
Update on WF24 Climate and Hydrology Analysis

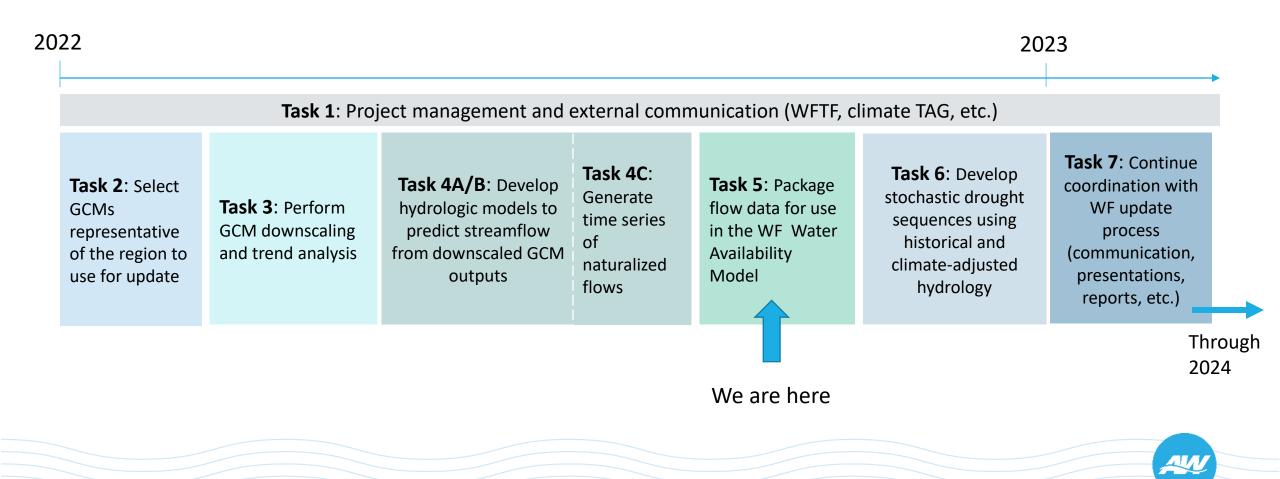
September 20, 2022

Planning for Uncertainty

- Develop range of futures
- Find common near-term strategies that work for a broad range of futures
- Develop adaptive plan with key decision points
- Re-evaluate at key decision points

Goals of **Climate &** Hydrology Analysis Update

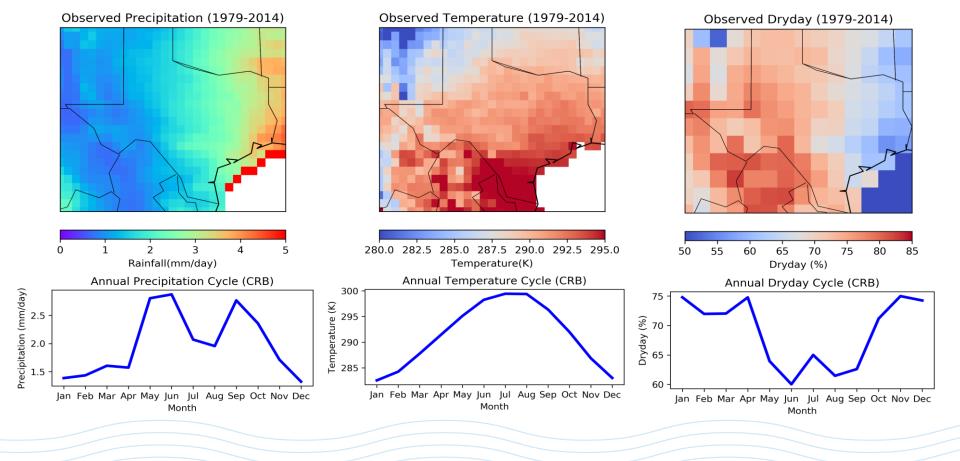
- Look at a range of possible future climate scenarios
- Identify high-level climate trends in the basin
- Generate climate changeadjusted streamflow data to test in the Water Forward Water Availability Model (WF WAM)


Differences from 2018 WF Plan

Partnership with UT Austin

- Climate technical advisory group
- Looking at multiple climate scenarios
- New hydrologic models

Climate and Hydrology Analysis Update – Tasks

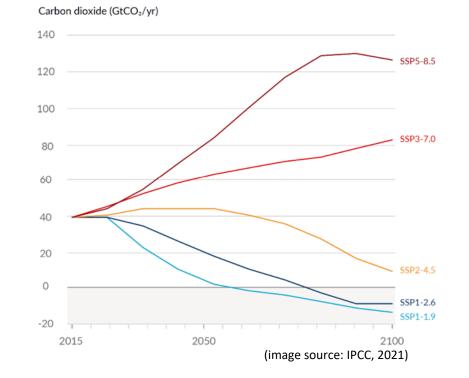


Selection of GCMs

- What: choose global climate models (GCMs) that best represent climate over the Colorado River Basin
- Why: want to use GCMs that can best project possible climate futures for the Colorado River Basin
- How: evaluate how well GCMs simulate historical climate over the Colorado River Basin and select the best performing set of models

Evaluation of GCMs

 Historical simulations of 35 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) are evaluated on their ability to represent the following observed characteristics:


Top-scoring GCMs

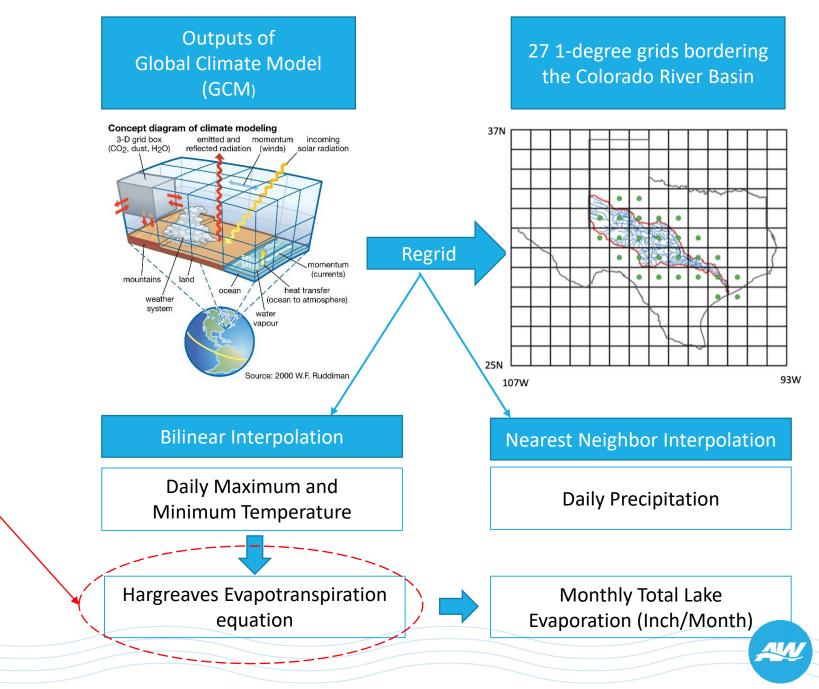
Top 10 best-scoring GCMs based on model performance over the Colorado River Basin (CRB), as measured by skills scores (S)

Model	S _{spatial,T}	S _{spatial,P}	S _{spatial,NDD}	S _{temporal,T}	S _{temporal,P}	S _{temporal,NDD}	Soverall	Ranking
CNRM-CM6-1-HR	0.90	0.94	0.97	0.98	0.63	0.55	0.864	1
HadGEM3-GC31-MM	0.93	1.00	0.96	0.94	0.21	0.68	0.845	2
UKESM1-0-LL	0.92	0.88	0.70	0.94	0.75	0.68	0.818	3
HadGEM3-GC31-LL	0.91	0.91	0.70	0.95	0.54	0.75	0.809	4
CNRM-CM6-1	0.90	0.79	0.72	0.96	0.72	0.70	0.801	5
CNRM-ESM2-1	0.91	0.82	0.75	0.95	0.65	0.63	0.798	6
KACE-1-0-G	0.91	0.94	0.79	0.94	0.08	0.72	0.779	7
GFDL-ESM4	0.91	0.78	0.81	0.94	0.54	0.49	0.775	8
ACCESS-CM2	0.89	0.95	0.77	0.95	0.31	0.33	0.758	9
EC-Earth3	0.91	0.95	0.95	0.92	0.13	0.04	0.747	10

Selected GCMs

Climate Scenario #	CMIP6 SSP emission scenarios	Average End-of- Century Warming for CRB (°F)	Selected GCMs
1	1-2.6	4.4	ACCESS-CM2
2	2-4.5	6.6	CNRM-CM6-1 EC-Earth3
3	5-8.5	11.6	KACE-1-0-G UKESM1-0-LL

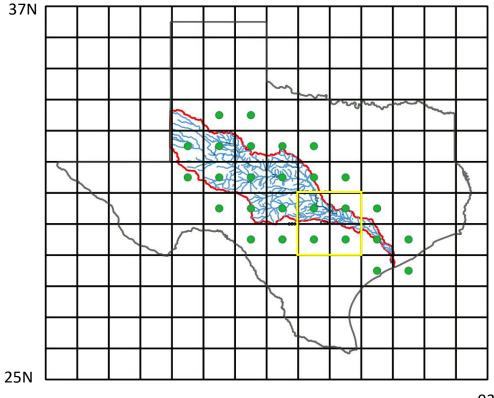
- Different Shared Socioeconomic Pathways (SSPs) for different greenhouse gas emission scenarios according to different climate policies
- Number of GCMs and emission scenarios selected covers a wide range of possible futures
- Wide range of possibilities will support robust decision-making approach


Downscaling and bias correction of GCM data

- What: downscale and bias correct data outputs from the global climate models into data that can be used over the Colorado River Basin
- Why: improves data resolution in the area of interest and removes biases in GCM data to allow for more in-depth analysis
- How: use statistical downscaling over the Colorado River Basin and bias correct downscaled GCM data based on statistical relationship with observed data

Downscaling process

Effectively bias-corrects modelled evaporation to match observation (TWDB monthly total lake evaporation)


Trend analysis of downscaled GCM data

- What: examine GCM projections of future climate and identify relevant trends in the data
- Why: trends in the data help us determine if temperature is generally increasing across all scenarios, if rainfall is generally decreasing, etc.
- How: Compare GCM future projections to historical data and identify differences

Trend analysis process

- Trend analysis performed on the variables below calculated using bias-corrected daily temperature and precipitation :
 - Annual average precipitation and temperature
 - Number of days in a year with precipitation below 0.01 inch (dry days)
 - Number of days in a year with precipitation above 2 inches (wet days)
 - Number of days in a year with maximum temperature above 90°F (hot days)
 - Number of days in a year with maximum temperature above 100°F (hot days)
 - Number of days in a year with minimum temperature below 32°F (cold days/nights)
 - Annual maximum 5-day total precipitation
- Trend analysis over Austin and CRB

107W

93W

Temperature

- Annual mean temperature is projected to increase
- Number of hot days with temperatures above 100°F are projected to increase

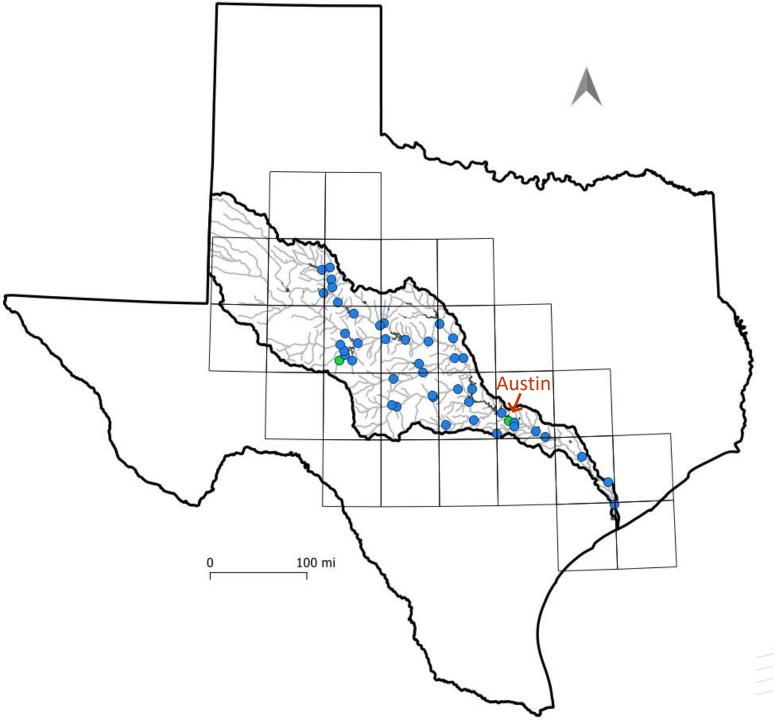
Rainfall

- Rainfall distribution is projected to change
- Less frequent and more intense rainfall events are projected

Dry Days

• Number of dry days with precipitation below 0.01" are projected to increase

Projected high-level climate trends in the basin

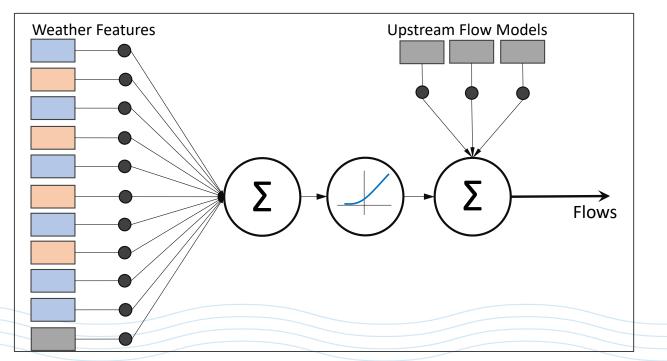

Based on initial results

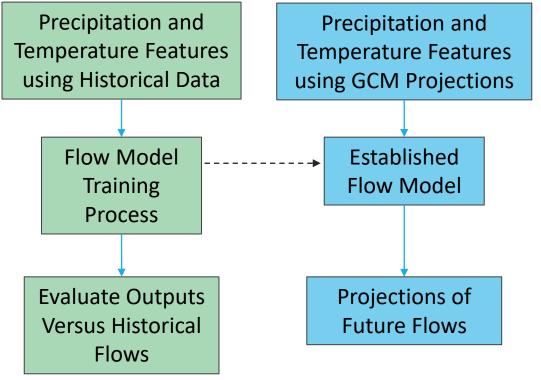
Projection of streamflows using GCM data

- What: use precipitation and temperature data across the Colorado River Basin to develop streamflow projections
- Why: streamflow projections will be used in the water availability model to evaluate portfolios of strategies across future time horizons
- How: considered 2 modeling methods: runoff projections from GCM datasets and multivariate model similar to the method used in WF18

Colorado River Basin

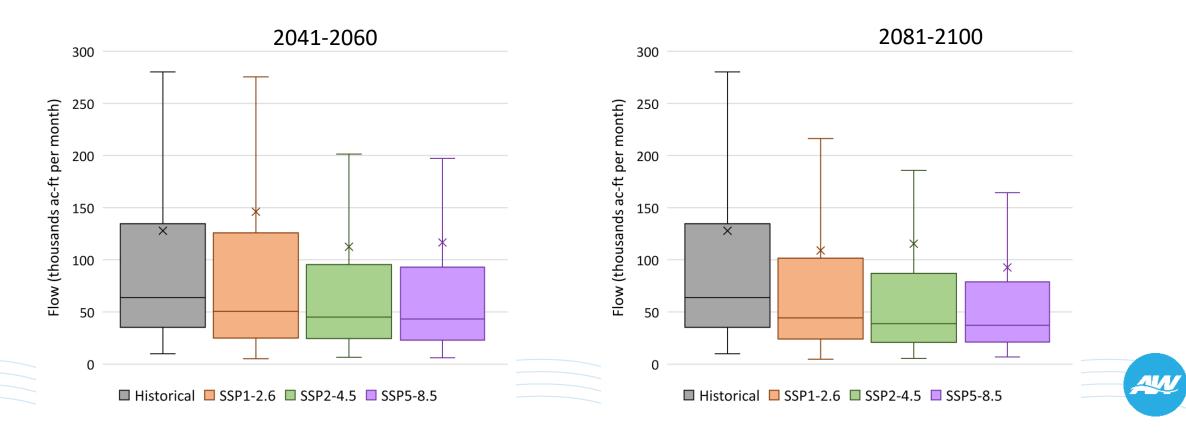
- 31,000 square miles of drainage area
- 45 control points for flow inputs to the WAM
- 27 weather locations (quadrangles)


Precipitation and Temperature Features


- Features created using measures of precipitation and temperature time series from nearby quadrangles
- 10 unique features selected for each flow control point
- Features selected for relevancy to flow at each location, and minimum redundancy between features

Pedernales River near Johnson City	Colorado River at Austin		
Precipitation Exp. Avg., n = 6	Precipitation Exp. Avg., n = 4		
Maximum Temperature Arith. Avg., 17 months	Minimum Temperature Arith. Avg., 11 months		
Dry Days Exp. Avg., n = 11	Dry Days Exp. Avg., n = 24		
Precipitation > 0.25" per day Arith. Avg., 13 months	Dry Days Current month only		
Dry Days Exp. Avg., n = 2	Dry Days Arith. Avg., 4 months		
Precipitation-Evaporation Arith. Avg., 8 months	Precipitation > 2" per day Current month only		
Hottest 7 days per month Arith. Avg., 13 months	Precipitation-Evaporation Arith. Avg., 12 months		
Max of daily PrecipEvap. Exp. Avg., n = 8	Precipitation > 1" per day Current month only		
PrecipEvap. > 2" per day Exp. Avg., n = 2	PrecipEvap. > 2" per day Arith. Avg., 3 months		
PrecipEvap. > 1" per day Arith. Avg., 2 months	Precipitation Arith. Avg., 7 months		

Flow Model Framework, Training, and Projections


- Neural network flow models
- Flow models connect to downstream control point models

Flow Projection Overview

- Projections show greater frequency of lower flows as the climate warms over time.
- Extreme high flow events can increase in magnitude.

Climate & Hydrology Analysis Next Steps

- Create ensembles of streamflow data for testing in the WF WAM
- Develop stochastic streamflow series for both historical and climate-adjusted data
- Test water management strategies against all possible streamflow series developed
 - Determine which strategies perform best over the most scenarios

Questions?

