Harmful Algal Blooms

July Water / Wastewater Commission

Brian Haws, P.E. Operations Manager Environmental Engineering & Technical Services

July 14, 2021

Agenda

- Background Algae in the Highland Lakes
- Source water sampling and monitoring
- Austin Water analytical strategies
- Austin Water Harmful Algal Bloom (HAB) mitigation strategies and treatment readiness

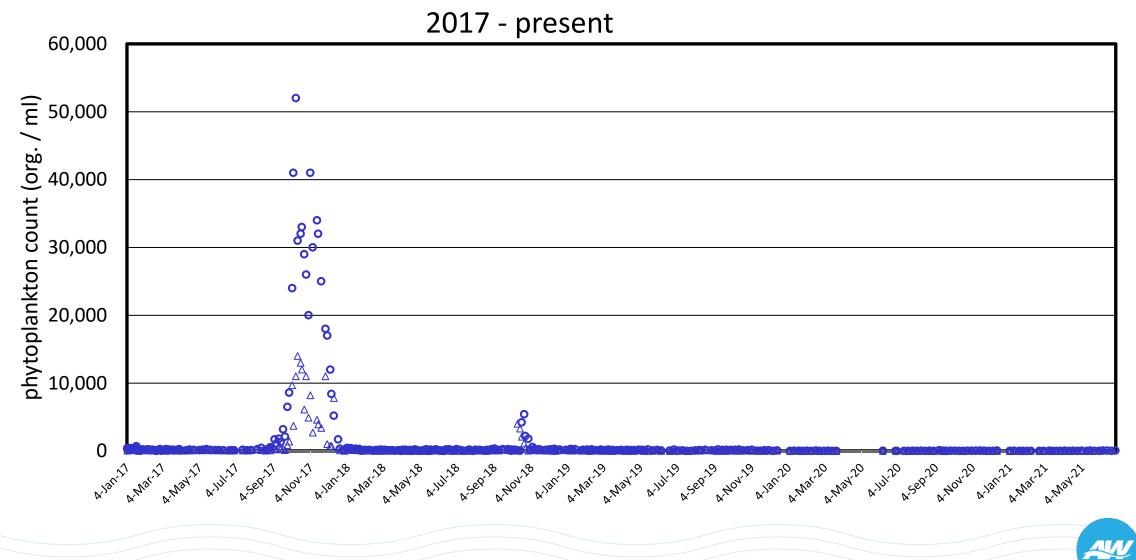
Algae in the Highland Lakes

- Composed of photosynthesizing bacteria (cyanobacteria)
 - a.k.a. "blue-green algae"
 - common in natural water
 - some types produce toxic compounds (cyanotoxins)
- Contributing Factors
 - Warm water
 - Low or stagnant flow
 - Abundance of nutrients

Planktonic vs. Benthic Algae

Planktonic blooms

- Free floating microscopic cells
- Suspended in the water column or floating as scum on surface
- Benthic proliferations
 - Originate on bottom of lake in shallow water
 - Globs or mats remain on the bottom or float to the surface



Detecting a HAB:

- Routine plankton counts at WTP intakes
 - Focus on blue / green totals
 - Observe trending
 - Adjust monitoring frequency based on current conditions
- Continuous exchange of information
 - Watershed Protection Department
 - Lower Colorado River Authority

Austin

Blue Green Phytoplankton Count

Cyanotoxin Monitoring: History

- Cyanotoxins are unregulated
 - No maximum contaminant levels (MCLs) established by EPA
- Austin Water first sampled in 2015
 - Detected cylindrospermopsin (just above detection) at WTP intakes
 - No other cyanotoxin "detects" in Austin Water monitoring history
- Unregulated Contaminant Monitoring Rule (UCMR) sampling in 2019 (all non-detect)

Cyanotoxin Monitoring: 2021

- Biweekly sampling since February 2021
- Collected at intake and tap at all 3 plants
- All results non-detect

LCRA Monitoring

Biweekly at Hudson Bend

- Dihydroanatoxin detected *in water* in Mid-March
 - $\ensuremath{\circ}$ Levels just above detection
- All water samples non-detect since then

Sampled 12 sites in Late March

- Dihydroanatoxin detected *in the water* at 4 sites
 - \odot Levels just above detection
- Future sampling
 - Deploying SPATT bags at multiple reservoirs
 Above the dam at each reservoir

Watershed Protection Department Monitoring

- Biweekly sampling
 - Ladybird Lake (3 sites)
 - Lake Austin (3 sites)
 - Cyanotoxins detected in <u>algae</u> only

FlowCam

Austin Water Analytical Strategies

- Weekly algae counts
 - Evaluate trends
 - Compare against published triggers
- FloCam purchase (July Commission)
- Biweekly cyanotoxin sampling (contract lab)
- Developing ELISA method at AW Water Quality Lab
 - Quicker turnaround at a lower cost
- Method still in
 - development

Harmful Algal Bloom Mitigation Strategies

- Adjusting monitoring frequency based on conditions
- Utilizing available AWWA resources
- Reviewing existing literature
- Coordinating with other agencies (APH; Watershed; LCRA; HSEM)
- Developing communications plans
- Evaluating effectiveness of treatment and operational options
- Participating in Water Research Foundation (WRF) study

Water Treatment Plant Readiness

- EPA preferred method conventional treatment
- Additional treatment methods PAC and oxidation
- Retrofitting for additional chemical capabilities
- Ongoing testing to confirm effectiveness of treatment methods
- Engage consultants for guidance and broader perspective

