis, term limits, when elections should be held, the need for periodic review of the election system, who should be responsible for drawing the lines of districts and later redistricting, and the possible use of instant runoff voting.

An issue that the City Council will have to face is the date on which to hold a Charter election. While the Committee believes that the election should be held in May, 2000 prior to the drawing of district lines, a number of people have expressed the view that they could not vote on a Charter amendment unless they knew where district lines would be drawn. We believe that our recommendation for a Redistricting Committee may help to assuage some of these concerns. The alternative would be to hold the Charter election in May, 2002 after the year 2000 census data has been received and district lines can be drawn. We believe that this approach could focus the voters on possible district boundaries rather than on the issue itself, to change the way we elect Council members. This would also subject the city to the large expense associated with drawing district lines with no assurance that the plan would pass. It would also delay implementation to May, 2003 if the plan is passed.

The Committee wishes to acknowledge the assistance of Kathy Donellan, Executive Assistant in the City Manager's Office; John Steiner Assistant City Attorney; and Ryan Robinson, Demographer, PECSD. They have provided the Committee with technical and administrative support without which we could not have completed our work. We also thank the many citizens of Austin who testified at the public hearings and attended the focus groups.

Barbara S. Hankins, Chair Charles Miles, Vice Chair Raymond Chan, Secretary Robert Chapa Jim Harrington Fred Lewis
Mark Anthony McCray
Eddie Rodriguez
Diane Spencer

Detailed Recommendations

Recommendation #1

That the City Council consist of a mayor elected at large and ten members elected from neighborhood (single member) districts; that all district members have three year terms and must live in the districts from they are elected for at least six months prior to the filing deadline for the election in which they are candidates; that one third of the district representatives be elected each year except for the first year of implementation when all district candidates will be elected with terms for each district determined by lot; and that number of districts be increased to twelve when the population of the city increases by 25,000 above the population determined by the year 2000 Federal decennial census.

On a vote of 5 in favor, 3 against, with 1 abstention, the Committee voted to recommend a City Council of 12 neighborhood district representatives (later amended to 10 districts with an increase to 12 with increasing population) and a mayor for the following reasons:

- a. There is common agreement that the current system needs to be changed. Almost no one who attended our meetings, focus groups or public hearings defended the current system. Criticisms included the rapid growth of the city which precludes Council members from knowing the concerns of the various parts of the city; the high cost to candidates of getting elected; and the feeling on the part of minority voters that people elected under the so-called "gentlemen's agreement" are dependent are votes from the majority population and, thus, may not represent the interests of minorities much less neighborhoods, areas of the city, subgroups or interest groups. In the course of its research, the Committee learned that Austin is the only large city in Texas that elects its City Council purely at large. It is also one of a small handful of larger cities nationally to do so. Austin also has the smallest City Council of any city with which we might compare. It is the only city which has three year terms of office. (Appendices C and D)
- b. The need for City Council members to be accountable to a constituency was the highest ranked criteria by all focus groups (Appendix B) and was endorsed at all public hearings. Participants agreed that any system adopted should assure such accountability.
- c. The desire for geographic representation appears to be city-wide. Committee members were struck by the number of people from throughout the city who appear to be angry and alienated because they feel that the needs of their areas are not being heard or attended to by the City staff or City Council. An analysis of the residences of City Council members who were elected in the past twelve years shows that the majority of Council members have lived in central and west Austin and that all parts of south Austin, east Austin, southwest Austin, and north west Austin have been underrepresented.
- d. Smaller in area, more numerous neighborhood districts allow candidates of limited means to compete more successfully for election. They also may increase voter participation since residents of each district will feel that their votes will have more impact on who is elected. In addition, a larger number of neighborhood districts will allow for population growth that is, the number of residents per district will not be excessive, even in the face of a growing population. While the final recommendation of the Committee is for ten neighborhood districts, the need to accommodate population growth is reflected in the suggested increase to twelve districts when the City Council decides that the city has grown by 25,000 people above the number determined by the year 2000 Federal decennial census. The city of Houston's charter contains a similar provision allowing for the automatic addition of two additional districts when a certain population level is reached.

- e. There is a strong desire on the part of meeting participants for greater diversity on the City Council. This diversity encompasses geographic, ethnic, and political differences. We asked the participants in our focus groups to rank a number of criteria against which one can compare election systems. After accountability to a constituency, participants ranked representation of geographic areas, representation of ethnic groups, and representation of various points of view, as their highest priorities. (Appendix B.). Participants in the public hearings agreed with these priorities.
- f. According to a 1993 analysis by the City Demographer's office, while it is mathematically possible to draw viable districts with fewer than 12, at least 12 single member neighborhood districts would be required to more fairly represent the demographics of Austin. While many members of the minority community expressed a desire to "get beyond race," the Voting Rights Act of 1964 requires that the voting strength of ethnic minority populations may not be diluted. It is estimated that a system of 12 single member districts would likely result in the election of at least one candidate preferred by the African American community and at least two candidates preferred by the Hispanic community.
- g. Although Austin is unique in having three year terms of office for members of the City Council, there was little sentiment to change them. It is the belief of many that two year terms require too frequent elections and put too much pressure on Council members since they must raise campaign funds and begin campaigning not long after they are elected. It is also believed that the added year of experience allows Council members to function more effectively.

A minority of Committee members supported a City Council of 11 members, seven elected from single member districts, three Council members and the mayor elected at large from places. Arguments in favor of this system included:

- a. A pure single member district system can lead to parochialism on the Council. At least some members of the Council, in addition to the mayor, should have a more city wide or global view.
- b. Some minorities, such as Asian Americans, are geographically quite diverse. Under a pure single member district system, they would be unable to influence any member of the Council. If at least some members are elected at large, these minorities may have influence on the Council members elected city-wide since they will be part of the electorate for those members.
- c. Some people have expressed the desire to vote for more than one Council person in addition to the mayor. They believe that Council members who do not rely on them for votes will unsympathetic to their needs which may or may not be supported by their district representative.
- d. In order for minorities to retain their power under a single member district system, they may be forced to remain somewhat racially segregated. This is contrary to what is actually happening in the city and, in fact, is contrary to what is considered by many to be a positive trend toward greater dispersion of all minorities into the general population.

Two other plans were proposed but did not receive a majority of the votes. The first was a plan with six dual member districts with district representatives elected from places and a mayor elected city-wide. This plan would have allowed people to vote for more than one representative and might allow for diversity of representation from each district. The second plan consisted of nine single member districts, three "super" districts each encompassing three of the single member districts and a mayor elected city-wide. This plan also would allow for people to vote for more than one representative. Supporters of these plans now favor the majority recommendation.

Recommendation #2

That the term of office of the Mayor be four years.

The Committee voted unanimously to recommend that the term of office of the Mayor be increased from three to four years. There was concern among Committee members that there would be a disproportionate impact on the elections of district representatives in the year in which the Mayor is elected. The four year term would, at least, shift the impact from one set of district representatives to another. It is not uncommon, in other cities, for mayors to have a different length of term from other members of their City Councils.

Recommendation #3

That an independent Redistricting Committee be appointed by the City Council to perform the decennial and interim redistrictings.

The Committee voted 6-0 (three members absent) to recommend the following provisions for such a committee.

The City Council should create an independent redistricting body at the time of each decennial census and at other times when it is necessary to redistrict the city (such as large annexations, districts declared invalid or other extraordinary circumstance). The Committee shall consist of 13 members, each member of the City Council making one appointment. The seven sitting City Council members would each appoint a member of the first Committee and the Committee itself would select the other six.

Restrictions on those who could serve on the Redistricting Committee:

Committee members would not be permitted to hold or have held any public office, be a City of Austin employee, a paid political consultant or a paid campaign worker within two years prior to selection;

Or be a relative (to the third degree of affinity or consanguinity) of an Austin City Council member; or and employee of an Austin City Council member, of a commissioner or county officeholder from Travis County; or of a state legislator; or U. S. representative;

Or be or have been a registered lobbyist at any city, county or state within the last two years.

Committee members would not be permitted to hold a seat on the Austin City Council for three years after the effective date of the plan;

Or be a paid or registered lobbyist for three years after the effective date of the plan.

The Committee would be appointed not later than February 1st of each year ending in one. Its work would be required to be completed within six months of receipt of the Federal decennial census data.

Criteria for Redistricting Lines:

Districts will be of equal population with a maximum deviation from the average of no more than 5%; be compact and contiguous; and comply with the intent of the Voting Rights Act.

No district shall be drawn for the purpose of favoring a political party, incumbent Council member or other person or group or for the purpose of augmenting or diluting the voting strength of a language or racial minority group.

In redistricting, no use should be made of data relating to the political affiliation of registered voters.

The Committee makes this recommendation because of concerns raised by some citizens as to who would be responsible for drawing the districts. This concern seems to exist, at least in part, because of unhappiness with the way that school district boundaries have been drawn as well as because of the general alienation discussed above. Although districting can never please everyone, the use of a device such as a redistricting committee as described above can remove some of the perception that the process of drawing lines is "political." Both El Paso and Dallas provide for redistricting commissions in their charters.

Recommendation #4

That in the year preceding the year in which the Federal decennial census is conducted, the City Council appoint a Charter Revision Committee to examine and recommend on possible changes to the method of election of the City Council.

With the rapid growth and changing demographics of the city, it is very possible that any election system will become obsolete. It is also possible that the Texas Legislature will make changes to the Election Code which would permit other, possibly more appropriate, election systems. The Committee believes that a thorough review every decade is a way to insure that the needs of the city can continue to be met. This process also structures a way for continuing evaluation and input by Austin citizens about election methods.

Recommendation #5

That Instant Runoff Voting be used to resolve general elections in which no candidates receives the required majority of the votes cast and that this item be a separate ballot item from the above recommendations.

Instant Runoff Voting (IRV) is a method of voting devised to eliminate the need for runoffs when no candidate receives the required percentage of votes to be elected (in Texas this is more than 50% of the votes cast). Under IRV, voters rank as many candidates as they wish by writing 1, 2, 3, etc. next to their names instead of voting for just one candidate. If any candidate receives a majority of the first choice votes, the candidate is elected. If no one receives a majority, the candidate with the fewest votes is eliminated, and votes cast for that candidate are transferred to the next choice candidate listed on the ballot. This process continues until one candidate receives a majority of the vote. This system is used in Europe and by some nongovernmental organizations. This method allows for election of people who get the most votes, rather than postponing the run-off for three weeks.

The advantage of this system is that it eliminates the very substantial cost both to the candidates and to the city of a runoff election. Also, the number of voters who vote in run off elections generally drops significantly from the number of voters in the general election. In theory, candidates will have to make more broad based appeals since they may have to depend on second or third place votes to get elected. It also can solve the problem of groups of voters splitting their votes among similar candidates, allowing a candidate with only minority support to win.

Because this is a novel recommendation, we suggest that it be a separate ballot item from the other proposals so that voters can clearly indicate whether they wish to incorporate this voting method into the City Charter.

Term Limits

The Committee considered the question of the term limit provisions currently in the City Charter. It decided not to make any recommendations on this issue although we recognize that the provisions are quite weak. This is an issue that the Council might wish to consider. There did not appear to be a groundswell of opinion on this subject at the various public meetings we held.

Appendix A

Meetings Held by the Charter Revision Committee

November 19, 1998	Organizational Meeting
December 10, 1998	George Korbel, Attorney, Texas Rural Legal Aid
January 12, 1999	Robert Wilson, Professor, LBJ School of Public Affairs, University of Texas at Austin
February 9, 1999	Rob Richie, Executive Director, Center for Voting and Democracy, Washington D.C. Ryan Robinson, City Demographer, City of Austin
February 24, 1999	Committee Deliberations
March 9, 1999	Jay Greene, Professor of Government, University of Texas at Austin Terrell Blodgett, Professor Emeritus, LBJ School of Public Affairs, University of Texas at Austin
April 13, 1999	Juan Garza, Former City Manager, Corpus Christi TX
May 11, 1999	Chandler Davis, Professor of Government, Rice University, Houston TX
Jun 8, 1999	John Steiner, City Attorney's Office Committee Deliberations
July 13, 1999	Committee Deliberations
September 28, 1999	Committee Deliberations
October 12, 1999	Committee Deliberations
October 26, 1999	Committee Deliberations
November 4, 1999	Committee Deliberations
November 18, 1999	Committee Deliberations
December 6, 1999	Committee Deliberations
December 21, 1999	Committee Deliberations
January 13, 2000	Committee Deliberations
Foc	us Groups Held By the Charter Revision Committee

March 23, 1999 Asian American Community

March 30, 1999 Civic Groups

May 25, 1999 Umbrella Neighborhood Associations

August 2, 1999 African American Community

August 3, 1999 Hispanic Community

August 31, 1999

Public Hearings Held By the Charter Revision Committee

South Austin Senior Activity Center

August 9, 1999	Hampton Branch Library, Oak Hill
August 16, 1999	University Hills Public Library
August 17, 1999	Parque Zaragosa Recreation Center
August 23, 1999	Rosewood Recreation Center
August 24, 1999	Spicewood Springs Branch Library
August 30, 1999	Yarbrough Branch Library

Appendix B

Ranking of Election System Characteristics By Focus Groups

	Asian-Am	Civic Orgs		Neigh Orgs African-Am	Hispanics	Avg.	Rank
	12 responses	•		3 responses		nses	
Accountability to a constituency	1.67	2.00			2.33	1.84	-
Ability to vote for more than one Council member	4.58	5.25			7.33	4.99	5
Cost of elections to candidates	6.33	5.75	4.40	6.33	5.00	5.56	9
Representation of ethnic groups	2.75	5.50			3.33	4.26	က
Representation of geographic areas	4.17	2.50			3.00	3.36	2
Representation of various points of view	3.75	2.75			6.67	4.47	4
Ease/understandability of election system	6.83	5.25			6.33	6.46	7
Cost to administer elections	8.00	8.25			7.00	7.53	0
Number of elections in a year	6.92	7.75			4.00	6.52	∞

Appendix C
Comparison of Austin with Larger Texas Cities

	Houston	Dallas	San Antonio	Fort Worth	El Paso	Corpus Christi	Austin
Population (7/1/96 est.)	1.744 mill	1.053 mill	1.067 mill	480 K	600 K	280 K	540 K
Size of Council	14 + Mayor in 1980 If pop exceeds 2.1 mill, goes to 16 + Mayor	14 + Mayor	10 + Mayor	8 + Mayor	8 + Mayor	8 + Mayor	6 + Mayor
Selection Method	5 at large + Mayor citywide 9 from single members districts	Mayor at large 14 single member districts	Mayor at large 10 single member districts	Mayor at large 8 single member districts	Mayor at large 8 single member districts	Mayor – at large – majority vote 3 at large- plurality vote (at least 12% of total) 5 single member districts – majority vote	All at large in places
Pop/District	194,000	75,000	106,000	000'09	75,000	35,000	N/A
Terms of Office	2 years	Mayor 4 yrs. Max 2 terms Council 2 yrs, max 4 terms		2 years	2 years		3 years staggered max of 2 terms

	Houston	Dallas	San Antonio	Fort Worth	国	Corpus Christi	Austin
					Paso		
Districting	City Council	City Council	City Council	City Council	City Council	City Council	City Council
	Heview in	With rec.	_		WIGHTEC. HOIL		
	each year in	from			Hedistricting		
	which a	Redistricting			Commission		
	general city	Commission					
	election is to						
Must Live in	Nesi reid	ves – at	ves – at least	ves – at least 6	ves – at least	ves	At least 6
District?		least 6 mos.	6 mos. – 1	mos 1 vear in	6 mos.	•	mos. in the
			year in the	the city			city and 12
			cit	•			mos. in the
							state
Council	Member	Member/	Member/	Member/	Member	Member	Member
Salaries	\$42,800	Mayor	Mayor	Mayor	\$17,000	\$6.000	\$30,000
	Mayor	\$50per diem	\$20/meeting,	\$75/meeting	Mayor	Mayor	Mayor
	\$160,500	for each	\$700/mo exp.	\$2500/year	_	000'6\$	\$35,000
	(strong	meeting	\$400/mo car	expense all.		Total of \$3,400	
	mayor		allow.			for Council	
	system)					travel	
Staff/Council	5/member	2/member	3-4/member	1/member	2/member	7 total in City	2/member
Member	12 mayor	5 mayor	5 mayor	4 mayor	5 mayor	Clerk's office	4-5 mayor
						which also	
						supports Council	

Appendix D Form of Election Texas Large Cities and Other Cities of Comparable Size to Austin

At Large With Places
Austin

Pure At Large

Seattle (proportional representation)

Single Member Districts

Dallas – 14 districts, 75,000 pop./district San Antonio – 10 districts, 106,000 pop/district Fort Worth – 8 districts, 60,000 pop/district El Paso – 8 districts, 75,000 pop/district Milwaukee – 16 districts, 37,000 pop/district Cleveland – 20 districts, 25,000 pop/district

Mixed Systems

Houston – 5 at large + Mayor and 9 districts, 194,000 pop/district Corpus Christi – 3 at large + Mayor and 5 districts, 35,000 pop/districts Boston – 3 at large + Mayor and 9 districts, 62,000 pop/district Washington DC – 4 at large + Mayor and 9 districts, 68,000 pop/district Nashville – 5 at large + Mayor and 35 districts, 15,000 pop/district

Appendix E Demographic Summary

The City of Austin's population has increased from 465,000 to an estimated 631,000 since the 1990 census, a more than a 35% increase. Because of this high growth, we cannot be completely accurate in what we know about the city's demographics. We are more comfortable with total numbers than we are with where people are located.

Most big cities are majority minority. Austin, as yet, is not although it may become so in the future.

Austin growth is caused by rapid increase in its Hispanic population and substantial in-migration of Anglos and Asian-Americans. About half of Austin's growth can be attributed to in-migration. Most of the rest of the growth is from natural increase of births over deaths. A small percentage is from annexation. (28,000 in 1997 or about 4% of the total population was by far the greatest increase due to annexation).

The proportion of African Americans in the Austin population has been the approximately the same for 40 years - 11.5%

The Hispanic population is now 27.3 % or, possibly a little higher, percentage of Austin's population. This population is expected to continue to increase faster than the general population.

Asian Americans are currently approximately 4% of the population but this population is growing rapidly and is expected to reach 6% after the turn of the century, possibly by 2010. Asian Americans are the most geographically dispersed minority population.

We seem to be becoming less racially segregated primarily due to economic mobility. Economic status sometimes appears be more of a factor than race or ethnicity in where people are living. African Americans are currently more residentially segregated than Hispanics. Asian Americans are least residentially segregated. As Austin becomes more diverse, it will become increasingly difficult to draw districts that are homogeneous in race or ethnicity.

RESOLUTION NO. 010405-36

BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF AUSTIN:

The City Council establishes a Charter Revision Committee composed of not less than nine members for the purpose of advising the City Council on proposed amendments to the City Charter. Members of the Committee shall be representative of the community and shall be appointed by the Council on a consensus basis. The Committee shall begin its work as soon as all members are appointed and shall work expeditiously with the goal of recommending the appropriate amendments for consideration by the City Council for the Charter amendment ballot. The City Manager shall provide appropriate resources to the Charter Committee and televise all Committee meetings.

ADOPTED: April 5 , 2001 ATTEST: Wesley & Shirley A. Brown
City Clerk

I:\gc\Resolution\04-05-01 #36 Charter Revision Committee Attorney: John Steiner

930401-55

RESOLUTION

BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF AUSTIN:

That the City Council of the City of Austin hereby establishes a Charter Revision Committee composed of nine (9) members for the purpose of recommending to the City Council whether certain provisions of the City Charter should be revised. The Mayor and each Councilmember may appoint one member to the Committee with the remaining members appointed by a majority vote of the City Council. New Councilmember(s) elected to the City Council, will automatically have one appointment to the Charter Revision Committee. If the additional appointments lead to an even number of Committee members, one additional member shall be appointed on a consensus basis. The Charter Revision Committee shall be appointed and operational by April 15, 1993, and shall work expeditiously with the goal of proposing amendments to the City Charter for consideration by the City Council by November 1, 1993, in accordance with the schedule attached hereto; and

BE IT FURTHER RESOLVED:

That the City Manager is directed to provide the appropriate resources to the Charter Revision Committee and televise all Charter Revision Committee meetings.

ADOPTED: <u>April 1</u>, 1993 ATTEST: <u>James E. Aldridge</u>

The state of the

	Timel	Timeline for Amendments	
		.	
	The state of the s	City charter	
* Requir * Assume * Assume	Requires election on uniform election dates Assumes first available date of January 1994 Assumes use of Citizens Committee to develop amendments	· ·	
Date	Action	Ву	Remorks
April 8, 1993	Proposed amendments	City Staff	Staff proposals to City Manager
April 15, 1993	Proposed amendments	City Manager	Staff proposals to City Council
April 15, 1993	Appoint Citizen Committee	City Council	Council appointments include support and directions
May - September 1993	Public Hearings	Citizen Committee	
October 1993	Presentation to City Council	Citizen Committee	
November 1993	Determine amendments & order election	City Council	Must be 45 days before election
December 1993	Publish amendments	City Clerk	Twice at least 2 weeks before election

Accept/reject amendments AISD Election

Voters

Election

January 1994

930617-34 RESOLUTION

BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF AUSTIN:

That the City Council hereby dissolves the Charter Revision Commission established April 1, 1993, and May 6, 1993, and hereby establishes a new Charter Revision Committee composed of fifteen (15) members. The Mayor and each Council Member may nominate two members each to the Committee. The Mayor will nominate a person to serve as chairperson. All appointed Committee members must be approved by a majority of the City Council at its regular meeting of July 1, 1993 and shall work expeditiously with a goal of proposing amendments to the City Charter for consideration by the City Council by November 4, 1993.

BE IT FURTHER RESOLVED:

That the City Manager is directed to provide the appropriate resources to the Charter Revision Committee and televise all Charter Revision Committee meetings.

ADOPTED: June 17, 1993. ATTEST: James E. Aldridge

17JUNE93 CAB

930506-28

BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF AUSTIN:

That the City Council of the City of Austin hereby establishes a Charter Revision Committee composed of nine (9) members with one member appointed by the Mayor and each member of the Council and two additional members appointed by a majority of the Council for the purpose of recommending to the City Council whether certain provisions of the City Charter should be revised. The Charter Revision Committee shall be appointed and operational by April 15, 1993, and shall work expeditiously with the goal of proposing amendments to the City Charter for consideration by the City Council by November 1, 1993, in accordance with the schedule attached hereto; and

BE IT FURTHER RESOLVED:

That the City Manager is directed to provide the appropriate resources to the Charter Revision Committee to include publicity for Charter Revision Committee meetings and public hearings; and

BE IT FURTHER RESOLVED:

That the following are appointed as Charter Revision Committee members:

Joel Bennett by Mayor Pro-Tem Urdy; Pat Robbins by Council Member Epstein; Malcolm Milburn by Council Member Larson; and Robert Mendoza by Council Member Reynolds.

ADOPTED: My 6, 1993 ATTEST: James E. Aldridge
City Clerk

06MAY93 CAB:rjn/17683 Timeline For Amendments

\$

City Charter

* Requires election on uniform election dates
* Assumes first available date of January 1994
* Assumes use of Citizens Committee to develop amendments

Date	Action	Ву	Remorks
April 8, 1993	Proposed amendments	City Staff	Staff proposals to City Manager
April 15, 1993	Proposed amendments	City Manager	Staff proposals to City Council
April 15, 1993	Appoint Citizen Committee	City Council	Council appointments include support and directions
May - September 1993	Public Hearings	Citizen Committee	
October 1993	Presentation to City Council	Citizen Committee	
November 1993	Determine amendments & order election	City Council	Must be 45 days before election
December 1993	Publish amendments	City Clerk	Twice at least 2 weeks before election
January 1994	Election	Voters	Accept/reject amendments AISD Election

830505-29 RESOLUTION

BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF AUSTIN:

That a Charter Revision Committee be and is hereby established to be appointed by the City Council to consist of at least seven (7) members.

ADOPTED: May 5, 1983. ATTEST: James E. Aldi

Acting City Clerk

ADLR:rs