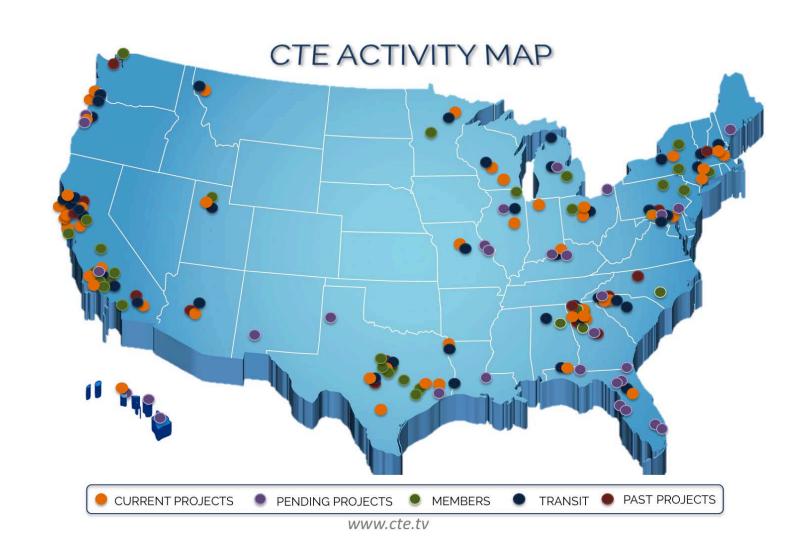


Capital Metro – Zero Emission Bus Project

Resource Management Commission
November 13, 2018

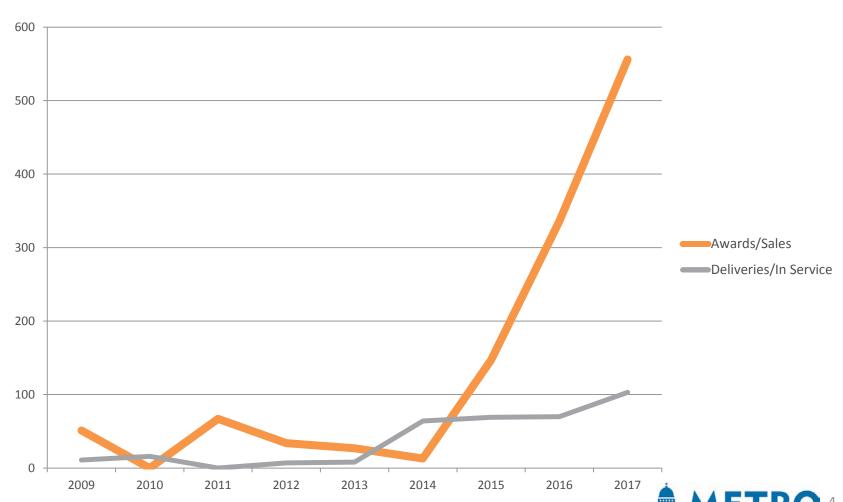
Center for Transportation and the Environment



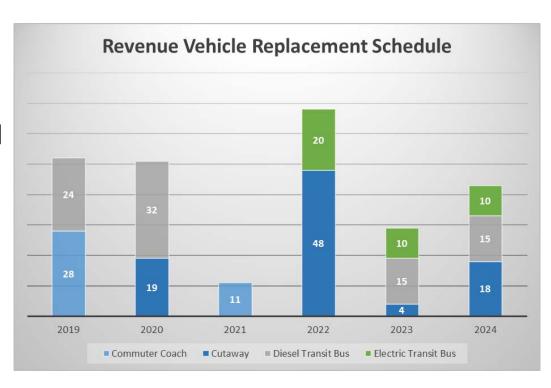
Mission: To advance clean, sustainable, innovative transportation and energy technologies

- Non-profit, membership-based founded in 1993
- Portfolio \$450+ million
 - o Research, development, demonstration, and deployment
 - Alternative fuel and advanced vehicle technologies
- Project sponsorship
 - Federal Transit Administration (NFCBP, TIGGER, Clean Fuels, Low No, procurements)
 - Departments of Energy, Defense, Interior, NASA, and EPA
 - State of California CEC, ARB, BAAQMD, SCAQMD

Our Projects



Pace of Change


ZEB U.S. Annual Sales & Deliveries

Capital Metro ZEB Fleet Plans

- ZEBRA membership
- Vehicle demonstrations in August/September
- Phase One
 Implementation Planned
 - 40 buses over 3 year period (FY22 to FY24)
 - Infrastructure is greatest "unknown" at this point
 - Grant funding or other incentives assumed in financial plan

Finding the Vision for Fleet Transition

What is "success" for Capital Metro's 2024 zero emission deployment?

Example Motivations

Opportunity to lead

> Lower TCO

Reduced **GHG**

> Zero Local **Emissions**

Better rider experience

Motivations for Deploying ZEB

- Why transition to a zero emission fleet?
- Why now?
- What are the critical outcomes?

What is not important?

Battery Electric Bus Recent History

Calendar Year	Awards & Sales
2009 - 2014	146
2015	136
2016	294
2017	556

Calendar Year	Base Price	Energy Storage
2010	\$1.2 mm	75 kWh
2018	\$750k	450+ kWh

BYD

- 35' 60' transit buses, 23' 45' motor coaches available
- On-route charging and depot charging available

Gillig

- 40' transit buses available
- Depot charging available

New Flyer

- 35', 40' and 60' buses available
- On-route charging and depot charging available

Proterra

- 35' and 40' buses available
- On-route charging and depot charging available

Additional Electric Bus Manufacturers

- CCW
- Novabus
- Ebus
- Greenpower
- MCI (New Flyer)
- Van Hool
- El Dorado

Battery Electric Bus Advantages

- Available today
- Fully zero emissions
- Fuel available everywhere
- Batteries will continue to get better
- Simplest zero emission vehicle architecture
- Capital and fuel cost can be similar to conventional buses

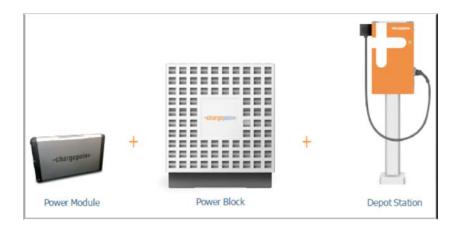
BATERYELECTRI

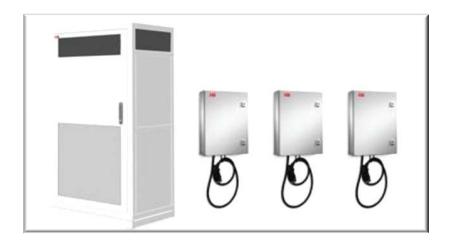
Bus Charging Systems

Depot charging

- Standard largely agreed by major OEMs SAE J1772
- CCS 1 plug most common

Overhead/On-Route Charging


- Working Group standard J3105
- Several competing solutions



Depot Charger Options

On-Route Charging

Battery Electric Bus Challenges

- Not a drop in replacement today for diesel buses in large numbers
- Deployments are more complicated than diesel
 - Fuel costs can change based on utility rate schedules
 - Bus range can vary route-to-route and season-to-season
 - User can only access ~75 percent of battery capacity
 - Battery capacity decreases over time
 - Drivers can have a large influence on performance

Deployment decisions will need careful planning

Large Battery Electric Bus Charging

- Few large-scale infrastructure plans implemented so far
 - 20 buses charging = 1 3 MW grid requirement
 - 200 buses charging = 10 30 MW grid requirement

Hydrogen Fuel Cell Buses

Advantages

- Vehicle fueling is similar to CNG
- Sufficient range for most transit service
- FC system can be support cabin heat
- Hydrogen weighs less than batteries
- Simpler redundancy with delivered LH₂

Challenges

- High fuel costs
- Fueling infrastructure is expensive for small deployments
- Capital Costs are high
- Limited OEMs at this point
- Lower production volumes

Hydrogen Refueling Station

- SARTA station shown below completed late 2016
- About 40'x40' area, capable of fueling around 20-40 buses daily in about 10 minutes

Infrastructure for 100's of buses

Source: Proterra.com

Long term ZEB fleet size requirements

- ZEB impacts
- planned growth

Long term maintenance costs

Technology obsolescence / fast progress

Capital and lifecycle cost – Buses and facilities

Training / Human Resources

Next Steps

- Funding and total cost
- -Research, peer assistance with ZEB
- -Technology decisions
- -Analysis needed