City of Austin Electric Utility Commission

Dispatchability:
The Next Step for a
Clean Energy Grid in ERCOT

Paul Robbins March 19, 2018

Austin's Clean Energy Progress Step-By-Step

- 2017 Established 65% Renewable Goal
- 2015 First Conservation Voltage Regulation
- 2011 First Utility Solar Purchase
- 2006 Electric Vehicle Program Begins
- 2004 First Rooftop Solar Rebates
- 1995 First Wind Power Purchase
- 1987 First Commercial Energy Efficiency
- 1982 First Residential Energy Efficiency
- 1981 First Progressive Residential Rate

Wildly Erratic West Texas Wind Profile

TONIGHT'S PRESENTATION

- 1. Ways that other places have dealt with dispatchability (or not)
- 2. Options for dispatchable renewable electricity in Texas
- 3. Strategies to put more renewable energy on the electric grid

Georgetown – 100%...On Paper But ERCOT is 83% Gas, Coal, and Nuclear

Paula Gold-Williams, CEO of CPS Energy:

"electrons love everybody, and in reality ...they're getting power from other units."

Denmark - 41% Intermittent Electricity, But only 16% in Region (Germany, Denmark, Norway, Sweden)

Denmark Generates 10% of Its Electricity from Biomass Including Domestic Straw Pellets, Imported Wood Pellets, and Domestic and Imported Solid Waste

Denmark Has Very High Electricity Costs

25% of Denmark's 2016 electricity from combustion was in Combined Heat & Power plants. Heat storage tanks allow them to function as reserve when there is too much power on the grid.

Iowa Transmission Grid (Purple) 37% Wind-Share Traded With Other States... But the Heartland Only Got 12% from Wind in 2017

Solar • Biomass • Hydro 38% in 2017

Lithium Storage Batteries: Adjust Your Expectations

More Than 40% Subsidy

Storage Does Not Match Production

California Electric Supply By Source 2016

California RECs can come from production as far away as West Texas or Alberta, Canada

OTHER COUNTRIES WITH HIGH SHARE OF RENEWABLES

Austria: 81% Renewables / 10% Intermittent

Brazil: 75% Renewables / 4% Intermittent

New Zealand: 81% Renewables / 5% Wind

South Australia: 39% Intermittent Supported by East-coast Grid HIGH electric costs

DISPATCHABILITY CHALLENGES

- In Texas, Hydroelectric Potential is Minuscule
- Geothermal Electricity Does Not Exist
- Transporting Power from Other Regions is Politically Tenuous
- Wood chips and pellets are expensive and would require many years to establish supply chains
- Lithium Battery Costs Are VERY High –
 28¢ per kwh according to Lazard's (2017)

DISPATCHABLE ALTERNATIVES IN TEXAS?

- Biogas
- Concentrating Solar Power w/ Storage
- Thermal Storage
- Compressed Air Energy Storage
- Pumped Hydro

Biogas From Anaerobic Digestion

Desert Star – Concentrating Solar Power Tower

Desert Star – Concentrating Solar Power Troughs

20% REDUCTION PER DOUBLING OF CAPACITY

Thermal Energy Storage

COST EFFECTIVE IN COMMERCIAL APPLICATIONS
BUT INCENTIVES AND MANDATES ARE NEEDED

Air Mine – Compressed Air Energy Storage (CAES)

CAES With Waste Heat

CAES with Hydrogen

Highland Lakes Pumped Hydro

Hydrosun Pumped Hydro

- 295 MW / 2,000 Gwh if Cycled Daily
- Barely Used (13% Capacity in 2016)
 - Need to compensate LCRA

Generation Type	Cost/Kwh
Combined Cycle Gas Plant	\$0.044
CAES/Wind/Gas	\$0.050
Combine Cycle Gas Plant with Biogas	\$0.059
CAES/Wind/H2 - Future	\$0.061-\$0.062
Wood Pellets in Existing Plant	\$0.061-\$0.097
Concentrating Solar Power - Now	\$.06-\$.10
Concentrating Solar Power - Future	\$0.048

FUTURE CONCENTRATING SOLAR POWER AND CAES WITH WIND & GAS COME CLOSE TO COMPETING WITH NEW GAS PLANT

Strategies to Develop Concentrating Solar Power

- 1. Consortium Collaborative Investment To Create Economies of Scale with Other Texas Utilities
- 2. Change Voluntary GreenChoice to CSP Smaller Surcharge on Regular Customers
- 3. Invest in CSP in Other States with Higher Rate of Return
- 4. Special "30-Year" Rate Class Guaranteeing Wholesale Price for CSP Purchasers

Other Strategies for Dispatchable Renewable Energy

- 1. Biogas Seek Bids
- 2. CAES Partnership Share in Cost of Texas Pilot Plant
- 3. Evaluate Pumped Hydro Costs
- 4. TES Requirement Mandate for New Buildings and Grocery Stores

FOR MORE INFORMATION, CONTACT:
Paul Robbins • (512) 447-8712
paul_robbins@greenbuilder.com